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Preface 

This is a record of the Proceedings of the 38th annual conference of the Mathematics 
Education Research Group of Australasia (MERGA), held at the University of the Sunshine 
Coast. The Proceedings were published on the MERGA website at www.merga.edu.au, as 
well as being made available to conference delegates on a USB. 

The theme of the conference was Mathematics education in the margins. There were 
several reasons for choosing this theme. First, the University of the Sunshine Coast is a 
regional university seen by many as being in the “margins”. The conference was therefore an 
opportunity to share the endeavours of the many people who teach, research, and reach out to 
those students who feel that their mathematical experiences are in the margins. It was also an 
opportunity to question the role of mathematics education in helping students come out from 
the margins. To that end, the keynote presentations addressed this theme with Professor Peter 
Sullivan presenting his work on engaging students by posing challenging mathematics tasks 
to prompt learning through problem solving and reasoning. He discussed how these tasks 
could be differentiated so that all students could achieve whilst developing persistence. 
Professor Tom Lowrie challenged us by stating “It is also important that our research 
empowers people, and that our recommendations and implications improve systems, 
especially for the disadvantaged.” Professor Jill Adler discussed her work with some of the 
world’s most marginalised teachers and students, in schools for the very poor in South Africa. 

Presentations at the conference comprised research papers, round tables, and short 
communications that covered a wide variety of topics relevant to mathematics education 
across all countries, with a particular focus on the Australasian region. Research into 
mathematics education in early childhood settings, primary and secondary schools, or in 
tertiary institutions was presented and discussed. In accordance with established MERGA 
procedures, all research papers were blind peer reviewed by panels of mathematics educators 
with appropriate expertise in the field. Papers could be accepted for presentation only, or for 
both presentation and publication in the Proceedings. All papers initially accepted for 
presentation only were reconsidered by two members of an additional panel of independent 
expert reviewers. Only those research papers finally accepted for presentation and publication 
are published in these Proceedings. The abstracts for short communications and round tables 
were also blind peer reviewed. The published Proceedings include the keynote papers, 
research papers, and abstracts for round tables and short communications. 

The Editorial Team would like to acknowledge and thank Review Panel Chairs and all 
reviewers for their efforts in reading and providing constructive feedback in a short 
timeframe. Ensuring the published papers meet high academic standards is an important and 
shared responsibility of the MERGA community. We would also like to thank the authors for 
taking the time and necessary care to use the MERGA conference paper template and 
guidelines before submitting their papers.  

The Conference Organising Committee welcomed participants from all states and 
territories of Australia, as well as from many countries including Canada, Germany, Japan, 
New Zealand, Nigeria, and Singapore. We hope you enjoyed your time at the conference, 
making new connections and new friends, and that you had a chance to enjoy the Sunshine 
Coast and the many wonderful places to visit. We would also like to thank our Queensland-
based colleagues who helped us to welcome you and show you around. We certainly enjoyed 
meeting you and hosting this conference. 
 
Margaret Marshman 
Chair, Conference Organising Committee and Chief Editor 
Vince Geiger and Anne Bennison (Editors) 
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The Beginnings of MERGA 
Preamble to the Annual Clements/Foyster Lecture 

In the middle of 1976 John Foyster, who was then based at the Australian Council for 
Educational Research (ACER), came to see me at Monash University, where I was in charge 
of the Mathematics Education program. John talked about how the Australian Science 
Education Research Association (ASERA) had recently been established, with Professor 
Richard Tisher (then of Monash University) as the prime mover. John wondered whether the 
time was ripe for a similar national group interested in mathematics education research to be 
established, and asked whether he and I might take steps to establish such a group. 

My immediate reaction was yes, we should do it. Then came the doubts and reservations. 
How would the Australian Association of Mathematics Teachers (AAMT) react to such an 
initiative? After all, AAMT already had a “Research Committee.” In any case, would there be 
enough mathematics educators in Australia, interested in such a group to make it a viable 
proposition? Who would provide the funds likely to be needed for the establishment of such a 
group?  

It was John’s and my opinion that the AAMT Research Committee had not reached out to 
embrace most of the people lecturing in mathematics education in Australia at teachers 
colleges or in universities at that time. Intuitively, I thought Australia needed a group like the 
one John was proposing. My intuition told me that AAMT was not the organisation to move 
towards the establishment of such a group.  

John assured me that he would put up any funds needed to get the group going (and, 
hopefully, any group that was established would be able to pay him back within a few years). 
Hence we decided to proceed with the idea of establishing the group and to strike while the 
iron was hot, so to speak, by conducting a national conference at Monash University in the 
middle of 1977. I came up with the name “Mathematics Education Research Group of 
Australia” which John liked because of the acronym MERGA, which suggested a “merging 
together.” We sent out notices of our intention to form MERGA late in 1976. Neither of us 
knew many of the people who might be interested in joining such a group, so the notices were 
addressed to the “Mathematics Lecturers at…”  

Soon after we had decided to go ahead, I heard of the existence of a group, based in New 
South Wales, called the Mathematics Education Lecturers’ Association (MELA). John and I 
talked about whether MERGA and MELA might become one from the outset, but we decided 
that the aims of MELA seemed to be sufficiently different from those that we envisaged for 
MERGA, focused far more on research than lecturing, that we should proceed with the 
MERGA idea.  

And so it came to be that in May 1977, the first of what was to become the annual 
conference of MERGA took place. About 100 people attended, with papers frenetically being 
read from 9 am to about 10 pm, for three days, in a Rotunda Theatre at Monash University. 
Professor Richard Tisher was present at the start of the Conference, and talked of his 
experiences in establishing ASERA. Frank Lester, of Indiana University, was among those 
present. In the event, two volumes of papers read at the Conference were produced (the first 
volume being available on the first day of the Conference, and the second several months 
later). 

At a post-Conference meeting it was decided that, yes, MERGA should be formed, that 
the second meeting would be at Macquarie University in May 1978, and that an annual 
conferences should be held each year at a different academic institution. At that second 
conference it was decided by those present that MERGA should continue and a constitution 
and election of offices would be decided on at the third conference to be held at the then 
Brisbane College of Education. And so MERGA was born. 

Ken Clements 
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Mathematics Education as a Field of Research: 

Have We Become Too Comfortable? 

Tom Lowrie  
University of Canberra 

<thomas.lowrie@canberra.edu.au> 

Mathematics education is highly regarded as a research field within our region, especially 

when compared to other fields within the broader education discipline. The field has been 
relatively cohesive, well organised and internationally influential in a universally strong 

field. Mathematics education research has developed and evolved in challenging times—

when other fields have become fragmented and lost vision—have we more to offer? This 

keynote paper considers the challenges we face as a field of research as we navigate our 

theoretical underpinnings and pedagogical practices, within both the mathematical sciences 

and broader education disciplines. 

The International and Regional Strength of Mathematics Education  

As a field of research, mathematics education has developed a reputation of scientific 

strength within a relatively short timeframe. In terms of research intensity, the international 

reputation of mathematics education is one of considerable productivity and engagement. 

The field is internationally connected via the regular production of international 

handbooks, collaborative manuscripts, well-regarded journals, and a number of 

international conferences that attract participants from a diverse number of countries. 

These international conferences often have specific strength within particular aspects of 

mathematics education: including psychology (e.g., Psychology of Mathematics Education 

[PME]) and sociology (e.g., Mathematics Education and Society [MES]). Such is the 

magnitude of the mathematics education field.  

More localised strength within the field usually comprises strong regional 

organisations like MERGA, well-organised conferences like the four-yearly ICMI-East 

Asia Regional Conference of Mathematics Education (EARCOME), or special interest 

groups within larger education conferences (e.g., mathematics education is the largest 

special interest group of the American Educational Research Association [AERA]). Such 

strength and connectivity is certainly not unique; nevertheless the national and 

international strength is somewhat privileged within the education discipline.   

In terms of professional development and engagement, mathematics education 

researchers in Australia and New Zealand are somewhat advantaged. Our geographical 

“remoteness” and relative small populations have shaped our research-based organisations 

in dramatic ways. We have few discipline-based competitors and our scale ensures that we 

know each other well. Most members attend the annual MERGA conference on a regular 

basis—providing a connected network of scholars that develops both collective capacity 

and identity formation. Such remoteness also tends to develop a “collective” mentality, 

moving collectively to international conventions across the globe. Our members are 

regularly among the highest proportion of attendees outside that of the host country at 

international conferences like the PME. With perhaps the exception of science education, 

no other discipline-based field within education offers such strength and direction. Most 

disciplines in Australia and New Zealand rely on general national education communities 

(i.e., Australian Association of Research in Education [AARE] and New Zealand 

Association for Research in Education [NZARE]) to harness research strength. It is of no 
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surprise that mathematics education does not have a special interest group at AARE—

which is in stark contrast to that in the United States and AERA. Not only do we have 

strength in numbers, but our propensity to engage with colleagues from all over the world 

makes our international presence and reputation palpable.  

Most, if not all, education-based discipline fields conduct research and professional 

practice that are abreast of both general-education and specific-discipline paradigms. For 

example, both the English and education fields influence literacy education researchers, 

while in human movement and education fields those researchers who concentrate on 

physical education. To this point, most discipline-based fields within education are 

concerned with the promotion of the discipline content and the pedagogical constructs that 

support the learning of the discipline. At least from a regional perspective, it would be fair 

to say that literacy and numeracy attract most of the attention from the collective education 

community—including politicians, policy makers, assessment experts, school communities 

and the general public. As mathematics education researchers, such community attention 

provides us with scope, capacity and opportunity not afforded to other fields of research 

within education—even strong fields such as science education. Although this may well be 

as good as it gets, mathematics education is a field with high credibility and sustained 

influence within the broader parameters of education research.  

Enhancing Our Regional Reputation: Respectful Acknowledgement via 

Tradition or Ground-Breaking Innovation? 

As Galbraith (2014) maintained, mathematics educators within our region have made a 

substantial contribution to the field internationally in terms of theoretical development and 

practical applications. This success can be gauged across various measures of impact and 

contribution. New Zealand has a past President of the International Congress on 

Mathematical Instruction (ICMI); and a winner of the Felix Klein Medal and the current 

Editor of Educational Studies of Mathematics (ESM) are from Australia.
1
 Our members 

have been editors of several international handbooks and have contributed substantially to 

invited papers and keynote presentations at PME and the International Congress on 

Mathematics Education (ICME)
2
. In fact, our attendances at the annual PME conferences 

or as contributors to International Handbooks of Mathematics Education are higher than 

that of any other country, apart from the United States. For countries of relatively small 

populations, such international contributions are considerable (Singh & Ellerton, 2012). 

Indeed, they point to the strength of our research-based community. From its inception in 

the early twentieth century, mathematics education has been a field that has been 

dominated by European and North American mathematicians and mathematics educators 

(Singh & Ellerton, 2012). Yet MERGA members, in particular, have been able to establish 

enough credibility and presence to make an impact within such restricted structures. It is 

noteworthy that the only ICME conference to be held outside of the Northern Hemisphere 

was in Adelaide (1984), with Sydney contesting to hold the event in 2020—which would, 

if successful, be the second such occasion. Within the field we are certainly influential, 

                                                   
1 Professor Bill Barton was President of ICMI from 2008–2012); Professor Gilah Leder was awarded the 
Felix Klein Medal for research excellence from ICMI in 2009; Professor Merrilyn Goos was appointed 

Editor of ESM in 2014. 
2
 In the four ICME conferences since 2000, MERGA members have presented four plenary activities and 16 

regular lectures.  
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despite our relatively small populations. Perhaps it is our size and isolation that shapes 

such successful practices?  

Such data highlight the fact our members have been able to engage (and certainly 

contribute) internationally in an environment that has been focused on European and North 

American traditions. To some degree, these traditions remain self-absorbed and somewhat 

conservative. It may be the case that such attributes lend themselves well to mathematics 

education since “mathematics” tends to flourish on traditional approaches and foundation 

principles. The rise and rise of Asian countries in terms of prosperity and influence within 

the world’s increasingly networked society (Castells, 2010) has begun to dramatically shift 

the education focus from Europe and North America. From a political perspective, 

attention first shifted toward Asia when it became apparent that Confucian-heritage nations 

consistently performed better than students from North America and Europe. Interestingly, 

the current fixation on comparing student performance across countries—along with the 

obvious performance advantage these Asian countries exhibit on the Programme for 

International Student Assessment and Trends in International Mathematics and Science 

Study—reinforces the notion that traditional and structured approaches to teaching 

mathematics are most effective.  

In his keynote presentation in Singapore, Clements (2012) argued that a more inclusive 

MERGA could become a power block to rival those in North America and Western 

Europe. Both regionally and contextually, we are well placed to engage deeply with 

colleagues from Asia—indeed, many of us are doing so already. Anecdotally, I would 

suggest that at least half of our MERGA’s current membership has sustained research 

relationships with colleagues and/or countries in Asia, and especially in southeast Asia. 

Respectfully, we have at least as much to learn from, and engage with, our colleagues in 

this region than we do from the traditional two blocks.  

Mathematics Education and Mathematics 

Mathematicians made most policy, curriculum and pedagogical decisions concerning 

mathematics education, as recent as thirty years ago (Clements, 2012). There were few 

mathematics education specialists—and those folk who possessed such skills were not 

influential. This landscape has changed dramatically, both regionally and internationally. 

As Fried (2014) commented: 

…over the last quarter century or so, and for better or for worse, this simple notion of where the 

core of mathematics education lies has been offset by goals and interests allying it, as an academic 

field, more closely with psychology of learning, cultural differences, and social justice, among 

others, than with mathematics itself. Thus, while the first two-thirds of the twentieth century could 

boast of great mathematicians such as Felix Klein, Jacques Hadamard, George Pólya, and Hans 

Freudenthal making contributions to mathematics education, today, not only are such figures rare in 

the field, they have also been to an extent alienated by it. (p. 12) 

It is also the case that those innovative and highly capable mathematicians established our 

field. I am convinced that some of our colleagues today are just as creative and innovative, 

however the field is much larger—consequently, “big fish in a big pond”. It would also be 

fair to suggest that our society is more complex and interactive than it was thirty years 

ago—demanding that we consider psychology, cultural differences and social justice 

dimensions with as much rigor and attention as mathematics content and processes.   

For some time now, most of our mathematics education academics completed their 

doctorates in Australia or New Zealand—initially guided by a handful of our community’s 

most respected researchers. The vast majority of these new doctoral scholars emerged from 
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a secondary teaching background. Only a handful of our new early career researchers 

moved into universities from primary or early childhood backgrounds—a pattern that has 

changed considerably in the past ten years. It could be argued that our discipline has 

stronger foundations within education than it does in mathematics, at least from the 

orientation of our community. In both Australia and New Zealand, mathematics educators 

are typically in Faculties and Departments that include other education experts—in 

contrast to many North American and European universities where mathematical science 

and mathematics educators belong to the same department. I seldom engaged with teacher 

educators in my first two sabbaticals to North America, yet was surrounded by 

mathematics colleagues. It is certainly the case that the discipline profile of MERGA 

members will look very different in ten years’ time, with fewer people having mathematics 

as their major postgraduate qualification.   

There has been a concerted effort to find common ground with our mathematics 

colleagues in recent years. This has especially been the case with MERGA under the 

leadership of Merrilyn Goos, with strong collaborative support from the Australian 

Association of Mathematics Teachers (AAMT). From a political perspective, this has 

included a determination to have a common voice with the Australian Mathematical 

Sciences Institute (AMSI), the Australian Mathematical Society (AustMS) and the 

Statistical Society of Australia (SSAI) on a range of issues. The cohesive and collaborative 

nature of our work (and common aspirations) was no more evident than in the concerted 

effort to host ICME-14 in Sydney in July 2020. The ICMI delegation were both surprised 

and overjoyed with the evident goodwill, common ground and working relationships that 

existed among our organisations—collectively and individually commenting that this was 

rarely seen elsewhere in the world.
3
  

From a research perspective, however, this connectivity is less apparent. It may be the 

case that our philosophical lenses and ways of knowing are too dissimilar. As Brown 

(2010) argued:  

Mathematicians who see mathematics as an entirely abstract domain are a different breed to those 

attentive to its historical evolution and hence its potential immersion within the social sciences. To 

move from one domain to another requires a major switch in modes of thinking, from one 
conception of life to another. (p. 341) 

Fried and Dreyfus (2014) produced a manuscript that encouraged mathematicians and 

mathematics educators to consider the common ground among their fields of research. 

They suggested that mathematicians were primarily concerned with content and ideas, and 

approaches for ensuring ideas could be presented as fluently as possible. By contrast, 

mathematics educators were concerned with students’ thinking and how understanding is 

embedded in culture and everyday experiences. Any research nexus between the discipline 

fields seems to be closely associated with teachers of mathematics in the classroom. In 

mathematics education, this research tends to be associated with classroom teachers’ 

content knowledge (CK) and pedagogical content knowledge (PCK). In mathematics, the 

research is associated with developing more informative assessment practices and the 

necessity to produce good quality teachers of mathematics.  

Mathematics researchers have re-invented themselves in part, at least in our region, by 

necessity. Although mathematics education has become increasingly concerned with the 

mathematics knowledge our teachers possess when enrolling in education degrees, our 

                                                   
3
 The ICMI delegation were similarly impressed with how closely connected our Australian and New 

Zealand members were to our colleagues in Asia—as we presented a case for our regional cohesion. 
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mathematics colleagues are concerned with the decrease in the number of students wanting 

to undertake degrees with a mathematics specialisation. We may have too many students; 

by contrast they have too few. One way that mathematicians have responded to this loss of 

capacity is to become more broad or balanced in their scope. The term mathematical 
sciences has emerged, commonly defined in our region as “encompassing mathematics, 

statistics and the range of mathematics-based disciplines including the teaching of 

mathematics and teacher education”. The first part of the statement is unsurprising, and the 

identification of mathematics-based disciplines increasingly necessary. For example, 

mathematics knowledge and tools have become critical to commerce and industry in an 

increasingly technological age. However, it is noteworthy that such statements about 

components that encompass mathematical sciences would mention teacher education. This 

may be a strategic decision that is politically astute to ensure the discipline remains vital 

and influential. After all, it must be difficult to “compete” for exposure and relevance in a 

science-dominated landscape (especially in terms of physics, chemistry and medical 

science). Although there must be some advantages of being considered a “hard science”, 

there are challenges when your field is required to share the same research space.  

Some of my mathematics colleagues lament at the challenge of demonstrating impact 

when the most prestigious journal in their field, Annals of Mathematics, has an impact 

factor of 2.8. They quote journals in engineering and general science with impact factors 

substantially higher than their gold standard. This is also the case in our field. Educational 
Studies in Mathematics has a far lower impact factor than the most well-regarded teacher 

education and general education journals (see Table 1). Science-based journals seem to be 

more widely read and quoted. The science-based journal equivalent to ESM would be 

Journal of Research in Science Teaching, which has an impact factor of 3.02. 

Table 1 

Impact Factors of Well-Respected Journals by Discipline Field  

Journal Discipline Field Impact Factor 

Educational Studies in Mathematics Maths Education 0.6 

Journal of Teacher Education Teacher Education 2.2 

Review of Educational Research Education 5.0 

Annals of Mathematics Mathematics 2.8 

International Journal of Civil Engineering & 

Technology 

Engineering  9.1 

Science Science 31.4 

In an environment of heavily reduced research funding opportunities, such cross-

disciplinary comparison becomes relevant and potentially debilitating. Most large-scale 

and long-term research projects are funded within cross-disciplinary panels and assessment 

committees. No mathematics education consortium has been awarded an ARC Centre of 

Excellence or Cooperative Research Centre (CRC). In fact, no education-led consortia 

have ever been awarded such sustained funding to work on complex research questions. By 

contrast, our mathematics colleagues have recently been awarded an ARC Centre of 

Excellence in “Mathematical and statistical frontiers of big data, big models, new 

insights”. The Centre is led by a statistician, Professor Peter Hall.  

What our mathematical science colleagues have been able to achieve is commendable. 

They have been able to show how their discipline-based research can be applied to, and 
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have impact on, the broader community. For the ARC Centre of Excellence, they were able 

to demonstrate that the mathematical models they were going to develop would be vital to 

the Centre’s collaborative domains, namely: healthy people, sustainable environments and 

prosperous societies. In order to receive such funding opportunities, we have some way to 

go—nevertheless, there are some positive signs concerning how our work is regarded on a 

national stage.
4
  

Mathematics Education within the Education Discipline 

In an Australian context, the Australian Research Council (ARC) Discovery Grants are 

often regarded as the gold standard. These grants allow researchers to frame research 

projects from a position of personal strength and focus. Unlike many funding schemes, the 

open nature of the funding rules has no set agenda—apart from the need to demonstrate 

national significance and innovation. Over the past ten years, mathematics educators have 

received a high proportion of funding from this scheme, relative to other disciplines within 

the field of education. In fact, of all grants awarded in the past ten years, mathematics 

educators have been awarded 20% of the grants—all of whom are members of MERGA. 

The data are more compelling when considering all grants awarded within the curriculum 

and pedagogy component of the education discipline—where almost all mathematics 

education grants are assigned. Within this categorisation, our members have been awarded 

40% of the grants awarded by the ARC. Typically, success rates for this Discovery scheme 

are less than 20%, from a pool of the education disciplines’ most highly regarded 

researchers. Although it is difficult to ascertain what the success rate for mathematics 

educators would be within this funding scheme, in some years it would be more than 50%. 

As a community of scholars, we must be doing something right! Table 2 provides data on 

the number of grants awarded by the ARC in the Discovery Scheme within the curriculum 

and pedagogy discipline, by content specialisation.  

 

 

 

 

 

 

 

 

 

                                                   
4 The ARC awarded Special Research Initiative funding to a Science of Learning Research Centre in 2012. 
Although the Centre is led by neuroscientists and cognitive psychologists from a brain centre, pleasingly, a 

number of MERGA members are Chief Investigators in this Centre—raising the possibilities for mathematics 

education researchers.  
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Table 2 

Grants Awarded in the Discovery Scheme (2005–2014) Curriculum and Pedagogy (4-Digit 
Code) by Year and Field Specialisation 

Discipline Field Total Awarded Proportion (%) 

Mathematics education 23 40% 

Science education 17 30% 

English/literacy education 5 9% 

Technologies 3 5% 

Physical education/health 2 3.5% 

Curriculum/national  2 3.5% 

Social justice  1 <2% 

Democracy  1 <2% 

Learning cycles 1 <2% 

Assessment 1 <2% 

Integration 1 <2% 

Total  57  

There are a number of plausible explanations for this high proportion of success, 

relative to other sub-disciplines within the field. These grants are typically awarded to 

investigators with very strong research profiles, with 40% of the assessment criteria 

afforded to the research team’s record of research productivity. A further 30% is awarded 

to the grant’s contribution to national priorities and strength of the team’s research 

environment. Mathematics, and specifically numeracy, is considered to be of critical 

importance to the nation’s prosperity and capacity to remain competitive in global markets. 

To this point, our field is well placed to take advantage of the fact that numeracy (along 

with literacy) is afforded more attention politically than other areas of learning in schools. 

By contrast, the fields of arts education, human society or physical education rarely gain 

such community-based attention. Consequently, the general view that mathematics is 

necessary for the development of the next generation of global citizens, combined with the 

international reputations of the research team, ensures higher-than-average levels of 

success.  

The “Education” That Surrounds Mathematics Education  

One of the central criticisms of teacher education is that both research approaches and 

the implementation of practice(s) revolve around “cottage industries” that cyclically repeat 

and reinvent similar initiatives (McKernan, 2008). Elsewhere, I have argued that new 

frameworks need to be developed, trialled and implemented across different contexts and 

countries to provide research and practice opportunities which not only value add to 

previous initiatives, but reflect sophisticated research designs (Lowrie, 2014). A lack of 

sustained long-term research funding, and the challenge of meeting education jurisdictions’ 

restrictive timeframes make such aspirations challenging. Moreover, education 

jurisdictions within countries generally require new approaches and innovations to be 

tailored to their specific cultural and political circumstances. As a result, research studies 

are difficult to replicate across jurisdictions. It is also the case that education research is 

complex. As Berliner (2002) maintained: 
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In education, broad theories and ecological generalizations often fail because they cannot 

incorporate the enormous number or determine the power of the contexts within which human 

beings find themselves…. The participants in those networks have variable power to affect each 

other from day to day, and the ordinary events of life (a sick child, a messy divorce, a passionate 

love affair, migraine headaches, hot flashes, a birthday party, alcohol abuse, a new principal, a new 

child in the classroom, rain that keeps the children from a recess outside the school building) all 

affect doing science in school settings by limiting the generalizability of educational research 

findings. (pp. 18–19) 

Context is critical to, and in, educational research. It could be argued that it is more 

influential in replicating findings than anything else. Even in studies of more than 200 

participants, it is often difficult to replicate findings because the within-group variance is 

typically larger than the between-group variance. So many variables are at play, even for 

well-defined and structured treatment programs or multivariate analyses that provide a 

battery of instruments to “control” for variables. At the same time, student behaviour could 

be interacting with a teacher’s mathematics knowledge, beliefs about pedagogy or even 

assessment practices—not to mention the socioeconomic status of the students of the 

community. Most large-scale studies are drawn from a participant base that is familiar to, 

or in close proximity of, the researcher’s own context. This is also the case in educational 

psychology research. This might include undergraduate students drawn from the 

researcher’s own university, or schools in their own district. Increasingly, it is difficult for 

“outsiders” to get into different and new jurisdictions within their own country, let alone 

another country.  

 In teacher education, in particular, small-scale qualitative research dominates (Adler, 

Ball, Krainer, Lin, & Novotna, 2005). As Adler et al. (2005) suggested, such findings are 

unsurprising since theory-practice relationships can be explored in authentic ways via 

teacher voice. It may also be the case that context and cultural aspects of the investigation 

are not generalisable until theorising and modelling can be established. Nevertheless, the 

criticism that teacher education is concerned predominately with a cottage industry is 

understandable—where most research is focused on what is taking place nearby and 

repeated in multiple sites across the world. Such perceptions are especially salient when 

most small-scale research is conducted with teachers with whom the researcher knows and 

has worked with in the past. In fact, as much as 80% of all investigations are conducted 

with relationships already formed (Adler et al., 2005). Given the competitiveness of 

securing external funding, and the challenges of securing ethics clearance from out-of-

region jurisdictions, it is hard to imagine this changing in the foreseeable future.  

Most of the research conducted in education research is situated within familiar 

contexts, irrespective of paradigm used to collect and analyse data. To some degree, our 

mathematics foundations provide opportunities for our work to be more varied than the 

descriptions presented above. Perhaps our well-designed cognitive models and theoretical 

frameworks provide some opportunities to cross boundaries more so than other fields 

within the education discipline? It may also be the case that the well-connected 

international community we belong to enhances such prospects. Brown (2010) has argued 

that this is not the case, since our education origins dominate our practice(s).  

…mathematics education research rests on supposed cognitive models in which the human being is 

understood in particular ways with pedagogical models/apparatus shaped accordingly. Yet, learning 

can be productively viewed as an experience through time where there are changes in both the 

human subject and the objects they apprehend… [since] the prominence of Piaget and Vygotsky in 

our research has overly restricted analytical opportunities. (Brown, 2010, p. 342) 
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Without cognitive models or theoretical frameworks to help us explain learning within 

socio-cultural contexts it is difficult to imagine moving beyond small-scale studies that 

(seemingly) have little impact on policy makers and practitioners alike. This may not be a 

bad thing, in and of itself, since research within the social sciences is complex and 

integrated—and to some extent the most sophisticated multivariate design becomes a 

single case study. However, as Galbraith (2014) pointed out, there are numerous 

theoretical frameworks at our disposal with which we can embed our research programs. 

Too much choice, it would seem? 

Beyond Comfortable: Barricades, Warning Signs and New Opportunities 

As a field of research, mathematics education would certainly be regarded as a success 

story—especially when compared to most fields within the education discipline. For the 

past thirty years our field has become increasingly diverse in terms of what research 

questions we pose, the theoretical underpinnings and lenses we adopt, and the 

methodological frameworks we construct in order to gather data. Perhaps some of our 

greatest achievements have been associated with issues of social justice, cultural diversity 

and affective dimensions of mathematics. To some degree, these contributions to teaching 

and learning show how essential our work is to mathematics and education.   

At the same time I worry that our field has stagnated, at least in relation to some 

important mathematics topics. By way of example, the most highly regarded mathematics 

education researcher in my area of specialisation has had two articles published in the last 

twelve months that suggest nothing new has happened in the specific field for quite some 

time. The first manuscript had 34 references with no new worked cited over the past ten 

years, aside from the person’s own work and cross-referencing from that very issue of the 

journal. The second manuscript is the entry from the Encyclopedia of Mathematics 
Education. It has 24 references, however none of the works cited in the topic area have 

been published in the last twenty years, aside from this person’s own work. The citing of 

one’s own work is understandable, especially someone so highly regarded. What I find 

most extraordinary about this is how much this specific field (topic) has changed in the last 

twenty years, in part due to technological advances. This topic has seen major 

contributions from neuroscience, cognitive psychology, educational psychology, and 

practical applications from chemistry in the past ten years; yet such research seems to have 

not shaped this sub-field (in mathematics education) at all! I suspect and worry that this 

might not be an isolated case. In his Forster/Clements keynote presentation at the 2014 

MERGA conference, Peter Galbraith (2014) challenged us to consider any theory or 

practice in mathematics education that has outraged us—I find such practices bewildering 

and outrageous. As much for the fact that such highly regarded mathematics educators are 

able to get away with such practices. Perhaps this is why they are able to get away with it?  

If I took a more restrained and considered approach, I would need to form a conclusion 

that the contributions from other disciplines do not add sufficient value to expand our 

field? Or perhaps there is nothing new or innovative to have come out in the past twenty 

years? Perhaps, what I think is new or innovative might just be replicating the seminal 

works of the past?
5
 Notwithstanding these questions, it would be problematic (and perhaps 

                                                   
5 This reminds me of my perception of popular music. Sam Smith is one of the most creative new talents in 
music. His hit single, Stay with me, sold more than 5 million copies and was a Number 1 hit in seven 

countries in 2014. Within six months of release, Smith was required to give co-writer credits to Tom Petty 
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reckless) to assume that our field can be barricaded by research in mathematics and 

mathematics education alone. As Lerman (2014) reminds us: 

Mathematics educators have traditionally drawn on psychology, but nowadays draw also on 

sociology, anthropology, philosophy, ethics and other fields. The central focus is, of course, the 

teaching and learning of mathematics, and thus the nature of mathematical activity and thinking are 

a crucial focus for study in the field.... (p. 65) 

It is essential that we maintain our focus on the teaching and learning of mathematics, to 

flourish in such a competitive research environment. We will only remain relevant if we 

remain true to our core principles. It is also important that our research empowers people, 

and that our recommendations and implications improve systems, especially for the 

disadvantaged. Our research should also be fun! Nevertheless, it is conceivable that many 

other fields will shape our work into the future. Societies and communities are changing 

rapidly, which can only mean our work becomes more complex and integrated. In addition, 

we might well be simultaneously focusing on practice and theory, rather than one or the 

other. The theoretical frameworks and learning models we develop will need to have the 

flexibility to be applied in various practice-based contexts.  

Over the next five years or so, many of our most influential mathematics education 

researchers will be transitioning into retirement, or have started that journey already. Many 

of the research leaders who have been most influential on my work are closer to 70 (or 

beyond) than they are to 60. Then again, I remembering thinking the same thing five years 

ago—perhaps they and their work are more enduring than I had first thought. They have 

strengthened our field considerably, especially in relation to establishing research 

programs that would be sustaining in a post-mathematician dominated landscape. That is, 

strengthening our field with sociology, anthropology and philosophy (Lerman, 2014), as 

well as considering the foundations of the mathematics, psychology and general education 

disciplines. The alienation of mathematicians from our field (as prescribed by Fried, 2014) 

seems to me to be more about generational change than anything else, in terms of both 

people and societies. We are nearing such a point in time again. We need our transitioning 

research leaders as much as ever; however, we also need new opportunities for our early 

career researchers. It will be interesting to see what the profile of the next wave of 

professors and research leaders will be. Will the majority of these folk come from school 

teacher and early childhood backgrounds? How many will have degrees in pure or applied 

mathematics? How many will have doctorates from outside of the Australian and New 

Zealand university systems? What proportion of these professors would have studied under 

our MERGA leaders currently transitioning into retirement?   

Despite the dramatic generational change that will occur in the coming years, the core 

principles of what MERGA is about will remain relatively constant—such is the influence 

of those foundational MERGA leaders. However, our next phase of development might 

need to go beyond the professional support and camaraderie we all experience from our 

Association. The intentional support and connectivity we offer one another is atypical in 

education organisations, where policy, research and practice goals are often disparate and 

fragmented. The “cottage industry” raises its ugly head, not due to selfishness or ignorance 

but rather an embracing of idiosyncratic ways. Organisationally, MERGA needs to become 

more strategic by establishing a common voice on issues that really matter to us. This will 

not be easy, given our support for one another and of MERGA is always “in kind” support. 

                                                                                                                                                          
and Jeff Lynne. It was revealed that the melody line of the song was astonishingly similar to their 1989 hit; 

ironically titled I won’t back down.  
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It appears that our expertise and influence will move much further along the education 

spectrum, from a point that was much closer to the mathematics end of the spectrum when 

MERGA began. This might require different forms of engagement, whilst remaining true 

to our mathematics discipline ways. As Jorgensen (2014) indicated, we may need to build a 

transformative knowledge-making paradigm, which completing disrupts current (and past) 

pedagogical and classroom-based practices. Such dramatic shifts in how mathematics is 

taught would take time, both politically and organisationally. Nevertheless, such 

aspirational goals would position us to have more influence within education and school 

contexts. Our influence should be both discipline and practice based.  
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Linked research and development forms the central pillar of the 5-year Wits Maths Connect 

Secondary Project in South Africa. Our empirical data emphasised the need for teaching 
that mediates towards mathematics viewed as a network of scientific concepts, and the 

development of the notion of ‘mathematical discourse in instruction’ (MDI), as an analytic 

tool and discursive resource for working on research and professional development. This 

paper describes and reflects on MDI, its emergence in a particular education context, and 

what this discursive resource offers more generally as it works across different discourses 

and practices. 

Introduction 

It is well known that poverty is strongly associated with poor educational outcomes, 

and that inequitable socio-economic conditions are the most significant factor in 

inequitable educational outcomes (OECD, 2013). We also know in our field of 

mathematics education, that despite building expertise over many years in doing and 

researching professional development, links between investments in such activity, the 

quality of teaching school mathematics, and equitable educational outcomes remain 

tenuous. In the light of these claims, a question must be asked as to whether, and then if so 

how, it is possible to impact mathematics teaching and learning in conditions of deep 

inequality and high levels of poverty through professional development. What might be 

appropriate and meaningful goals for improving learner attainment in low-income 

communities, or in the context of this conference, in the margins? What role, if any, is 

there for discursive resources in realising such goals? 

The first question remains the driving force for the Wits Maths Connect Secondary 

Project (WMCS), a research and development project working with mathematics teachers 

in ten disadvantaged secondary schools in one district in South Africa. WMCS has worked 

in its first five-year phase (2010-2014) with a key goal of strengthening teaching and 

learning of mathematics through professional development of teachers in these ten schools. 

It is a complex project with multiple additional, and at times competing goals: goals for 

advancing knowledge and research on related questions and problems in mathematics 

education, for building research capacity through linked doctoral studies; and for 

developing and investigating sustainable models of professional development. These 

professional goals are complemented by a social justice goal in our field, where 90% of the 

research we do and thus much of the knowledge we build, takes place in, or in relation to, 

adequately resourced and functioning schools (Skovsmose, 2011). WMCS has been 

inspired by the challenge of investigating the research-development nexus in mathematics 

education in poorly resourced conditions – and so the learning and teaching of 

mathematics in schools for the poor (Shalem & Hoadley, 2009). We have learned a great 

deal over the past five years, and have reported results on the impact of our professional 

development intervention on student attainment (Pournara et al, forthcoming), and the 

workings of the overall project (Adler, 2014). In this paper and presentation I focus in on 

one key aspect of our work, and that is the discursive resource and analytic tool developed 
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to support our professional development work and our research, to engage the second 

question posed above. The more we learned with and from teachers and learners in their 

classrooms, the more we were able to sharpen our core research questions, and to construct 

a framework – called Mathematics Discourse in Instruction (MDI) – to support deliberate 

movement between the discourses of research, professional development and teaching, and 

so between the overlapping communities of practice (Wenger, 1998) in which the overall 

project was participating.  

The MDI framework characterises the teaching of a mathematics lesson as a sequence 

of examples together with the tasks they are embedded in, and the accompanying 

explanatory talk, two commonplaces of mathematics teaching (and thus high-leverage 

practices (Grossman et al, 2009)), that occur within particular patterns of interaction in the 

classroom, and towards a particular goal or what we refer to as an ‘object of learning’ 

(Marton & Tsui, 2004). As intimated above, MDI has developed over time. In previous 

research work across WMCS and a similar project in primary schools, we conceptualised 

MDI to examine coherence within a task, and so between the stated problem or task, its 

exemplification or representation, and the accompanying explanations (Venkat & Adler, 

2012); and more recently to examine coherence across a sequence of tasks/examples and 

accompanying explanatory talk within a lesson, and in relation to the intended object of 

learning (Adler & Venkat, 2014; Adler &Ronda, 2014). It was our empirical data that 

emphasised the need for coherence, and teaching that mediates towards mathematics 

viewed as a network of scientific concepts (Vygotsky, 1986), and towards generality 

(Watson & Mason, 2006). More recently we have used an expanded MDI analytic 

framework, illustrated in Figure 1 below, to examine shifts in exemplification and 

explanatory talk in classroom discourse, and have described our methodology in some 

detail (Adler & Ronda, forthcoming).  

 

Figure 1: The MDI analytic framework (in Adler & Ronda, forthcoming) 

Amidst this research work, we reported on our understanding of MDI as a boundary 
object as we were simultaneously using a form of it in our professional development work 

with teachers (Venkat & Adler, 2013). Drawing on Star & Griesemer’s (1989) notion of 

boundary objects we viewed MDI illustrated above as “plastic enough to adapt to local 

needs and constraints” of our different practices and discourses, but “robust enough to 

maintain a common identity across sites” (p. 393). We were particularly concerned with an 

instrument that resonated with teachers, connecting with their practices in ways that 

enabled us to engage in the joint and shared enterprise of working on teaching to improve 
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opportunities for mathematics learning in their schools and classrooms. We developed and 

refined MDI informally first and then through trialing across  mathematical knowledge for 
teaching courses – 20 day content knowledge for teaching courses that are offered within 

our respective projects.  

I draw from all the above work and its interconnectedness as I describe how and why 

MDI emerged in this form and reflect on what it does in relation to the goal of impacting 

the teaching and learning of mathematics. It goes without saying that the emergence of 

MDI is a function of its context, specifically mathematics education in post-apartheid 

South Africa, and the interaction of this ‘ground’ with discourses in the field of 

mathematics education and my own previous research. It is also a function of the desire 

early on in the project to produce a resource – an overarching frame - that could move 

across our overlapping communities and differing discourses. I thus begin with a brief 

account of the mathematics education terrain in South Africa, and the conditions of 

teachers’ work in schools for the poor; followed by a brief detailing of some of the 

‘realities’ indicated by research findings early on in our project, that further illuminate 

common mathematics teaching practices in South Africa, and provide the impetus for the 

MDI framing above. I link these with literature and research in mathematics education and 

so too the elaboration of MDI before moving on to illustrate how we bent MDI towards the 

needs and design of our professional development work, and describe how we extended 

and operationalised it for research. This background, I hope, will enable appreciation of the 

WMCS in its location, and at the same time, connect with mathematics education on the 

margins elsewhere. I conclude with some reflections, what MDI illuminates and obscures, 

and with work therefore that lies ahead. 

The South African Mathematics Education Context 

Broad Patterns of Performance and Conditions of Teachers’ Work   
 We are twenty years into our new and still rather young democracy. It is deeply 

troubling that education in post-apartheid South Africa is described, in research and in 

public debate, as being in a state of ‘crisis’ (Spaull 2013; Taylor, Van Der Berg & 

Mabogoane, 20013). Research over the last decade has established that problems of low 

educational outcomes for a majority of learners is apparent in South Africa as early as the 

end of the Foundation Phase or third grade. Whilst this is the pattern across education, the 

problems of performance in mathematics are deeper, with Mathematics showing 

consistently lower levels of performance at Grade 12 level than most other subjects (South 

African Institute of Race Relations, 2012).  

The graphs in Figure 1 below show the performance distribution curves for 

Mathematics (2011 - 2013), as presented in the National Senior Certificate Diagnostic 

report in South Africa (DBE, 2013, p. 126). While improvements in the system as a whole 

are visible, with failures decreasing and more obtaining better scores, the evidence is stark: 

the South African education system, and mathematics within this, is failing most of its 

learners. The performance curves in 2009 and 2010 in the WMCS schools had a similar 

shape, though more exaggerated, as all are relatively poorer performing schools. The 

challenge for the project was whether a research informed professional development 

project could work with teachers to shift this curve in and across schools, to reduce the 

large failure rate and very low performance of the majority, and increase learners obtaining 

scores over 60% and so with possibilities for tertiary study in the mathematical sciences.  
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Figure 1: Performance distribution curves Mathematics (DBE, 2013, p. 126) 

Two additional contextual issues in South Africa are important to highlight here, as 

they are typically not foregrounded in the research on professional development, and both 

relate to the conditions of teachers’ work. We learned very early on in the project, that 

whatever the desired intervention might be, it would interact with and thus need to be 

deeply cognisant of the conditions of teachers’ work. We were guided in this, firstly by 

time spent becoming familiar with the schools in the first year, but also by an insightful 

analysis of the dual economy of schooling in South Arica, and the impact of this on 

teachers work. Shalem & Hoadley (2009) studied the relationship between inequality, 

teacher morale and their conditions of work, and identified four factors that impact on this 

work. They argue that:  

[t]eachers experience inequalities in terms of their access to: 

●  learners who are cognitively well-prepared for schooling, are physically healthy and whose 

homes function as a second site of acquisition; 
●  meaningful learning opportunities in the past and in the present and a reservoir of cognitive 

resources at the level of the school; 

●   a well-specified and guiding curriculum; and  

●   functional school management that mediates the bureaucratic demands on teacher time.  (p.127) 

The relevance of this study to our work was that it revealed resources (the authors refer 

to these as assets) in teaching that are less visible, but resources non-the-less. We can 

divide South African teachers into three analytic categories based on this understanding of 

assets. In one category are (roughly 20%) teachers whose experiences are mediated by the 

presence of all the resources listed above. They work in schools for the rich, produce good 

student achievement and are associated with the provision of quality education. At the 

other end, also roughly 20%, are teachers who work in schools for the poor and whose 

work and experience is shaped by the absence of all these assets. In between, and also with 

relatively low educational outcomes are the majority - 60–70% - of teachers in South 

Africa, whose work is mediated by some but certainly not all of these assets. The teachers 

in the schools in our project are in this last category, facing a situation where many 
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learners in their classes are not academically prepared for the grade level they are in, and 

so an ongoing tension between meeting curriculum requirements for the specific grade, and 

at the same time meeting many learners where they are, mathematically speaking. 

Collectively, teachers in this schooling band, while qualified, have had poorer disciplinary 

and professional learning opportunities, and their schools are on lower scales of 

functionality. As Shalem & Hoadly argue, teachers here have to “… expend much more 

effort to develop their learners and the task is insurmountable given the property and 

organisational assets available to them” (2009, p.128). Six of the schools in the WMCS 

project were termed priority schools, which meant they were subject to significant levels of 

bureaucratic control. The mathematics teachers have to follow a specified term by term, 

week by week, teaching schedule and learners write common assessments set by officials 

in the district offices who also then check on the school and teachers for compliance. In 

broad terms, increased time pressures bear down on teachers who are subjected to high 

levels of bureaucratic demands that aggravate already low morale.  

Linked to this, and the second area of impact on teachers’ work, there is increasing 

curriculum prescription and an assessment regime that impacts teaching and learning - a 

condition shared in some countries that do not have extremes of poverty and inequality 

(e.g. the United Kingdom). In South Africa, we currently have Annual National 

Assessments in Grades 3, 6 and 9, and while these are meant to be for diagnostic and 

systemic purposes, they have become an additional pressure on teachers and schools. The 

effect of these processes in secondary schools in particular, in addition to broad low 

morale, is on teaching/learning time. The space for exploring and building, for example, 

more exploratory mathematical work and dialogic classroom interaction valued in the field 

is highly constrained, and markedly so in priority schools where the bureaucracy bears 

down heavily, expecting and monitoring teachers’ compliance with official decrees. 

How does or can a professional development (PD) intervention meet these conditions 

on the ground, where the shared goal with teachers and schools of improving opportunities 

to learn come up against low morale and this key tension in PD work – teachers’ time? PD 

is premised on the availability of time; however this might be organised, for the teacher to 

engage in life-long learning in their work. The irony here that I have tried to make visible, 

is that while time constraints and pressures for improved mathematics performance affect 

PD everywhere, and this is well documented (see discussion of tensions in Adler (2013)), 

these are acute in schools with low educational outcomes – and generally then in schools 

for the poor.  

Performance and Practice in our Schools and Further Rooting MDI  
The first year of WMCS is best described as a time of ‘getting to know’ the schools, 

and mathematics teaching and learning in them. We piloted a diagnostic test in algebra, 

with Grade 8 and 10 learners. The results of these tests, and a rerun of this in Grade 9 and 

11 the following year, were distressing. Not only did errors proliferate across items, but 

within an item errors were too diffuse to formulate clear categories to organise and enable 

discussion of the range of responses offered. As we shared these results with teachers, we 

were able to use this data to open up conversation about the absence of both skill and 

meaning with respect to algebraic symbolic forms for the majority of learners, even 

learners who had selected mathematics as a subject of study in Grade 10; and thus open 

discussion on the daily challenges they faced given the under-preparedness of many of 

their learners.  
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Our observations of many lessons provided us opportunity to consider how teaching, 

and more specifically MDI, was implicated in the apparent incoherence in learner 

productions in the tests. We observed teachers explain some examples for the announced 

focus of a session, often with poor levels of coherence between the example and its 

elaboration, and/or across a sequence of examples. By way of brief example, in one lesson 

on the products of expressions, three different sets of rules were provided: multiplying 

expressions with exponents (“if the base is the same we add the exponents”); multiplying a 

monomial and binomial (“you multiply everything inside the bracket by the term outside 

the bracket”; multiplying two binomials (“we use the distributive law, and multiply first, 

inner, outer and last terms [FOIL]). Aside from the instructional talk being focused on the 

‘how to’ steps of procedures, devoid of explanations that provided rationales for these 

steps (Adler & Venkat, 2014), there was no narrative related to operation of multiplication 

of different expressions that could have connected the lesson parts and reduced the 

inevitable result of learners having to rely on multiple visual cues and memory if they were 

to reproduce such products independently themselves. Compounding such practices was 

the ways in which teachers used words to name what they were talking about – we 

observed extensive use of ambiguous referents in teacher talk.   

Most of the lessons we observed proceeded with examples and explanations of what 

was stated as the focus of the lesson, but, as illustrated above, mathematical goals or 

objects of learning were out of focus. We identified two key areas of issue within 

pedagogy to focus on in our professional development work: Mediating mathematical 

ideas (this point takes in findings related to ambiguity within teacher talk, and the lack of 

explanations that establish rationales for action in teachers’ handling of specific examples); 

Progressing understandings towards ideas that build generality, effectiveness and 

efficiency (this point incorporates the selection and sequencing of examples and ongoing 

promulgation and acceptance of rule-based strategies that relied on visual cues, memory or 

imitation). Much of reform based mathematics teacher education engages these pedagogic 

issues of mediation and progression towards generality through rich tasks where 

mathematical exploration becomes possible through orchestrated dialogic teaching. These 

practices are viewed as providing possibilities for deepening mathematical knowledge for 

teaching, and advocacy of such task based or problem based teaching in teachers’ 

classrooms. 

Whether the underlying or source of the issues is in pedagogic practice or mathematical 

knowledge for teaching (and later I discuss the intervention and its focus on the latter), 

both construct the teacher and the teaching as in deficit, as wholly problematic. We 

believed strongly that a reform-based orientation would not be an appropriate route to take 

for WMCS. So we focused our attention on the object of learning being out of focus and 

how this might be pursued through the themes of exemplification (selection and sequencing 

of examples and related tasks) and teachers’ mediation of these through explanatory talk 

taking cognizance of learners’ current understandings – and so with resonances with their 

deeply interwoven cultural practices in their classrooms. Hence, the initial and first layer of 

elements of the MDI framework in Figure 1 above. 

Interestingly, within mathematics education, significant bodies of literature underlie 

both aspects, and I turn briefly to those studies dealing with examples and 

talk/explanations in ways that are particularly salient to the issues we have raised above as 

well as to my own prior research in the field. 

30



Adler 

 

Linking with Mathematics Education Research  

Focus on examples 
The ubiquity of examples within the terrain of mathematics teaching and learning has 

been acknowledged (Bills, et al., 2006). This follows from a basic maxim that initial 

experiences of mathematical concepts and procedures, given their abstract nature, will be 

through some exemplification: through examples and the tasks in which they are 

embedded. Watson & Mason (2006), for example, have noted the importance of carefully 

structured example sequences that draw attention towards generality whilst working with 

particulars: 

the learning of particular interest to us here is conceptual development. This means to us that the 

learner experiences a shift between attending to relationships within and between elements of 

current experience (e.g., the doing of individual questions) and perceiving relationships as 

properties that might be applicable in other situations (p. 92) 

Rowland (2008) has also emphasized the need for careful selections and sequencing of 

example for practice, noting that learners should also experience the range of examples that 

a procedure can be applied to, to have a sense of the breadth of the ‘example space’, and to 

build not just fluency, but also efficiency across the procedures one is practising. 

Both Rowland, and Watson & Mason discuss the importance of variation amidst 

invariance in the teaching and learning of mathematics, referring to theoretical work on 

variation theory (e.g. Marton & Tsui, op cit; Runesson, 2006) that has come to figure in the 

literature in mathematics education and exemplification. Variation theory rests on the 

underlying notion that learning something depends on access to distinguishing variation in 

the thing to be learned. The form of example sequences ‘fits’ this model of learning well, 

with traditional example sets in mathematics often being set in graded forms that lend 

themselves to analysis through the lens of variation.  

Focus on mediating talk/explanations 
The ubiquity of ‘explanation’ as a form of pedagogic talk in mathematics classrooms 

has also been acknowledged. Andrews (2009) for example, noted the need for teacher 

explanations to be ‘relevant, coherent, complete and accurate’. In previous research work 

(e.g. Adler & Davis, 2006), we operationalised such explanatory talk through Bernstein’s 

(2000) key insight that pedagogy proceeds through evaluation, and through what was 

legitimated as knowledge in pedagogic practice. We developed tools for analysing the 

criteria transmitted as to what was valued in school mathematics or in teacher education, 

finding this productive and illuminating of what was constituted as mathematics in these 

pedagogic sites. We have included this in MDI as part of explanatory talk, and as a means 

for observing whether and how explanations in school mathematics classrooms are 

coherent and accurate.  

In addition we also drew on previous research that foregrounded the importance of how 

words are used in multilingual mathematics classrooms (Adler, 2001). Mathematical 

objects come to life not only through activity on tasks and selected examples, but also in 

how they are named, and thus the importance of movement between informal or colloquial 

talk and more formal and literate use of mathematical words in school mathematics. In the 

context of WMCS work, ambiguous use of referents, and so not naming mathematical 

signifiers appropriately can obstruct learner participation in mathematical discourse. 

Hence, our specific and additional attention to naming within explanatory talk in MDI. 
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This brief foray into the literature illuminates the third row of boxes in Figure 1 above, 

and so the expanding out of two key elements of MDI (exemplification and explanatory 

talk) to include examples, tasks, naming and legitimating criteria. 

As suggested but not explicitly stated, our observation of teaching across classrooms in 

the schools in which we work is that there is a dominance of more traditional teacher-led 

whole class working rather than the more dialogic interactional forms described in the 

international literature. Thus, the focus on teacher’s selections and use of examples and 

explanations ‘fits’ with the prevalence of more traditional pedagogies. A critique of this 

twin focus relates to the relative absence of the learner in this frame. Linked therefore to 

the earlier mention that the goal of pedagogy is to improve mathematical learning, we 

added in a focus on participation alongside the other two categories in MDI, guided by the 

need to explore mediation and progression of mathematical ideas across these features. We 

have used this discursive resource, underlain by the lenses gained from the more local, and 

broader research findings, as a tool for analysing videotaped lessons, and as a boundary 

object for developing pedagogy for mathematics learning. In the remaining sections of the 

paper, I turn now to discuss our PD work, and related research. There are constraints on 

space here, and so I only provide illustration of our work in relation to MDI.  

MDI in WMCS Professional Development Work 

Earlier, I mentioned the “20-day” mathematics for teaching courses in our PD 

intervention. These are the major components of our work. We have two courses: 

Transition Maths 1 (TM1), which is aimed at the transition from Grades 9 to 10 (in our 

system between what are referred to as General and Further Education); and Transition 

Maths 2 (TM2) aimed at the transition from Grades 11 and 12 into tertiary study. As we 

got to know and appreciate the diverse knowledge and experience of the range of 

mathematics teachers across the ten schools, so it became necessary to organise our 

mathematics focused PD at different levels. The TM courses were not part of our original 

plan, but became the form in which we could meet teachers mathematically, so to speak, as 

well as practically. Teachers come to the University for 16 full days in eight 2-day sessions 

spread over the academic year. We negotiated with the district and schools for teachers to 

be released from school on 10 of those days, with 6 days then committed from teachers’ 

own time (on Saturdays or in school vacation time). The additional 4 days of the course 

were allocated for in-school work. This arrangement dealt with the practicality of time for 

PD work for teachers. Mathematically, we realised that it would be of most value if 

teachers had adequate opportunity to engage with mathematics in their PD time, hence the 

two-day sessions; but also that they would have time in between sessions for working on 

their own mathematics with their colleagues, independently from course tutors. Between 

each of the two-day sessions, teachers had mathematics assignments that included work on 

strengthening their fluency and conceptual understanding, as well as a teaching assignment 

to try out in their classroom or with some learners.  
The bulk of each course, 75%, was on mathematics, a function of our developing 

understanding that an underlying difficulty for many teachers was articulating what it was, 

mathematically, they wanted learners to know and be able to do.  Our starting point then 

for strengthening this was to provide opportunity for teachers to strengthen their own 

relationship with mathematics in the first instance.  

The remaining 25% of time in the courses focused on MDI and its elements 

(exemplification, explanation, and learner participation, all in relation to an object of 

learning) and we called this a Mathematics Teaching Framework in the PD. We worked on 
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each element separately and then together in various sessions in the courses, structured by 

the discursive resources in Figures 3 and 4 below. For example, in the first day of a course 

we would have a two-hour session where we worked on selecting and sequencing 

examples, typically for a lesson related to content being dealt with in the mathematics 

sessions earlier that day. Teachers examined textbooks, and other teaching materials for 

what were exemplified, and how, in a particular topic; whether these were good examples, 

and well sequenced. This opened space for discussion of what made examples, and sets of 

examples, good, or coherent with the object of learning, and we shared with teachers, key 

tenets of variation theory, of seeing similarity and difference, as a means for doing this 

work. At some point following, we would introduce the framework, and so our boundary 

object recast for work in the PD. In following sessions we then dealt with each of the 

columns in Figure 3, elaborating these, as illustrated in Figure 4 for explanation.  

In the latter half of the course we have a lab lesson during one of the course days, 

where a class of learners from one of the schools comes to the University (this was 

typically arranged for a Saturday session). The course leader and teachers planned the 

lesson together in a session on the previous day. They used the framework to bring 

attention to the mathematical goal, and how the selected examples and tasks, their 

sequencing and their mediation in talk through naming and justifying, supported the 

intended learning object. Attention was then also turned to learner participation – to what 

learners would be asked to do, say, write and how this would enable their learning. The 

course leader then taught the lesson, teachers observed, and made notes, using the 

framework, on an empty version of the table in Figure 3. After the lesson, the course 

session would be a reflection on the lesson, again using the framework to guide discussion. 

This adapted version, drawing from both Lesson Study (with resonances with the Japanese 

model) and Learning Study (the Swedish model), is also then carried out in schools. 

Teachers from neighbouring schools come to one school once a week in the afternoon for 

three consecutive weeks once a term, to work in a similar fashion as described above. 

Planning takes place in week 1, the lesson is taught by one of the teachers in week 2 with 

one class of learners, and revised, and the revised version is taught by a different teacher 

with another class in week 3. While the project assists with co-ordination and planning, 

teachers themselves teach the lessons, and collaborate on its design, reflection, redesign 

and so on. One WMCS team member works with each group of teachers. Here too, the 

framework is used as a discursive resource to guide planning and reflection. 

This in-school work, while occurring after school hours, provided an opportunity for 

teachers to collaborate on and study their teaching with their own learners (or those of a 

colleague), and on an agreed and shared problem. Questions like: “What do we want 

learners to know and be able to do?” “How do the examples and tasks selected support 

this?” “Where the examples well sequenced?” “What of the talk? How did it move 

between every day or informal and then mathematical talk”. “How full were explanations 

that evolved?” “Were learners participating and how?” “Ultimately, did learners learn what 

we intended? How can we know?” 

The tables in Figures 3 and 4 below are examples of the resources that structure this 

working on practice together, using MDI in its practice-based version. 
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Figure 3: The Mathematics Teaching Framework 

 
Figure 4: The Mathematics Teaching Framework, with elaboration of explanation. 

As anyone working with Lesson Study would know, building and sustaining such 

communities is not trivial work, nor is the functioning of the study group. It is beyond the 

scope here to elaborate our trials and tribulations in this work in detail – I will talk to this 
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in the presentation. I focus some discussion, however, on the salience of the framework 

and the discursive resources that support it and teachers working with it.  

We know from our research study (see below) of videos of lessons of teachers prior to 

taking the TM1 course and then some time after completing it, that the selection and 

sequencing of examples improved – with respect to criteria we established - across many 

of the teachers in the research sample (Adler, 2014; Adler & Ronda, 2014; forthcoming). 

This research result confirms our experience with the lesson/learning studies we have done 

in 2014 that planning, reflecting on and critiquing the example sets in the lesson is the part 

of the framework and tool that teachers engage with most easily. There were also shifts in 

our research data on attention to word use, and working between informal and formal 

mathematical talk across teachers over time. Here too, and this is not a surprise in a 

multilingual setting, teachers noticed learners’ use of words, and the particular words or 

phrases that they found difficult – and were aware of their own challenges in navigating 

and revoicing these. Teachers who taught the lessons in our after school work often raised 

these language issues as the first things to discuss in the lesson reflection. 

At the same time, these shifts in parts of exemplification and explanatory talk were not 

supported by tasks that required more than simple known procedures by learners, and 

where learners had more opportunity to enter the discourse both through what they did and 

what they were able to communicate. Alongside this, the kinds of explanations for both 

procedures and concepts did not seem to move from justifications asserted by the teacher, 

stated rather than derived, or single case examples and so without connections and moves 

to greater generality and mathematical power. These difficulties were visible in the 

research data and remain a challenge in our lesson/learning study work. The discursive 

resources do not function at this point, as a means for thinking about and talking about this 

key aspect of teaching and so MDI in the classroom. Task demands and how justifications 

are built are linked with learner participation, and how teachers connect learners with 

mathematics. The entrenched cultural forms of pedagogy in these classrooms remain 

difficult to shift. Where these shifts are visible, and across our data are numerous attempts 

by teachers to invite learners into more complex tasks, and to agree, disagree with what is 

being offered, their mediation has tended to reduce the task demands. In managing 

discussion where disagreements were voiced, the mathematical substance of these 

remained largely hidden or implicit.  

 Evident in this discussion of using MDI in our professional development work with 

teachers, the particular form it has taken and what has taken place is deeply interwoven 

with our research work and insights from analysis of video lessons. As these happen 

coincidently, each has informed and shaped the other. I now move on to discuss how we 

have used MDI in research.  

An Analytic Framework for MDI 

Table 1 in Figure 5 below presents the framework. I briefly elaborate each of the 

analytic resources, and our analytic categories, derived from the research literature 

mentioned earlier and in interaction with our empirical data. Visible in the categories is our 

interest in scientific concepts and increasing generality in examples; increasing complexity 

in tasks; colloquial and formal mathematical talk and mathematical justifications for what 

counts in the discourse. With respect to participation, we are interested increasing the 

opportunity for learners talk mathematically, and teachers’ increasing the use of learners’ 

ideas.  
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Our unit of study is a lesson, and units of analysis within this, an event. The first 

analytic task is to divide a lesson into events, distinguished by a shift in content focus, and 

within an event then to record the sequences of examples presented. Each new example 

becomes a sub-event. Our interest here is whether and how this presentation of examples 

within and across events brings the object of learning into focus, and for this we recruit 

constructs from variation theory (Marton & Pang, 2006). The underlying phenomenology 

here is that we can discern a feature of an object if we can see similarities and differences 

through what varies and what is kept invariant. Variation through similarity is when a 

feature to be discerned is varied (or kept invariant), while others are kept invariant (or 

made to vary), with possibilities then for seeing generality; contrast is when there is 

opportunity to see what is not the object, e.g. when an example is contrasted with a non-

example; when there is simultaneous discernment of aspects of the object is possible, 

further generalisation is possible. These three forms of variation (similarity, contrast and 

simultaneity) can operate separately or together, with consequences for what is possible to 

discern – and so, in more general terms, what is made available to learn. In WMCS we are 

interested in analysing the teacher’s selection and sequencing of examples within an event 

and then across events in a lesson, and then whether and how, over time, teachers expand 

the set of examples and the sequencing constructed in a lesson. 

Figure 5: Analytic framework for mathematical discourse in instruction. 

Of course, examples do not speak for themselves. There is always a task associated 

with an example, and accompanying talk. With respect to tasks, we are interested in 

cognitive demand in terms of the extent of connections between concepts and procedures. 

Hence, in column two we examine whether tasks within and across events require learners 
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to carry out a known operation or procedure, and/or whether they are required to decide on 

steps to carry out, and some application, and/or whether the demand is for multiple 

connections and problem solving. These categories bear some resemblance to Stein et al’s 

(2000) distinctions between lower and higher demand tasks.  

With respect to how explanation unfolds through talk, and again the levels and 

distinctions have been empirically derived through examination of video data, we 

distinguish firstly between naming and legitimating, between how the teachers refer to 

mathematical objects and processes on the one hand, and how they legitimate what counts 

as mathematics on the other. For the latter, we have drawn from and built on the earlier 

research discussed above. Specifically, we are interested in whether the criteria teachers 

transmit as explanation for what counts is or is not mathematical, is particular or localised, 

or more general, and then if the explanation is grounded in rules, conventions, procedures, 

definitions, theorems, and their level of generality. With regard to naming, we have paid 

attention to teacher’s discourse shifts between colloquial and mathematical word use.  

Finally, all of the above mediational means (examples, tasks, word use, legitimating 

criteria) occur in a context of interaction between the teacher and learners, with learning a 

function of their participation. Thus, in addition to task demand, we are concerned with 

what learners are invited to say i.e. whether and how learners have opportunity to use 

mathematical language, and engage in mathematical reasoning, and the teacher’s 

engagement with learner productions. 

Illustration of the use of this framework first on one selected lesson appeared in Adler 

& Ronda (2014). Further extension of the framework and its use in comparing lessons and 

so shifts in MDE over time can be found in Adler & Ronda (forthcoming), where 

categorising events over time accumulate into levels based on our privileging of 

development towards scientific concepts and generality in the discourse. I do not reproduce 

these here and refer to the full research papers. Nevertheless, in Figures 6 and 7 below, 

taken from Adler & Ronda (forthcoming), is the coding of events and how these 

accumulate into levels for one teacher’s lessons in 2012 and then 2013. I present these 

here, despite the analysis on which they are based not appearing here, so as to enable the 

discussion following. 

Events Exs Tasks Naming Leg Criteria Lr Partic 

1 – Review Exponent laws  NA K Ms, Ma NA P/S 

2 – Application numerical bases U, S A, K Ms, Ma L, GP P/S 

3 – Application – literal bases U, S A, K Ms, Ma L, GP Y/N 

Cumulative level L1 L2-L1 L2
- 

L2 L2 

Figure 6. Summary codes and analysis of Lesson of Teacher X in 2012, in Adler & Ronda (forthcoming) 

Events Exs Tasks Naming Leg Criteria Lr Partic 

1 – Meaning of a Term S, C, U K NM, Ms, Ma G  Y/N 

2 – Meaning of common factor NA K Ms, Ma G Y/N, P/S  

3 – Simplify algebraic fraction S, C, U A - K NM, Ms NM, L Y/N 

4 -Divide algebraic fractions (+) S, U A - K NM, Ms NM, L, G Y/N 

5 – Extension to (-) coefficients S, U A - K Nm, Ms L Y/N 

Cumulative Code L3 L2- L1 L2 L2 L1 

Figure 7. Summary codes and analysis of Lesson of Teacher X in 2013, in Adler & Ronda (forthcoming) 
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Discussion 

Our MDI framework allows for an attenuated description of practice, prising apart 

parts of a lesson that in practice are inextricably interconnected, and how each of these 

contribute overall to what is made available to learn. It co-ordinates various variables, 
situations and circumstances of teacher activity (Ponte & Chapman, op cit). There is much 

room for this teacher to work on learner participation patterns, as well as task demand (and 

these are inevitably inter-related); at the same time her example space evidenced awareness 

of and skill in producing a sequence of examples that bring the object of learning into 

focus, hence the value of this specific aspect of MDI. Contrasting levels in earlier 

observation of this teacher indicates an expanded example space and more movement in 

her talk between colloquial and mathematical discourse. The MDI framework is thus 

helpful in directing work with the teacher (practice), and in illuminating take up of aspects 

of MDI within and across teachers (research). As noted, our analysis across teachers 

suggests that take-up with respect to developing generality of explanations is more 

difficult.  

The MDI framework provides for responsive and responsible description. It does not 

produce a description of the teacher uniformly as in deficit, as is the case in most literature 

that works with a reform ideology, so positioning the teacher in relation to researchers’ 

desires (Ponte & Chapman, op cit). We are nevertheless aware that we have illustrated 

MDI on what many would refer to as a traditional pedagogy. We have tested it out on 

lessons structured by more open tasks, but this requires more systematic study on varying 

classroom practices. 

Conclusion 

I have written this paper to capture the work of the WMCS project and the 

development and use of MDI. It is a descriptive paper, as the more directed research is 

reported elsewhere. Through this I hope to have shared some of the in betweenness in our 

work, as many of us are simultaneously practitioners in mathematics teacher education and 

in research – and thus boundary crossers in our work. As a keynote paper and without the 

boundaries imposed by research practices on the one hand, or development descriptions on 

the other, I have been able to share how we worked within and between these. I hope too 

that by setting WMCS explicitly in its location, and linking with research literature, I have 

enabled connections between this work with mathematics education on the margins 

elsewhere.  

As we reflect back and look ahead we are aware and it is important to explicitly 

acknowledge this here, that there is the learning progression in professional development 

implicit in the WMCS model as it has developed. The courses and their greater focus on 

content knowledge of teaching, and teachers’ own relationship with mathematics in 

contrast to attention to pedagogy indicate that we view this as primary. We hold strongly to 

this view but understand at the same time, that the lesser focus on pedagogy, and further 

how we have done this with MDI is implicated in that it is teachers have taken it up and 

what are clearly more challenging aspects of teaching and related opportunities for 

learning, specifically setting up and maintaining more demanding tasks, and orchestrating 

greater learner participation in classroom discourse. At this point we do not see this as 

necessarily as a weakness in the programme, but more an indicator of how learning 

progresses over time. As we move into Phase 2 of the project, our plan in the first instance 

is to develop MDI further, where we bring learner participation and the nature of tasks into 
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focus with the teachers, and research what is entailed in this work. An additional focus for 

our future work is that while we have evidence of the impact of the courses on teachers’ 

knowledge and their learners’ performance, we are aware of the time invested as we 

developed the courses, of our own learning and developing expertise as these were 

implemented and refined. What then is entailed in making the materials and rationales for 

the course available for others to use and so more teachers to have such opportunities? 

What happens as these are taken up and expanded out – to the mathematical experiences 

offered in the courses on the one hand, and to the interweaving of MDI within and across 

the sessions? There will be recontextualisation! But of what, how and with what 

consequences? There is much work to do going forward. 
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While there is widespread agreement on the importance of incorporating problem solving 

and reasoning into mathematics classrooms, there is limited specific advice on how this can 

best happen. This is a report of an aspect of a project that is examining the opportunities 

and constraints in initiating learning by posing challenging mathematics tasks intended to 

prompt problem solving and reasoning to students, not only to activate their thinking but 

also to develop an orientation to persistence. The results indicate that such learning is 
facilitated by a particular lesson structure. This article reports research on the 

implementation of this lesson structure and also on the finding that students’ responses to 

the lessons can be used to inform subsequent learning experiences.  

Introduction 

Teachers commonly report experiencing difficulties in incorporating problem solving 

and reasoning into their mathematics classrooms while at the same time catering for 

students with a wide range of prior experiences. Rather than the common approach of 

starting learning sequences with simple tasks intending to move to more challenging tasks 

subsequently, we are exploring an approach based on initiating learning through a 

challenging task — described as activating cognition. In particular, we describe the 

implementation of a particular lesson structure designed to initiate learning through an 

appropriate challenge, effectively differentiating that challenge for particular student 

needs, and consolidating the learning through task variations. 

The data reported below are from one aspect of a larger project
1
 that is exploring the 

proposition that students learn mathematics best when they engage in building connections 

between mathematical ideas for themselves (prior to instruction from the teacher) at the 

start of a sequence of learning rather than at the end. The larger project is studying the type 

of tasks that can be used to prompt this learning and ways that those tasks can be optimally 

used, one aspect of which is communicating to students that this type of learning requires 

persistence on their part. Essentially the notion is for teachers to present tasks that the 

students do not yet know how to answer and to support them in coming to find a solution 

for themselves. 

There are many scholars who have argued that the choice of task is fundamental to 

opportunities for student problem solving and reasoning. Anthony and Walshaw (2009), 

for example, in a research synthesis, concluded that “in the mathematics classroom, it is 

through tasks, more than in any other way, that opportunities to learn are made available to 

                                                   
1
 The Encouraging Persistence Maintaining Challenge project was funded through an Australian Research 

Council Discovery Project (DP110101027) and was a collaboration between the Monash University and 

Australian Catholic University. The views expressed are those of the authors. The generous participation of 

project schools is acknowledged. 
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the students” (p. 96). Similar comments have been made by Ruthven, Laborde, Leach, and 

Tiberghien (2009) and Sullivan, Clarke, and Clarke (2013). 

There are also scholars who have proposed that those tasks should be appropriately 

challenging. Christiansen and Walther (1986), for example, argued that non-routine tasks, 

because they build connections between different aspects of learning, provide optimal 

conditions for thinking in which new knowledge is constructed and earlier knowledge is 

activated. Similarly, Kilpatrick, Swafford, and Findell (2001) suggested that teachers who 

seek to engage students in developing adaptive reasoning and strategic competence, or 

problem solving, should provide them with tasks that are designed to foster those actions. 

Such tasks clearly need to be challenging and the solutions needs to be developed by the 

learners. This notion of appropriate challenge also aligns with the Zone of Proximal 
Development (ZPD) (Vygotsky, 1978). Similarly, the National Council of Teachers of 

Mathematics (NCTM) (2014) noted: 

Student learning is greatest in classrooms where the tasks consistently encourage high-level student 

thinking and reasoning and least in classrooms where the tasks are routinely procedural in nature. 

(p. 17) 

This approach was described in PISA in Focus (Organisation for Economic Co-

operation and Development (OECD) (2014) as follows:  

Teachers’ use of cognitive-activation strategies, such as giving students problems that require them 
to think for an extended time, presenting problems for which there is no immediately obvious way 

of arriving at a solution, and helping students to learn from their mistakes, is associated with 

students’ drive. (p. 1) 

The OECD (2014) explicitly connected student drive, which we associate with 

persistence, with higher achievement.  

There are many research findings that elaborate how such advice can be implemented 

in classrooms, some of which is reviewed below. This report seeks to extend this advice in 

three significant ways: first, by investigating a specific lesson structure and particular 

tasks; second, by suggesting how such tasks can be adapted to accommodate differences in 

students’ prior experiences; and third, by considering how the learning from the 

challenging tasks can be consolidated.  

The Connection Between the Research Framework and the Structuring  

of Lessons 

The data reported below are informed by a framework as shown in Figure 1, adapted 

from Clark and Peterson (1986), that proposes that teachers’ intentions to act are informed 

by their knowledge, their disposition, and the constraints they anticipate experiencing. The 

particular focus in this article is the ways that each of these factors connect to the 

structuring of lessons. 

One node of this framework presents decisions on lesson structure as being informed 

by the knowledge of the teacher. The different aspects of such knowledge, specifically 

teachers’ knowledge of mathematics, of pedagogy and of students, are represented 

schematically by Hill, Ball, and Schilling (2008). 
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 The inference is that it is more 

likely that teachers will intend to use 

challenging tasks if they understand 

the mathematics and its potential, are 

aware of approaches to implementing 

the tasks in classrooms and can 

anticipate student responses.  

Another node in the framework 

suggests that teachers’ planning 

intentions are informed by their 

dispositions including their beliefs 

about how students learn (Zan, 

Brown, Evans, & Hannula, 2006), the 

ways that challenge can activate 

cognition (Middleton, 1995), and 

perspectives on self-goals, a growth 

mindset and the importance of student 

persistence (Dweck, 2000).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The framework informing the research. 

A third node proposes that the ways teachers plan are influenced by constraints that 

they anticipate they might experience. For example, teachers may be more likely to enact 

lessons based on challenging tasks if they do not fear negative reactions from students (see 

Desforges & Cockburn, 1987). 

These three nodes interact with each other and together they inform teachers’ planning 

intentions which in turn influence the classroom actions. 

An analogous framework that similarly connects teachers’ knowledge, beliefs and 

perceptions was presented in a diagram by Stein, Grover, and Henningsen (1996), which, 

when converted to text, proposes that the features of the mathematical task when set up in 

the classroom, as well as the cognitive demands it makes of students, are informed by the 

mathematical task. These features are, in turn, influenced by the teacher’s goals, subject-

matter knowledge, and their knowledge of their students. This then informs the 

mathematical task as experienced by students which creates the potential for their learning.  

The particular lesson structure being explored addresses four aspects arising from 

consideration of both frameworks, specifically:  

 The ways the tasks are posed in the introductory phase that is described by Lappan, 

Fey, Fitzgerald, Friel, and Phillips (2006) as the Launch, and by Inoue (2010), in 

outlining the structure of Japanese lessons as Hatsumon, meaning the initial 

problem, and Kizuki which is what it is intended that the students will learn;  

 Actions taken to differentiate the task for particular students that occur during what 

Lappan et al. call Explore, and what Inoue describes as Kikanjyuski which is the 

individual or group work on the problem. Note that Inoue uses the term Kikan 

shido to suggest that the teacher actions during this aspect include thoughtfully 

walking around the desks; 

 Ways that the student activity on the task is reviewed, described by Lappan et al. as 

Summary; and which includes both what Inoue calls Neriage which is carefully 

classroom 
actions 

beliefs, 
values and 
attitudes 
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managed whole class discussion seeking the students’ insights, and Matome which 

is the teacher summary of the key ideas; and 

 Subsequent teacher actions to pose additional experiences that consolidate the 

learning activated by engaging with the initial task. 

The four aspects are elaborated below. In each of the aspects, teachers’ actions connect 

directly to their knowledge of the mathematics involved in the task, their beliefs about 

what students can do and their anticipation of any constraints they may experience. 

Posing the Task 
A key aspect of the structuring of a lesson is the information provided to students as 

part of the introduction. If the teacher is working on the proposition that the students can 

be offered the opportunity to explore the problem and associated mathematics for 

themselves, then the introductory phase of the lesson becomes critical. Jackson, Garrison, 

Wilson, Gibbons, and Shahan (2013), for example, argued that there are two key issues for 

teachers to consider in the set up of the task. The first is that a common language can be 

established not only for students to interpret the task appropriately but also so they can 

contribute to the subsequent discussion. Second, it is productive if teachers consciously 

maintain the cognitive demand of the task. It can be assumed that decisions teachers make 

in maintaining the challenge are directly connected to their knowledge and beliefs about 

mathematics and pedagogy. Also connected to the maintenance of the challenge is whether 

teachers anticipate negative student reactions. Interestingly, in an earlier iteration of the 

project, Sullivan, Askew, Cheeseman, Clarke, Mornane, Roche, and Walker (2014) found 

that the majority of students do not fear challenges: they welcome them. Further, rather 

than preferring teachers to instruct them on solution methods, many students reported that 

they prefer to work out solutions and representations for themselves or with a partner.  

Differentiating the Task 
A second aspect of structuring lessons is anticipating ways that different students 

within the class might respond to the challenge, noting that this is important whether the 

students are grouped by their achievement or not. Sullivan, Mousley, and Jorgensen (2009) 

described two key actions in differentiating the experience:  

 The provision of enabling prompts, which involve reducing the number of steps, 

simplifying the complexity of the numbers, and varying the forms of representation 

for those students who cannot proceed with the task with the explicit intention that 

they work on the initial task subsequently; and  

 Offering extending prompts to students who complete the original task quickly 

which ideally elicit abstraction and generalisation of the solutions. 

These differentiated experiences are offered after students have engaged with the 

original task for some time and have the same characteristics as the original task, meaning 

that students engage with the task for themselves as distinct from being told what to do. 

Reviewing Student Activity on the Task 
A further key aspect of the structuring of lessons is the review of students’ solutions 

and strategies on the challenging task. The key elements of such lesson reviews were 

described by Smith and Stein (2011) as: 
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 Selecting particular responses for presentation to the class and giving those students 

some advance notice that they will be asked to explain what they have done; 

 Sequencing those responses so that the reporting is cumulative; and 

 Connecting the various strategies together.  

Consolidating the Learning 
So far, the lesson structure has facilitated the activation of cognition. The next phase is 

to provide opportunities for students to do what Dooley (2012) describes as consolidating 

the learning. This may involve posing a task similar in structure and complexity to the 

original challenge that helps to reinforce or extend the learning prompted by engagement 

with the original task.  

Variation Theory offers a process that can guide the planning of these consolidating 

tasks. Kullberg, Runesson, and Mårtensson (2013), for example, described a study that 

used variation theory to plan lessons subsequent to an initial lesson on division of 

decimals. Their intention was that such task variations would prompt students to interpret 

the concepts in a different way from what they had seen previously. Kullberg et al. (2013) 

argued: 

In order to understand or see a phenomenon or a situation in a particular way one must discern all 

the critical aspects of the object in question simultaneously. Since an aspect is noticeable only if it 
varies against a back-ground in invariance (emphasis in original), the experience of variation is a 

necessary condition for learning something in a specific way. (p. 611) 

In the application of Variation Theory to the creation of tasks intended to consolidate 

the learning prompted by the initial task, the intent is that some elements of the original 

task remain invariant, and other aspects vary so that the learner can focus on the concept 

and not be misled by over-generalisation from solutions to a single example. It is possible 

that this aspect is underemphasised in much commentary on student centred approaches. 

In summary, the teachers’ intentions include identifying the mathematical potential 

within a task; planning the elements of lessons that engage learners in creating their own 

solutions to problems including deliberately maintaining the challenge of the task; 

anticipating the need to differentiate the task for some students; effectively reviewing 

students’ reporting on their activity on the task; and consolidating that learning through 

similar tasks thoughtfully varied. The overall project is continuing to explore all of these 

aspects. 

The results below are intended to offer insights into the following research questions: 

(a)  To what extent is the proposed lesson structure manageable by teachers and to what 

extent does it support student engagement with the challenging tasks?  

(b)  How does the lesson structure connect student learning with subsequent teacher 

actions?  

The Context of the EPMC Project and Processes of Data Collection 

The data reported below were sought from teachers of students in Years 3/4 (ages 8 to 

9) in schools serving communities across a variety of socio economic backgrounds. The 

project adopted a design research approach which “attempts to support arguments 

constructed around the results of active innovation and intervention in classrooms” (Kelly, 

2003, p. 3). The key elements are an intervention by the researchers to propose (possibly) 

different pedagogies from those used normally, the approach is iterative in that subsequent 
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interventions are based on previous ones, and the intent is that findings address issues of 

practice, in this case the structuring of lessons. 

The first step in this iteration was a full-day professional learning session in which the 

teachers worked through a set of 10 tasks and lessons that focused on aspects of addition 

and subtraction. The 30 teachers were from 15 primary schools serving students from 

diverse socio economic backgrounds, mainly in metropolitan Melbourne. The teachers 

were a mix of age and experience, although skewed toward being more experienced. The 

teachers nearly all claimed to be confident that they know both the relevant mathematics 

and ways of teaching it. 

The professional learning included teachers solving the task for themselves, discussing 

various solutions and considering pedagogies associated with each task and lesson. The 

importance of anticipating the student experience by exploring possible solutions and 

variations in advance was emphasised. Even though not part of this report, various 

strategies to elicit student motivation and persistence were suggested to the teachers.  

After each lesson teachers completed a proforma, gathering data on the implementation 

of lessons using scaled and open responses. While there are advantages in observing 

lessons to examine the nature of implementation, such observations create interventions of 

their own and can make the data less representative of natural teaching. In the following, 

the data on the lessons are from self-report but it is stressed that the teachers were 

responding to a specific proforma immediately after having taught each lesson, offering 

readers confidence in the authenticity of the teachers’ self-reports. 

Teachers also completed additional summative surveys. The Likert-style items on the 

surveys were descriptive in form, and representative responses are reported below. The 

qualitative responses were read through and themes identified, especially where the 

responses aligned with aspects of the research questions.  

The students completed an online instrument that included pre-assessments of content 

and some survey items. Similar questions were asked on a post-test. The main analysis of 

the test responses was through quantifying the types of student responses and comparing 

and considering changes in the profile of responses from pre-test to post-test. 

The specifics of one lesson constitute the thrust of the data presented below. Even 

though this runs the risk of overgeneralising from a subset, the focus on this report is on 

the specifics of the structure of lessons and the details of one lesson elaborate the structure. 

Data on some other lessons are included for comparative purposes and to establish claims 

of wider applicability of the structure.  

The lesson reported in detail below, titled Making Both Sides Equal, included the initial 

task, termed learning task, which was posed as follows: 

Work out some numbers that make both sides of these equations equal 

  898 + ? = 900 + ? 

  95 - ? = ? - 10 

Give a range of responses for each. 

The main learning focus of this task is on equivalence; although there are aspects of 

pattern identification, partitioning and regrouping that might emerge. It is noted that 

equivalence is important mathematically. To emphasise this point, the 2013 examiners’ 

report for the top level mathematics in Year 12 (17 year old students) (Victorian 

Curriculum and Assessment Authority, 2014) included the following statement: 

Equals signs should be placed between quantities that are equal—the working should not appear to 

be a number of disjointed statements. If there are logical inconsistencies in the student’s working, 
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full marks will not be awarded. For example, if an equals (sic) sign is placed between quantities that 

are not equal, full marks will not be awarded. (p. 1) 

It is stressed that this is part of the first statement in the report from the examiners of 

the subject taken mainly by the very best students. Clearly it is important that students 

come to experience the notion of equivalence and there is no reason why students aged 8–9 

years should not start to learn this.  

It may not be obvious in what ways this task is challenging. Readers are invited to 

describe not only the relationship between the unknowns, especially in the subtraction 

example, but also the reasons that the relationship exists. It is such dimensions of the task 

that justify the categorisation of “challenging”. 

Through working on the task, it is hoped that, having found a number of solutions to 

the task, the patterns associated with creating the equal statements emerge. As with most of 

the other lessons, there is potential for multiple solutions. This has four benefits:  

 It allows a low “floor” for the task in that all students can find at least one solution 

readily;  

 There is an expectation that students will determine their own strategy for 

answering the questions and it is this opportunity for decision making that is 

engaging for the students;  

 There is a high “ceiling” in which students who complete the learning task can seek 

to propose a generalisation; and  

 Having found their own solution strategy, the openness means that students can 

make unique contributions to the class discussions.  

The lesson documentation offered to the teachers also included a rationale for the 

lesson, the relevant extract from the Australian Curriculum: Mathematics, suggestions for 

a possible introduction to the lesson, and an indicative statement of the goals for student 

learning. 

Enabling prompts (for students experiencing difficulty), which are intended to be posed 

separately, were suggested as follows: 

In your head, work out the number that would make this equation true: 

9 + 6 = 10 + ? 

9 – 5 = 7 - ? 

Note that these use a similar structure to the learning task but with only one unknown 

and smaller numbers. If some students experience difficulty with the learning task, the 

teacher would present those students with one or both of these prompts after waiting an 

appropriate length of time. The intention is that, having completed the prompt(s), those 

students then proceed with the original learning task.  

An extending prompt (for those who find solutions quickly) was suggested as follows: 

Describe the pattern that summarises all of your answers to the question. 

One of the intentions of such prompts is to encourage students towards making a 

generalisation, in this case by finding a clear and concise way to describe the pattern of 

responses. 

The “consolidating” task  to follow up the initial learning was suggested as follows: 

What might be the missing numbers? Give at least 10 possibilities. 

224 + ? = ? + 10 
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? – 10 = 100 – ? 

Again, readers are invited to describe the relationship between the unknowns in the 

subtraction example, noting the ways that the relationship is both similar to and different 

from the earlier example. Readers are also reminded that there is no initial instruction other 

than clarifying relevant language. 

Figure 2 presents the titles and learning tasks of a selection of four of the other nine 

lessons that are most similar in form and focus to Making both sides equal. Some data of 

teachers’ responses to these lessons are presented below for comparison purposes. It is 

noted that the information to the teachers on the structuring of these lessons was similar to 

the lesson described above. 

Lesson title Learning Task 

Addition 
Shortcuts 

Work out the answer to 3 + 4 + 5 + 35 + 37 + 36 in your head. What advice would 

you give to a friend about how to work out answers to questions like these in their 
head? 

Ways to Add 
in your Head 

Work out how to add 298 + 35 in your head. What advice would you give to 
someone on how to work out answers to questions like this in their head? 

Missing 
Number 
Subtraction 

I did a subtraction question correctly for homework, but my printer ran out of ink. I 
remember it looked like 

 8  - 2  =  2 

What might be the digits that did not print? (Give as many sets of answers as you 
can) 

Two 
purchases 

I bought a new pair of shoes and a new pair of sandals. The total cost was $87. I 
know that the shoes cost at least $50 more than the sandals. How much might the 

shoes cost? 

Figure . The learning tasks of some other lessons in this iteration of the project. 

Note that this final task is more complex that the others and requires different pieces of 

information to be processed simultaneously. 

Results 

The results are presented in two sections: teachers’ reports of the implementation of 

different elements of the lesson structure; and students’ responses to both a pre-test and 

post-test, including a follow-up discussion with teachers from a school with high 

improvement. 

Reports of the Implementation of the Lesson Structure 
The following presents the reactions of the teachers to the teaching of the lessons, 

seeking to answer the first of the research questions. It should be noted that the following 

represents a substantial data collection exercise in that around 30 teachers responded to a 

proforma immediately after teaching each of the 10 lessons (around 300 lessons in all).  

Table 1 presents the profile of responses to general prompts about the Making Both 
Sides Equal lesson, rating the propositions from strongly disagree (SD) to strong 

agreement (SA). Note that the numbers of SD, disagree (D), and Unsure (U) responses 

were small so they have been aggregated. 
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Table 1 

Teachers’ Ratings of Aspects of the ‘Making Both Sides Equal’ Lesson Immediately After 
its Teaching (n = 30) 

Prompts about the Making both sides equal lesson SD, D, U A SA 

The level of challenge was about right 4 17 9 

I would use this lesson again even if I adapt it a little 1 13 16 

Most students learned the main mathematical ideas 4 15 11 

The contribution of the students to the discussion was good 4 14 12 

The teachers endorsed these propositions (87% or more indicating agree or strongly 

agree). The most positive response was to the prompt about using the lesson again, which 

is a strong indication of the productivity and potential of the lesson, especially since the 

teachers had just taught it. The teachers were only slightly less positive about the students’ 

learning. Note that it was not possible to differentiate teachers’ responses based on 

background factors since those data were gathered anonymously. Overall the teachers gave 

very positive reactions to the lesson and the responses of the students. 

Such positive responses were also evident in their responses to the other lessons. Table 

2 presents summaries of responses to the comparison lessons. For ease of presentation, and 

recognising the potential of such analysis to be reductionist, responses of strongly disagree 

were allocated a score of 1, disagree 2, etc., and then those scores were averaged.  

Table 2 

Teachers’ Ratings of Aspects of Other Lessons Immediately Their Teaching (n = 30)  
 Addition 

Shortcuts 
Ways to 
Add in 
Head 

Missing 
Number 

Subtraction 

Two 
Purchases 

The level of challenge was about right 4.2 4.2 3.9 3.3 

I would use this lesson again even if I 

adapt it a little 

4.7 4.6 4.4 3.7 

Most students learned the main 
mathematical ideas 

4.0 4.0 3.7 3.4 

The contribution of the students to the 

discussion was good 

4.1 4.3 3.9 3.7 

Overall these are very positive reports by the teachers to the lessons and the reactions 

of students, indicating that the responses to the Making Both Sides Equal lessons are 

representative of these other lessons as well. Even the responses to the more challenging 

Two Purchases lesson were very positive. The inference is that the teachers considered that 

the students engaged with the challenge, learned the mathematics and made productive 

contributions to discussions. 

The teachers were also given the opportunity to provide written reactions to various 

open response prompts, some representative responses of which are presented below. In 

the post lesson proforma, some teachers commented on the engagement of the students 

during the Making Both Sides Equal lesson, especially with regard to the sharing of the 

learning: 
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It was great to see every child have a go and once we came together and shared ideas the number of 

kids that were successful increased. 

I really enjoyed this lesson. I found it interesting and children were engaged. 

Children enjoyed the challenge and discussion was good. 

That they enjoyed having a go to equal both sides. … kids learnt from one another and were eager 

to go and fix their mistakes. 

Children enjoyed the lesson and were totally engaged. Although they found the concept bewildering 

at the start, they were still interested enough to persevere and complete the task, cross checking and 

evaluating as they went. 

Many teachers also commented on the experience of the students with the concept of 

equivalence, such as:  

Great. It highlighted students’ misconceptions of what = means 

I found this lesson valuable to show that the equal sign means the same as.  

There were also teachers who reported on aspects of the challenge. For example: 

It was more difficult for students than I predicted. Again they generally used patterning well but did 

not always check it was accurate. The subtraction was more difficult. 

The difficulty they experienced with the concept—they tend to write e.g. 6+4=10+4 then want to do 

another problem. It was surprisingly hard to explain how each side needed to balance. After a while 

most got the idea and were then able to use pattern. 

Of course, it does not matter that students find a task difficult—and indeed that is the 

intention—but it is critical that teachers are aware of student difficulties and take action to 

resolve them. This is addressed further below. 

To explore ways that teachers implemented the various lesson elements, the post-

lesson proforma sought an indication of the number of minutes teachers spent on each. 

Table 3 presents the mean in minutes for each element in each of the five comparison 

lessons. 

Table 3 

The Mean of the Duration in Minutes of the Lesson Elements (n = 28) 
 Making 

Both 
Sides 
Equal 

Addition 
Shortcuts 

Ways to 
Add in 
Head 

Missing 
Number 

Subtraction 

Two 
Purchases 

The introduction to the learning 

task 
 6.0 6.4 6.5 6.6 6.3 

Students working on the 
learning task 

16.0 15.2 12.1 15.8 17.0 

Whole class review of the 

learning task 
10.6 10.4 10.7 9.7 12.3 

Introduction to the consolidating 
task 

5.9 5.0 5.4 5.7 7.2 

Students working on the 

consolidating task 
16.9 14.7 17.4 15.9 16.7 

Whole class review of the 
consolidating task 

8.9 9.8 9.6 8.5 10.1 
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The most striking aspect of this is the similarity across lessons. Noting that this table 

presents summary data from 140 lessons, it seems that the lessons took around one hour 

(derived by adding up the mean times of the lesson elements), the teachers spent about 6 

minutes introducing each of the tasks, the students spent around 15 minutes working on 

each of the tasks, and the teacher spent 10 further minutes on the whole class reviews of 

each task. Given the brief introductions, the extended time for students to work on a single 

task, even if differentiated, and time allocated to the review of their work, the inference is 

that teachers implemented the various lesson elements in the way that was recommended. 

Another key aspect of the implementation of the lesson structure was the extent to 

which teachers reported using the prompts. As part of the post lesson proforma, the 

teachers noted the number of students who were given an enabling prompt, and the time 

they waited before giving the prompts. Table 4 presents of the mean and median of the 

number of students over the 28 lessons, the fewest and greatest number of students in any 

lesson given the prompts, and the average time that the teachers waited before giving out 

any prompts. 

Table 4 

The use of the enabling prompts over the 28 implementation of each of the lessons  
Lesson title Mean 

number of 
prompts 

given per 

lesson 

Median 

number of 
prompts per 

lesson 

Low number 

of prompts 
given in a 

single lesson 

High 

number of 
prompts in a 

given lesson 

Time until 

prompts 
given 

Making Both Sides 
Equal 

6.3 4 0 23 6.3 

Addition Shortcuts 6.7 4 1 25 6.8 

Finding Ways To 
Add In Your Head 

6.2 4 0 20 6.6 

Missing Number 
Subtraction 

5.7 5 0 18 6.6 

Two Purchases 10.9 10 1 23 7.0 

To elaborate these data for the Making Both Sides Equal lesson, the teachers reported 

the enabling prompts were given to between two and six students, with the mode number 

being 4. There was one teacher who gave no prompts and three who gave prompts to more 

than 20 students. Nearly all teachers waited between five and 10 minutes before doing so. 

The intention is that all students first have opportunity to engage with the learning tasks 

and are only offered prompts after this opportunity. The data suggest that the prompts were 

implemented by teachers in ways compatible with the proposed lesson structure. 

Table 5 presents similar data for the extending prompts. 
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Table 5 

The use of the extending prompts over the 28 implementation of each of the lessons  

Lesson title Mean number 

of prompts 

given per 

lesson 

Median 

number of 

prompts per 

lesson 

Low number 

of prompts 

given in a 

single lesson 

High number 

of prompts in 

a given 

lesson 

Making Both Sides Equal 6.9 5 0 20 

Addition Shortcuts 7.3 6 0 22 

Finding Ways To Add In 
Your Head 

7.9 6.5 0 22 

Missing Number 
Subtraction 

7.4 6.5 0 20 

Two Purchases 3.3 1 0 20 

In the Making Both Sides Equal lesson, only four teachers did not give out the 

extending prompt indicating that in most classes there were students for whom the learning 

task was not challenging. Most of the teachers gave the extending prompt to between one 

and ten students. There were three teachers who gave the extending prompt to more than 

20 students. Noting the variability across the classes, overall this also suggests that such 

prompts were used judiciously. 

Across all of the lessons, it seems that teachers made active and deliberate use of the 

prompts depending on the responses of the class. No teacher reported a negative response 

to the prompts which seem to be a useful device to differentiate learning opportunities 

while maintaining not only the challenge of the task but also a sense of the class as a 

learning community. This data in the table suggest that this aspect of the recommended 

lesson structure was implemented by the teachers.  

Overall, this is compelling evidence, based on the teachers’ reactions, that the ways 

they implemented the lesson structure aligned with the advice they were offered both as 

part of the professional learning and in the lesson documentation. This lesson structure is 

feasible and manageable and may have potential for transfer to other types of lessons as 

well. 

Pre- and Post-Assessment of Student Learning 
To gain a different indication of the implementation of the lesson, and to seek insights 

into whether participation in this and the other lessons improved the chances that students 

would answer associated assessment items correctly, students completed an online 

assessment before and after the set of 10 lessons. Three of the items sought responses to 

questions presented in a similar format to the Making Both Sides Equal tasks. Table 6 

presents the overall results from the items. The prompt for each of the items was “What 

should be the “?” ?”. The items were open response, which gives more confidence in the 

responses than had the items been multiple choice. Only responses from students in classes 

who completed both assessments are included. Even though the number range and 

placement of the unknown varies, it is arguable that the items are assessing similar 

mathematical knowledge to the Making Both Sides Equal lesson. 
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Table 6  

Number (%) of Student Correct Responses to the Three Equivalence Items Pre and Post 
Implementation 

 Pre-test  

n = 1050 

Post-test  

n = 1080 

100 + 56  =  ?  + 53 215 (20.3%) 497 (45.8%) 

19 + 22  = 20 + ? 254 (25.0%) 487 (45.3%) 

95 - ? = 75 - 10 180 (17.7%) 399 (37.2%) 

The improvement is similar in all three items, with around 20 to 25% more of the 

group answering correctly after the intervention in comparison to before. In other words, 

about one quarter of the group improved overall. To put this another way, one third of 

those who could not respond correctly before the lessons could do so after the lessons.  

Considering the responses to the three items together, in the post-test, 40% of the 

students got none of the three items correct, meaning 60% of the students got one or more 

correct, representing improvement compared to the individual items from the 32% of 

students who answered one or more correctly on the pre-test. That is, nearly half of the 

students who could not answer an item previously could now respond correctly at least 

once. Twenty five percent of the students answered all these items correctly on the post-

test, an increase from 8% from the pre-test.  

In short, a significant minority of students were better able to respond to the items after 

the lessons than they were before. Tests of proportions on the items are highly significant 

statistically (p = .000), but the issue is whether this constitutes a meaningful educational 

improvement. Indeed, it might have been expected that the improvement would be greater, 

given that the students had completed an apparently successful lesson specifically on the 

particular concept of equivalence and other lessons on related topics.  

One possible interpretation is that these gains are impressive but that this type of 

learning takes longer than one lesson for many students and learning gains overall take 

time. This is exemplified by the modest gains on comparable items on the national 

numeracy assessment between Year 3 and Year 5, for example. Sullivan and Davidson 

(2014) noticed a comparable apparently limited gain on particular assessment items in a 

previous iteration of the project. They followed up with a delayed assessment using a 

pencil and paper format and also examined students’ worksheets. From these, the new 

knowledge demonstrated on the assessments of the students was substantially greater than 

was revealed by the on line pre/post comparisons. 

An interesting aspect of the results was that, in comparing results of school cohorts, it 

was noticed that there were quite wide variations in the extent of student improvement 

between the pre- and post-test. To explore this further, some teachers of a school who were 

particularly successful in terms of improvement in students’ responses to the items, were 

asked whether they could explain the special results of their classes. These teachers’ 

responses indicated that they: 

 Allowed students the time to consolidate their learning; 

 Specifically addressed the issue of student persistence; 

 Worked through the tasks prior to the lessons to enhance their chances of 

anticipating student responses; and  
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 Used the same structure, incorporating each of the lesson elements, for each of the 

lessons. 

The teachers also commented on ways they used the students’ responses. For example, 

the summary phase after the learning task was described as follows: 

Discussion always ended with the learning task on the smart board and we allowed questions for 

clarification. Students worked independently. When it came to sharing, we made sure we had a 

range of strategies from least to most efficient which were all presented in different ways. All 

strategies were celebrated. Our main goal was to promote the most efficient strategies, but to try and 

show them in a range of different ways. Students learnt to articulate themselves clearly by listening 

to each other explain their thinking. It also validated their thinking, by listening to others.  

Perhaps more critically, though, is the assessment information that they gathered: 

The learning tasks acted as Rich Assessment Tasks where we encouraged students to try their best 

because their strategies and attempts would help us to plan the follow up lessons. We used the 

results to plan the next sequence of lessons. 

It is those words “we used the results to plan the next sequence of lessons” that may 

well be critical in consolidating the learning. While not directly connected to lesson 

structure, it does indicate that the cognition activated by the challenging task may need to 

be followed up by subsequent further challenges and explanations. Noting that none of the 

teachers in schools with less than average improvement were interviewed and so it is not 

clear how their responses might differ, it seems that the purposeful actions by the teachers 

of these classes with high gains have contributed to those gains. 

Summary 

The research reported above intended to explore the implementation of a particular 

lesson structure to exemplify the common advice on mathematics teaching, to offer 

teachers strategies for differentiating learning opportunities and to propose experiences to 

consolidate learning for the students.  

The lesson that was the focus of this article was based on a challenging task intended to 

activate the thinking of students around the concept of equivalence and patterns. The 

lesson information offered to teachers included prompts for students who experienced 

difficulty and those who finished quickly and a consolidating task for all students. The 

teachers reported that the lesson was successful in terms of student learning and 

contribution to whole class discussion. The teachers reports of the time they spent on each 

of the lesson elements and the overall data suggests that they implemented the various 

elements as recommended. The reported frequency of use of the enabling and extending 

prompts indicated that this strategy was manageable and that teachers made active 

decisions on which and when students should be offered the prompts. There was 

satisfactory overall improvement in the students’ responses presented. The comparative 

data from other lessons indicate that the responses were not idiosyncratic to the focus 

lesson but were comparable across the other lessons presented. It seems that the lesson 

structure is useful to teachers and may act as a guide in further teacher professional 

learning. 

As indicated in the framework used to guide the research, it seems that teachers do 

make implementation decisions based on their knowledge about the mathematics (which 

was perhaps gained from the teacher professional learning day and other pre-lesson 

planning), about the pedagogy (which is mainly built into the lesson structure and 

associated advice), and about the students (which is partially gained from observing 
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students closely while they interact with the tasks). Teachers do need to anticipate the 

constraints they might experience, such as negative student reactions and plan to address 

them. Teachers beliefs that students can solve problems for themselves are presumably 

reflected in the time allocated to the lesson elements and especially the time for students to 

work on the tasks. 

The teachers of classes with impressive improvement between the pre- and post-test 

reported a series of actions that seemed productive. This suggests that having suitable tasks 

and lessons is necessary but not sufficient to ensure learning. Given the current interest in 

schools on improving students’ responses to external assessments, further research on how 

to consolidate learning activated through challenging tasks would be useful. 
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The Beth Southwell Practical Implications Award was initiated and sponsored by the 

National Key Centre for Teaching and Research in School Science and Mathematics, 
Curtin University, Perth, Western Australia. Curtin sponsored the “Practical Implications 
Award”, as it was then known, for the first ten years. The Award is now sponsored by the 
Australian Association of Mathematics Teachers (AAMT). In 2008, MERGA was 
honoured to be able to rename the PIA as the Beth Southwell Practical Implications 
Award, in honour of MERGA’s and AAMT’s esteemed late member, Beth Southwell. 

The award is designed to stimulate the writing of papers on research related to 
mathematics teaching or learning or mathematics curricula. Application for the award is 
open to all members of MERGA who are registered for the conference.  

Applications for the PIA are judged against specific criteria by a panel consisting of 
two members of MERGA, two from AAMT, and chaired by the MERGA Vice President 
(Development). 

 
 
 
 
 
 
 
 

57



Hunter 
 

Teacher Actions to Facilitate Early Algebraic Reasoning  

Jodie Hunter 
Massey University  

<j.hunter1@massey.ac.nz> 

 

In recent years there has been an increased emphasis on integrating the teaching of 

arithmetic and algebra in primary school classrooms. This requires teachers to develop 

links between arithmetic and algebra and use pedagogical actions that facilitate algebraic 

reasoning. Drawing on findings from a classroom-based study, this paper provides an 

exemplar of one teacher’s journey in shifting her practice to integrate early algebra into her 

everyday mathematics lessons. The findings highlight the importance of addressing 
different areas including algebraic content, task development and enactment, and the 

classroom and mathematical practices to facilitate algebraic reasoning.  

Introduction  

Significant changes have been proposed for Western mathematics classrooms of the 

21
st
 century in order to meet the needs of a knowledge society. One key focus has been on 

the learning of algebra as an essential type of thinking for “participation in a democratic 

society” (Mason, 2008, p. 79). Algebra takes an important role in ensuring access to both 

potential educational and employment opportunities (Knuth, Stephens, McNeil, & Alibabi, 

2006). Given this position, there has been a growing consensus in both research (e.g., 

Bastable & Schifter, 2008; Blanton & Kaput, 2005; Carpenter, Franke, & Levi, 2003) and 

policy documents (e.g., Department for Education and Employment, 1999; Ministry of 

Education, 2007) that algebra be introduced at a much younger age with a focus on the 

integration of arithmetic and algebra as a unified curricula strand.  

To ensure links to early algebra are developed and maintained, teachers have a key role 

in developing and enacting tasks that integrate arithmetic and algebra and reforming 

classroom practice. However, many primary teachers have not had experience in how to 

develop links between arithmetic and algebra or in using pedagogical actions that facilitate 

algebraic reasoning (Blanton & Kaput, 2005). To meet the need for models of how early 

algebra can be integrated into the primary classrooms, this paper provides an exemplar of 

one teacher’s journey in shifting her practice to integrate early algebra into her everyday 

mathematics lessons.  

Many studies (e.g., Bastable & Schifter, 2008; Blanton & Kaput, 2005; Carpenter, 

Franke, & Levi, 2003) illustrate how teachers can develop aspects of algebraic reasoning in 

their classrooms. Key findings of these studies include the importance of content areas 

within the existing curriculum with which early algebra has connections, a focus on student 

thinking and reasoning, and the use of task design and implementation to promote 

algebraic reasoning. There are also many studies (e.g., Fosnot & Jacob, 2009; McCrone, 

2005; Monaghan, 2005) that address productive classroom and mathematical practices in 

the mathematics classroom. However, there are few studies that specifically attend to 

algebraic content, task development and enactment, and the classroom and mathematical 

practices that facilitate primary students to engage in early algebraic reasoning. The 

present paper aims to address this gap in the literature by presenting a framework of 

teacher actions to facilitate early algebraic reasoning that addresses algebraic content, task 

development and enactment, and the classroom and mathematical practices.   
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The theoretical framing of this paper draws on a socio-cultural perspective. In this 

view, individuals participate in the everyday activities within a classroom community of 

practice (Lave & Wenger, 1991) and through this participation learn the ways of thinking 

and acting that are valued by the community. Social participation facilitates the 

development both of a sense of what it means to be a member of a specific community and 

a sense of self in relation to the community. 

Method 

This paper reports on episodes drawn from a larger study (Hunter, 2014) that involved 

a year-long continuing professional development (PD) classroom-based intervention 

focused on developing early algebraic reasoning. The participants included two separate 

groups of primary teachers (from England and the British Isles) from schools that used the 

Mathematics Enhancement Programme (MEP) curriculum. The focus in this paper is on 

one teacher who was an experienced teacher interested in strengthening her ability to 

develop early algebraic reasoning within her classroom. Her class consisted of 25 Year 

Three students from a semi-rural primary school in the British Isles. The students were 

from predominantly middle socio-economic home environments and represented a range of 

ethnic backgrounds.  

The model for PD used during the intervention initially drew on research literature. As 

the intervention progressed, the re-design of the PD drew on a range of sources including 

researcher observations from the classrooms, study group meetings, teacher interviews and 

discussions. The focus for professional learning comprised four separate but related 

components; understanding of early algebraic concepts; task development, modification, 

and enactment; classroom practices; and mathematical practices. Key aspects of the PD 

included the use of research articles to extend teachers’ understanding of early algebra, to 

provide models of classrooms that would support early algebraic reasoning, and to promote 

reflection on current practice. Also central was a focus on the selection, design, and 

enactment of tasks. This included the teachers completing algebraic tasks themselves, 

analysing tasks from the MEP material to identify opportunities for algebraic reasoning 

and investigating ways of modifying existing tasks. In addition, the teachers engaged in 

activities where they both predicted and analysed student responses to algebraic tasks. A 

final key element of the PD was facilitating reflection on practice, including developing 

tools and skills for noticing relevant aspects of their own practice. To support this, the 

teachers were provided with an adapted framework from Hunter (2009) and also engaged 

in a series of lesson study cycles.  

Data gathering included classroom observations prior to the beginning of the 

professional development and throughout the school year, video records of professional 

development meetings, audio recorded interviews with the teachers and students, detailed 

field notes, and classroom artefacts. On-going data analysis supported the revision of the 

model for professional development. Retrospective data analysis used NVivo 10 

qualitative software programme (2012). The initial codes were developed from a variety of 

sources including research literature, the initial viewing of the video records, and the 

observational and reflective field notes. Repeated viewing of the videos and re-reading of 

the transcripts and field notes confirmed or refuted the initial hypotheses and codes and 

other hypotheses and codes were developed as necessary.  
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Results and Discussion 

The results and discussion will present the Framework of Teacher Actions to Facilitate 
Algebraic Reasoning. This framework integrates four separate, interlinked components that 

the study identifies as key to the development of early algebraic reasoning. An analysis 

will be undertaken of the shifts across the three phases of the study. 

Teacher Awareness of and a Purposeful Focus on Algebraic Concepts 
Prior to the PD, the teacher demonstrated some awareness of the links between 

arithmetic and algebra. Instantiations of types of early algebra such as the commutative 

property, equivalence, inverse relationships were evident during the observed lessons. 

However, there was no explicit identification or examination of the properties of numbers 

or operations during lessons. This meant that for students, the properties remained implicit 

and they were not provided with opportunities to develop deep generalised understanding 

as advocated by researchers (e.g., Bastable & Schifter, 2008; Carpenter et al., 2003).  

Central to each phase was a purposeful focus on algebraic concepts. This is not 

intended as an exhaustive list but consists of algebraic concepts that are identified as 

relevant to primary classrooms. The following sections of the findings and discussion will 

show the teacher’s growing propensity to focus on these concepts and integrate exploration 

of these into her everyday mathematics lessons.  

Table 1  

Teacher awareness of and a purposeful focus on algebraic concepts 

Phase 

One to 

Three 

Address the following concepts: understand the equal sign as representing 

equivalence; relational reasoning including whole numbers and rational 

numbers; commutative property; inverse relationships; odd and even numbers; 

identity elements; distributive property; associative property; properties of 

rational numbers; using and solving equations; function 

Teacher Actions to Develop and Modify Tasks and Enact Them in Ways That 
Facilitate Algebraic Reasoning  

Prior to the initial PD, the teacher used tasks from the MEP curriculum and carefully 

guided students through the steps required to complete the task with an emphasis on a fast 

pace. Her questioning focused attention on computational approaches and was 

characterised as leading or funnelling students towards correct responses or teacher chosen 

solution strategies.  

 Developing new methods of task implementation was an important pedagogical 

strategy to facilitate algebraic reasoning. In the first phase, an immediate change involved 

the implementation of tasks as problem-solving opportunities. This included emphasising 

student effort to approach and complete cognitively challenging tasks. Enabling prompts 

such as described by Sullivan, Mousley, and Zevenbergen (2006) were used to scaffold all 

students to access the tasks, without lowering the cognitive demand. Another key change 

in the second phase related to task implementation involved shifting attention away from 

recording answers to focusing on patterns and relationships. Teacher questioning oriented 

students to use a structural focus. For example, in one lesson the teacher introduced a task 

involving a series of number sentences (100 – 10 =, 90 – 9 =, 80 – 8 = …). She said: “Look 

at those questions and see if there is a pattern, don’t work out the answers yet, just look at 

it.” She then drew attention to the patterns in the answers by asking: “As there is a pattern 
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in the questions, do you think there might be a pattern in the answers?” Many researchers 

(e.g., Carpenter et al., 2003; Fosnot & Jacob, 2009) argue that the development of 

structural perspectives is an important aspect of algebraic reasoning.  

Changes to lesson planning were important in integrating algebraic reasoning into the 

everyday mathematics lessons. In the first phase, the teacher began by examining the MEP 

lesson plans and selecting parts of tasks that focused attention on an algebraic concept. At 

this point, this did not extend to engagement in a deeper investigation of algebraic 

concepts. For example, one task involved an array and two number sentences with missing 

parts (3 × _ = 6, 6 ÷ _ = 2). Initially teacher questioning focused attention on the general 

relationship between multiplication and division:  

Three times two equals six and six divided by three equals two.  With your partner, what do you 

notice about those please? A student responded: They’re just the other way around… because the 

three is in the middle and the six is at the beginning and at the end.  

After this response, the teacher shifted to ask students to examine related equations where 

the position of the numerals had changed. This limited opportunities for students to further 

explore the relationship between multiplication and division as the focus moved to specific 

equations.  
Through the second phase, there was growth in the teacher’s understanding of different 

types of algebraic reasoning. This meant that she was able to more readily modify tasks to 

include early algebra. It also led to her noticing when students provided responses related 

to algebraic reasoning. Later during this phase the teacher began to recognise and use 

spontaneous opportunities for algebra as tasks were enacted. In this phase, the shift in 

teacher actions also extended to structuring tasks to address misconceptions. For example, 

in one lesson, students were asked to solve 36 – 6 = __ + 20. Some students responded by 

writing 30. The teacher used this as an opportunity to engage the class in prolonged 

discussion focused on the equal sign.  

In the final phase, the teacher consistently planned classroom activities in a way that 

focused on opportunities for early algebra. She described herself thinking as she planned 

about how to: “Draw out the commutative law from this one, or this could be a great 

discussion point for timesing by one, or dividing by zero, get them to come out with 

conjectures.” Another point of difference in this phase was the teacher’s propensity to 

engage in anticipating the outcomes of the task enactment. This supported her to develop 

her use of monitoring, noticing and sequencing student responses that could be used to 

spontaneously investigate algebraic concepts. For example during one lesson, the teacher 

asked her students to think about an efficient method to solve 26 – 8 =. A student 

suggested breaking the eight into six and two. The teacher then used this as a spontaneous 

opportunity to investigate how numbers could be partitioned to solve subtraction tasks: “If 

you were doing 34 take away seven, with your partner can you just talk about how Misty 

would tackle that?” Blanton and Kaput (2005) note that spontaneously integrating 

algebraic reasoning opportunities into lessons is key to developing a classroom context that 

emphasises algebraic reasoning.  

These changes resulted in a clear focus on algebraic reasoning integrated into lessons 

and included coverage of a broad range of algebraic concepts. In summary, the teacher 

actions are illustrated in Table Two.  
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Table 2 

Teacher Actions to Develop and Modify Tasks and Enact them in Ways that Facilitate 
Algebraic Reasoning 

Phase 
One 

Implement tasks as problem-solving opportunities 

Emphasise student effort to approach and complete cognitively challenging tasks 

Extend or enact tasks to include opportunities for generalisation 

Interrogate tasks for opportunities to highlight structure and relationships 

Phase 
Two 

Adapt tasks to highlight structure and relationships. This includes changing 

numbers or extending to multiple solutions 

Structure tasks to address potential misconceptions 

Use enabling prompts to facilitate all students to access tasks 

Implement tasks by focusing attention on patterns and structure 

Use spontaneous opportunities for algebraic reasoning during task enactment 

Phase 
Three 

Recognise and use links to algebra in tasks across mathematical areas 

Implement tasks as open-ended problems 

Anticipate student responses that could provide opportunities for algebra 

Use spontaneous opportunities for algebraic reasoning from student responses 

Teacher Actions to Develop Classroom Practices That Provide Opportunities for 
Engagement in Algebraic Reasoning 

Prior to the initial PD, paired work was a feature of the classroom but rather than 

complete tasks collaboratively, the partnerships were used as a support mechanism when 

students were stuck. The discourse patterns in the classroom were dominated by the 

teacher. Students frequently gave answers with no mathematical reasoning and the teacher 

provided the majority of mathematical explanations.  

In the first phase, to support student engagement in algebraic reasoning it was 

necessary to address the ways in which students worked collaboratively and the forms of 

talk used in the classroom. The teacher explicitly discussed with her students how to 

successfully talk together and facilitated them to generate rules for productive talk similar 

to what is described by Monaghan (2005). A key expectation was that students developed a 

shared understanding of a jointly constructed solution strategy. The teacher drew on 

student models to develop understanding of the new expectations and to affirm productive 

shared discourse norms. For example after observing small group work she said to the 

class: “Zanthe said to everybody ‘do you get it?’ And everyone nodded, but you didn’t get 

it, did you? How did you know that Calvin hadn’t got it?” This was followed by asking 

Zanthe to share with the class how she had known her group member, Calvin, was unsure 

by asking him to explain the jointly constructed solution strategy.  

In the second phase, to advance all students’ opportunities to engage in algebraic 

reasoning it was important to extend collaboration to whole class discussions. The teacher 

positioned students to listen actively to their peers’ reasoning and explanations and make 

sense of these. During whole class discussions she intervened to provide space for other 

students to question or modelled how to ask a question herself. For example, in one lesson 

she asked the students to generate different two factor equations using the digits two, three 

and five. A student provided her group’s solution strategy: “We think we should work out 

two times two first, then two times three and two times five.” At this point the teacher 

provided a space for questions that led to a student question focused on clarification and 

justification: “If you were to do that, how would you be able to know whether you’d done 

the two and five, or two and three, or two and two, how would you know?” 
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In the final phase, a consistent expectation was established that students would work as 

a collaborative community. When students explained their strategy solutions during whole 

class discussions, the teacher emphasised that their partners or group needed to listen 

carefully and support them when necessary. She made the speaker aware of peer support 

and facilitated the rest of the class to listen to the explanation and make sense of it while 

supporting everyone in the class to understand it. This was similar to the pedagogical 

actions described by McCrone (2005). Although an emphasis was placed on developing a 

collaborative community, teacher continued to use pedagogical actions to ensure that 

students did not view this as always needing to agree with their peers. She emphasised 

mathematical argumentation when working with partners: “I was really impressed with the 

discussion that was going on when you didn’t agree with your partner.” This focus led to 

students attending both to their own thinking and the thinking of others and using 

mathematical reasoning to agree or disagree.  

In summary, the teacher actions are illustrated in Table Three.  

Table 3 

Teacher Actions to Develop Classroom Practices that Provide Opportunities for 
Engagement in Algebraic Reasoning 

Phase 
One 

Lead explicit discussion about classroom and discourse practices  

Ask students to apply their own reasoning to the reasoning of someone else 

Require students working in pairs or small groups to develop a collaborative 

solution strategy that all can explain 

Phase 
Two 

Require that students indicate agreement/disagreement with part of an explanation 

or a whole explanation and provide mathematical reasons for this  

Lead explicit discussions about ways of reasoning 

Provide space for students to ask questions for clarification 

Request students to add on to a previous contribution 

Ask students to repeat previous contributions 

Use student reasoning as the basis of the lesson 

Facilitate students to examine solution strategies for similarities or differences 

Phase 
Three 

Lead explicit discussion about mathematical practices 

Sequence solution strategies to advance mathematical thinking and reasoning 

Provide space for students to question for justification 

Teacher Actions to Develop Mathematical Practices That Support the Development 
of Algebraic Reasoning 

Prior to the PD, key mathematical practices such as making conjectures, developing 

generalisations, justification and proof were not established within the classroom. The 

introduction of key mathematical practices associated with algebraic reasoning was 

important aspects to support student engagement with algebraic reasoning. In the first 

phase this included the new expectation that students would explain and clarify their ideas 

and reasoning. In the second phase of the study, a key shift for the teacher was her 

emphasis on facilitating student development of mathematical explanations rather than 

continuing to provide the majority of explanations herself. To achieve this, the teacher 

trialled the use of prompts such as: “I want you to think because I’m sitting here and I’m 

dead confused, how you could explain it to us.  So I’m not just interested in your answer, 

I’m interested in you explaining it.” 

The introduction of the mathematical practice of using representations was an 

important aspect in the second phase of the study. This included facilitating students’ use 
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of representations as a key way for them to support their own reasoning and to access the 

structure of tasks and develop understanding. The teacher also promoted the use of 

different representations (e.g., verbal, concrete materials and written) as a way of 

developing the clarity of explanations and to link tasks and representational forms. In the 

final phase, the teacher continued to encourage use of multiple representations. But more 

than just using a selected representation, she now developed an expectation that the 

students would translate between different representations. This included asking students 

to draw on multiple representations in relation to a task and to listen to explanations by 

their peers and then to use an alternative representation for the explanation.  

In the second and third phase of the study, the teacher introduced her students to the 

mathematical practices of generalisation, justification, and proof. She began by 

purposefully planning an investigation of identity elements similar to the approach 

advocated by Carpenter et al., (2003). This familiarised students with the processes of 

making conjectures and finding examples to illustrate these. The teacher initiated a 

growing expectation that generalisations would be expressed and treated as conjectures. In 

doing this, she facilitated a ‘conjecturing atmosphere’ such as described by Bastable & 

Schifter, (2008) and Mason (2008) where students readily expressed conjectures. This 

meant that the teacher was able to draw on the conjectures and then use these to engage 

students in the mathematical practices of generalisation, justification and proof. Also in the 

third phase, representations were introduced as a powerful form of concrete justification. 

With further classroom experiences focused on justification, students more readily drew on 

material to prove reasoning.  

In summary, the teacher actions are illustrated in Table 4.  

Table 4 

Teacher Actions to Develop Mathematical Practices that Support the Development of 
Algebraic Reasoning 

Phase 
One 

Require students to explain their reasoning 

Phase 
Two 

Require students to develop mathematical explanations that refer to the task and 

context. 

Facilitate students to use representations to develop understanding of algebraic 

concepts.  

Ask students to develop connections between tasks and representations. 

Provide opportunities for students to formulate conjectures and generalisations in 

natural language. Lead students in examining and refining conjectures and 

generalisations. 

Listen for conjectures during discussions. Facilitates examination of these. 

Require use of different representations to develop the clarity of explanations. 

Model and support the use of questions that lead to generalisations; Does it always 

work? Can you see any patterns? Would that work with all numbers? 

Phase 
Three 

Listen for implicit use of number or operational properties. Uses these as a 

platform for students to make conjectures and generalise. 

Facilitate students to represent conjectures and generalisations in number 

sentences using symbols. 

Ask students to consider if the rule or solution strategy they have used will work 

for other numbers or for a general case. 

Promote use of concrete forms of justification. 

Require students to translate between different representations. 
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Conclusions and Implications 

This study sought to illustrate the pathway that a teacher took in shifting her practice to 

integrate algebra into her everyday mathematics lessons. Similar to the findings of other 

researchers (Bastable & Schifter, 2008; Blanton & Kaput, 2005), it was evident that it is 

the teacher who makes the integration of algebraic reasoning into the learning community 

possible. The findings highlight the important role that the teacher takes in implementing 

and leading change within the classroom. In the first phase of the study, although the 

teacher began to consciously plan to integrate algebra into lessons, some of the existing 

classroom practices limited opportunities for engagement with algebra. Through the 

second and third phase, the teacher continued to extend her planning for algebraic 

reasoning and also began to notice and respond to spontaneous opportunities during 

lessons. Increasingly, the classroom practices and mathematical practices supported the 

students to engage with algebraic reasoning. These changes meant that the students became 

engaged in the key mathematical practices linked with algebra.  

Overall, this study illustrates that the integration of early algebraic reasoning requires 

more than the introduction of algebraic concepts. It was necessary for the teacher to reflect 

on both the planning and implementation of tasks. Also of importance was attending to the 

development of the classroom community and facilitating the growth of classroom 

practices and mathematical practices that supported collective student participation and 

engagement with algebraic reasoning. 

Practical Implications 

A challenge for teachers in recent years has been to develop classroom contexts that 

integrate arithmetic and algebra and facilitate learners to shift from arithmetical to 

algebraic reasoning. The results of this study provide some important practical implications 

for thinking about ways in which early algebraic reasoning can be integrated into primary 

mathematics classrooms. A clear contribution is seen in the broad perspective of algebra 

that is taken to include both areas of content and classroom and mathematical practices that 

support student engagement in algebraic reasoning. 

The Framework of Teacher Actions to Facilitate Algebraic Reasoning that is outlined 

in the paper is offered as a contribution to the field. Importantly this framework integrates 

four separate, interlinked components that the study identifies as key to the development of 

early algebraic reasoning. These include: 

 Teacher awareness of and a purposeful focus on algebraic concepts 

 Teacher actions to develop and modify tasks and enact them in ways that facilitate 

algebraic reasoning 

 Teacher actions to develop classroom practices that provide opportunities for 

engagement in algebraic reasoning 

 Teacher actions to develop mathematical practices that support the development of 

algebraic reasoning. 

Each of the four key aspects integrated within the framework has been linked with specific 

supportive teacher actions. Based on evidence of ‘what works’ in terms of teacher practice, 

this is an important contribution to enhance professional learning and development 

opportunities to build capacity to enact reforms in early algebra teaching and learning. This 

framework can be used both by teachers to investigate and develop their own practice and 

as a productive model for researchers and designers of professional development to use 

while working with teachers. 
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This study illustrates the complexity and challenges of teacher change and enactment 

of changes within the classroom. The integration of algebraic reasoning into classroom 

mathematical activity was a gradual process. It required a focus on developing teacher 

understanding of algebraic concepts and involved changes to task implementation and 

design, shifts in pedagogical actions and the facilitation of new classroom and 

mathematical practices. It is important that teachers view algebra as encompassing 

classroom culture. This means that both pedagogical content knowledge of algebra and a 

focus on classroom and mathematical practices that facilitate algebraic reasoning 

opportunities needs to be incorporated into professional learning and development. 

Of importance is the need for teachers to develop understanding of algebra beyond 

their schooling experiences. Initially the teacher in this study held understandings of 

algebra that were grounded in her own schooling experiences. This involved more 

traditional approaches where computational arithmetic was taught in primary school 

followed by the introduction of abstract algebra in secondary school. In her own words, she 

described her previous view of algebra as: the missing number and shoving in an X here. 

An important factor in the shift in the teacher’s understanding and practice was the re-

conceptualisation of her understanding of algebra. 

Planning for algebraic opportunities was a key element in the teacher’s development. 

However, an important implication for both teachers and teacher educators is that simply 

planning and developing algebraic tasks is insufficient to ensure that early algebra is 

integrated into mathematics lessons and learners shift from arithmetical to algebraic 

reasoning. Attention also needs to be focused on how tasks are implemented and enacted in 

the classroom. Enacting a task successfully requires teachers to identify the focus of the 

task, the purpose of any adaptation, and anticipate the possibilities that may happen in the 

task enactment. The framework provides some key teacher actions that relate to task 

implementation and enactment. It highlights the importance of implementing tasks in ways 

that focus on structural and relational aspects as well as drawing on spontaneous 

opportunities arising from both task enactment and student responses to engage all students 

in algebraic investigation.  

Also evident from the findings of this study is that there are a number of key 

pedagogical strategies and classroom and mathematical practices that support student 

engagement in algebraic reasoning. Understanding of the classroom and mathematical 

practices that link to the development of algebraic reasoning are a further key aspect of 

teachers developing classrooms that integrate algebra into everyday mathematics lessons. 

The teacher in this study progressively introduced new classroom practices. There was an 

increased expectation on students to talk and work collaboratively. This collaborative work 

included developing shared understanding of a jointly constructed solution strategy. 

Another key emphasis was on student development of mathematical explanations. Also 

illuminated in this study is the importance of teacher understanding of mathematical 

practices such as generalising and justifying. An initial lack of understanding of these 

mathematical practices resulted in the teacher shifting student focus from general cases to 

specific examples. Developing understanding in this area enabled the teacher to draw on 

student generated conjectures and use these to engage students in justifying and 

generalising.  

In summary, the important implication of this study for both teachers and teacher 

educators is that if we want to develop classroom contexts in which early algebra is a focus 

and students engage in algebraic reasoning, we must take a multi-faceted approach that 
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addresses not only algebraic concepts but also task design and implementation as well as 

classroom and mathematical practices.   
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Effective lesson planning is a real challenge for many beginning teachers. This paper 

presents a case study of one such teacher, and the author’s efforts to support her in the 
planning process. Results show supporting the beginning teacher’s planning by (a) 

providing access to resources such as web-sites and teaching handbooks, (b) modelling, and 

(c) providing an explication of planning were insufficient to create substantive and 

necessary changes in the teacher’s planning during the period of research. Implications for 

supporting beginning teachers are considered. 

The New Zealand primary classroom is a multi-faceted, complex context in which 

beginning teachers are required to learn how to teach mathematics, a subject the New 

Zealand government places particular emphasis on (see Ministry of Education, 2004, 2007 

& 2009). Not only is the teaching and learning of mathematics just one of eight learning 

areas, curriculum expectations also require beginning teachers to learn how to (a) embed 

values such as excellence and inquiry; (b) develop key competencies such as thinking and 

relating to others; and (c) embody principles such as cultural diversity and inclusion within 

their day-to-day teaching practice (Ministry of Education, 2007). The everyday demands of 

classroom organisation and management are yet another important focus for the beginning 

teacher. It is thus understandable that identifying ways to support the learning of beginning 

teachers is seen as vital (Desimone, Hochberg, Porter, Polikoff, Schwartz & Johnson, 

2014). 

Planning and preparation are considered to have a central role in teacher practice 

(Neill, Fisher & Dingle, 2010; Roche, Clarke, Clarke & Sullivan, 2014). Planning is 

concerned with knowing what and how to teach (such as sequencing content), while 

preparation involves organisational elements including the getting and/or designing of 

materials (Fernandez & Cannon, 2005, as cited in Roche, Clarke, Clarke & Sullivan, 

2014). Roche, Clarke, Clarke and Sullivan (2014) suggest that, “… it is difficult to imagine 

that teachers of mathematics can perform their role without substantial planning” (p. 854). 

These researchers have proposed a theoretical framework for teacher planning. The 

framework begins with four ‘elements’. The first two of these interconnected elements 

include teachers checking (a) web and text resources, and (b) school and curriculum 

documents. The second set of two interconnected elements relates to teachers drawing on 

(c) their own and colleagues’ experience, and (d) assessment data. All of the information 

thus generated is used to establish specific learning goals, which in turn inform the 

selecting and sequencing of tasks and finally planning the teaching and assessment, 

including differentiating tasks for particular students (Roche, Clarke, Clarke & Sullivan, 

2014).  

There is great variation in the way teachers plan (John, 2006; Roche, Clarke, Clarke & 

Sullivan, 2014) reflecting teachers’ (and teacher educators’) varied perspectives about 

learning, teaching, curriculum and education. For example, John (2006) outlines how 

rationalistic, technical curriculum planning has been the dominant model underpinning 

lesson-planning in teacher education for many years. Within this model planning begins 

69

2015. In M. Marshman, V. Geiger, & A. Bennison (Eds.). Mathematics education in the margins
(Proceedings of the 38th annual conference of the Mathematics Education Research Group of Australasia),
pp. 69–76. Sunshine Coast: MERGA.

mailto:jlbailey@waikato.ac.nz


Bailey 
 

with the setting of objectives, and then follows a set order finishing with lesson evaluation. 

It exemplifies a focus on outcomes-based education (John, 2006). Given that such planning 

does not take into account the context or contingencies of teaching, John (2006) offers an 

alternative dialogical model where constructing the plan (as a product) is seen as secondary 

to the planning process (although the end product of a plan is not ignored). Roche, Clarke, 

Clarke and Sullivan (2014) also refer to the process of creating a plan as key, rather than 

the plan as a product. John furthers justifies his alternative planning model on the basis of 

learners being agents in their own learning. In his words, “…the negotiated nature of 

learning needs to be added to the planning equation if spontaneity and improvisation are to 

be allowed” (John, 2006, p. 487). The main core of the alternative model is fixed by the 

aims, objectives and goals of the plan, and around this are a large number of ‘nodes’ such 

as subject content, national curriculum, classroom control, and tasks and activities. Each of 

these in turn is subdivided; for example, factors relating to subject content include a 

consideration of conceptual understanding, representations, depth and breadth and schemes 

of work. Unlike the rationalistic model, John’s model does not privilege a fixed order for 

the process of planning, and recognises that the planning process will change as teachers 

become more experienced.  

Lesson planning is regarded as difficult for teachers to learn, with a problematic range 

of outcomes (John, 2006; Mutton, Hagger & Burn, 2011; Steketee & McNaught, 2007). 

John (2006), for instance, found that once novice teachers are planning on their own, their 

responses range from creativity to bewilderment and anxiety. More experienced teachers’ 

planning is likely to involve a concurrent consideration of a wide number of elements, 

rather than a linear progression of decision-making (John, 2006). However, a teacher’s 

level of experience is only one factor influencing a teacher’s planning. Others include 

depth of subject knowledge and pedagogical knowledge, teaching style, and perceptions 

and knowledge of pupils (Roche, Clarke, Clarke & Sullivan, 2014). Novice teachers are 

likely to engage in short-term planning, and generally describe planning as time-

consuming and complex (John, 2006; Mutton, Hagger & Burn, 2011). Once exposed to 

teaching, novices begin to realise that planning and preparation are concepts associated 

with unpredictability, flexibility and creativity (John, 2006). 

Research literature on effective mathematics teachers is mainly centred on teaching 

practices and tends not to emphasise planning (Roche, Clarke, Clarke & Sullivan, 2014). A 

recent publication by the New Zealand Education Review Office (2013) on developing a 

responsive curriculum for priority learners in mathematics also focuses on learning tasks 

and teaching strategies, referring to the planning aspect of teaching only briefly. Although 

it is argued that the described practices of effective teaching are likely to be underpinned 

by sound planning (Roche, Clarke, Clarke & Sullivan, 2014, p. 854) learning how to plan 

is critical to the development of teaching expertise (Mutton, Hagger & Burn, 2011). 

Teaching is a profession that involves continual learning by teachers and children alike 

(Gorodetsky & Barak, 2009), and it is recognised that pre-service teacher education 

provides just a beginning in learning to teach (Feiman-Nemser, 2012; Mutton, Hagger & 

Burn, 2011). There has been little research that explores how beginning teachers are best 

supported in the development of their planning expertise (Mutton, Hagger & Burn, 2011). 

Considering the complex demands made of beginning teachers and the importance of 

supporting their ongoing learning, the small study reported in this paper was designed to 

explore the research question: what form of support enables a beginning teacher to plan 

effectively in primary mathematics?  
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Methodology 

This small study occurred within a wider two-year project focused on raising school 

wide achievement in mathematics in a relatively large urban primary school (catering for 

children aged 5 – 11 years) within a middle socio-economic city suburb. This paper reports 

on data relating to the author, a university mathematics educator and researcher, working 

alongside a beginning teacher. The beginning teacher, Rebecca (a pseudonym), had 

completed a three-year Bachelor of Teaching degree that included a range of professional 

practice and curriculum papers. Within the three professional practice papers (one in each 

year of the degree) planning is discussed with a focus on theoretical aspects, for example, 

why planning is important. A range of models and formats are encountered during three 

practicum placements (one in each year of the degree) drawing on associate teacher’s 

expertise with planning. In curriculum papers key aspects such as learning intentions, 

progression of lessons, and activities are discussed. Within the one and a half mathematics 

education papers, two (of five) assignments included a planning requirement, one on lesson 

planning and the other on unit planning. Additional mathematics education assignments 

explored and assessed content knowledge, pedagogical content knowledge, and the use of 

worthwhile teaching activities for supporting learning in mathematics.  
The class Rebecca was teaching at the time of this study was a co-educational 

composite class of year three-four (seven and eight year-old) children. Rebecca was in her 

second year of teaching but it was her first year working with children this age. A group of 

nine children in the class were achieving below expected levels and regarded by the 

teacher as a concern. 

Over a period of two terms (terms three and four of the second year of the school-wide 

mathematics development project) Rebecca and the author met to discuss how Rebecca 

could provide effective support within her daily mathematics programme for the nine 

lower-achieving children. Informal discussions between Rebecca and the author took place 

in the classroom, usually after school, on nine occasions. One of these discussions was 

audio-taped; and field notes were recorded for all meetings. Rebecca also invited the 

author to observe her teaching, and during one lesson she asked the researcher to teach the 

class so she could observe a more experienced teacher in action. This led to a short series 

of lessons (over a two-week period) where both Rebecca and the author took turns in 

teaching, with each observing the other. The planning for these lessons was initially led by 

the author but later, ideas for planning and teaching were shared and discussed. 

Communication was also maintained via e-mails. Some of these were organisational, 

others extended face-to-face discussions and provided a forum for the sharing of ideas, and 

the asking and answering of questions. 

For four weeks at the beginning of the following year (an informal continuation of the 

two year project) the author and Rebecca kept in touch via e-mail sharing ideas about how 

the learning of another group of year three-four children not achieving at expected levels 

could be supported in a small group environment, but this time outside of the normal 

mathematics programme. The research was curtailed when ill-health led to Rebecca 

leaving teaching for the remainder of the year. 

Data include e-mail communications and field notes of oral discussions; the author’s 

planning for the lessons she taught (within a two-week number unit); planning shared by 

the teacher; and field notes of all taught and observed teaching sessions. An additional 

electronic journal recording the author’s thinking was kept throughout the research period, 

and also maintained as data were analysed. This process aligns with the ideas of St. Pierre 

(2011) who states data are collected during thinking and writing and suggests, “if we don’t 
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read the theoretical and philosophical literature, we have nothing much to think with 

during analysis except normalised discourses that seldom explain the way things are” (St. 

Pierre, 2011, p. 614). 

Data analysis has occurred in the reading, re-reading, listening to audio-tapes, some 

transcribing of the audio-tapes, chronological organising of data, and the author’s ongoing 

thinking and writing, and reading of literature (St. Pierre, 2011). An emergent analytical 

approach (Borko, Liston and Whitcomb, 2007) was also employed. As data were read and 

re-read, and audio-tapes listened to, the author made notes about issues and themes that 

emerged from the data. One of these was ‘planning’. As this issue emerged, all data were 

re-read to explicitly search for all references made to planning by the researcher and 

teacher, and analyse these against the useful framework for teacher planning proposed by 

Roche, Clarke, Clarke and Sullivan (2014). Thus evidence was sought of the beginning 

teacher: (a) checking the web and texts, and (b) school and curriculum documents as 

planning resources; (c) drawing on the teacher’s own and colleagues’ experiences; (d) 

drawing on assessment data; (e) establishing specific learning goals; (f) selecting and 

sequencing tasks; and (g) planning the teaching and assessment, including differentiating 

tasks. 

Results and Discussion 

Checking School or Web Documents, Teacher Resources and/or Student Texts 
The resource Rebecca most relied on for her planning was a unit plan, consisting of a 

list of topics and associated activity sheets, provided by another teacher within her 

syndicate. She explained that as a beginning teacher she would be given activities for 

teaching and the colleague responsible for planning the unit would find these. In Rebecca’s 

words, the teacher “who plans the unit finds all the resources with them”. Rebecca also 

said that available text-books were not helpful because they were written to align with a 

nation-wide mathematics project that was not followed in her school. She mentioned that, 

“the text books which aren’t very helpful… not very helpful… because these pretty much 

align with the … project, but of course we don’t go near there, and I struggle to match 

them all up again”. This comment suggests it was difficult for Rebecca to reconcile the 

activities in the textbooks with the learning needs of the children in her class. She did, 

however, refer to using the ‘Figure It Out” series (a Ministry of Education publication of 

approximately 80-90 separate titles for supporting mathematics teaching and learning from 

levels 2-5 of the New Zealand Curriculum) and also explained that she usually “forgets” 

about the teacher resource website, nzmaths.co.nz for planning support. A teacher resource 

she did find helpful was a handbook that listed and briefly outlined ideas children at each 

level of the curriculum are expected to learn (see Biddulph, 2011). She said,  

It’s all off the check-list … . By the end of year 4… because we know the year 4s are going to be 
there. And the year 3s will have got a good grounding and really have it drilled in next year.   

Of the planning resources referred to in Roche, Clarke, Clarke and Sullivan’s (2014) 

framework, Rebecca accessed only some of these, namely, school documents in the form 

of the syndicate unit plan, and some teacher resources. Web documents and student 

textbooks were not consulted on a regular basis or were regarded as unhelpful.  

72



Bailey 
 

 

 Examining Curriculum Content Descriptions to Identify the Important Idea(s) 
Rebecca did not make any references to curriculum expectations within the recorded 

conversations, or in any of the written planning she shared during the research period. She 

seemed unaware that the handbook she found useful was a detailed clarification of 

curriculum requirements. Thus, there was no evident link in the teacher’s planning (oral or 

written) to the framework element, “examining curriculum content descriptions to identify 

the important ideas” (Roche, Clarke, Clarke and Sullivan, 2014, p.862). 

Drawing on Experience (Self and Colleagues) 
Teachers drawing on their own and others’ experience is another aspect of the planning 

framework proposed by Roche, Clarke, Clarke and Sullivan (2014). As a beginning teacher 

Rebecca clearly had limited experience on which to draw. She recognised this, and was 

also aware of the possibilities of drawing on collegial support. She explained that support, 

“would be helpful cos I’ve really never gone back that far. Last year I had senior kids…”.  
Rebecca was open and keen to learn all she could to more effectively cater for all of the 

children’s learning needs in her class. She frequently asked questions such as, “How long 

would you spend on …?”, and her willingness to learn and receive guidance from 

colleagues was exemplified by her comment, “I’m just really wanting to know where to go 

from here”. Rebecca was appreciative of working alongside more experienced colleagues. 

In one conversation, she stated, “I found it very beneficial watching you today so I would 

love it if you would like to teach tomorrow… . Would it be ok if you took the whole lesson 

then I can see the sequence that you go with?”. She referred to a similar process with her 

more experienced syndicate colleagues as being a supportive part of her learning to teach. 

Drawing on Assessment of Student Readiness 
Rebecca had assessed and identified children who were not achieving at expected 

levels. One-to-one interviews conducted by the author during the period of research 

verified Rebecca’s previously determined assessment of all nine children. Assessment 

tools used by Rebecca included the standardised ‘Progressive Achievement Tests’ 

conducted at the beginning of the school year; and her own ongoing overall teacher 

judgments of the children’s learning. These were based on informal observations of the 

children’s learning, and children’s more formal written assessments. 

Establishing Specific Learning Goals 
Rebecca appeared to find it difficult to establish specific learning goals. In one 

conversation she said, “It will be fine once I get a clear idea of what… I think I need a 

check-list of basically what they need to know… basically teach to the test”. Rebecca 

actually already had access to a check-list of what children need to learn at years 3-4, and 

made reference to this resource a little later in the same conversation. While the list 

outlined concepts and ideas to be taught, this on its own did not appear to be enough to 

support Rebecca in determining the finer details of planning and teaching. Six months later 

there was still a similar state of uncertainty about what to teach, and how to go about it. 

She wrote in an e-mail:  

I would appreciate any help possible really. I feel like im (sic) kind of doing this blind. I have 

assessed the children’s thinking ….. My year 3's (5 of them) need the following help….. My year 

4's (5 of them) need the following help…Now I have this information I am stuck on what order to 

do it in? 

73



Bailey 
 

These challenges in establishing specific learning goals when planning lessons were 

also evident in the observed taught lessons, with ideas being introduced that were not 

closely connected to what appeared to be the main idea of the lesson. For example, in a 

lesson about the number of tens in two-digit numbers (eg. there are 9 tens in 93) Rebecca 

began listing different combinations of coins to make a particular amount ($4), and also 

noted the colours of different dollar bills. While she recognised and verbally acknowledged 

to the children that she had lost focus, there remained an overall lack of clarity or purpose 

within that particular lesson. 

A similar lack of clarity about specific learning goals was evident in Rebecca’s oral 

and written communications. Typical of the challenge in articulating the ideas being taught 

is this comment, “I think that last group has definitely grasped the concept of working with 

under $100 and I think the next step would be working towards the numbers in the 

hundreds”. While there is evidence of Rebecca learning to sequence ideas the actual idea 

being taught is not clearly expressed, and often, she was not able to move beyond re-

stating an idea from the list of ideas being taught to the children. 

 Selecting and Sequencing Tasks including adapting them for your Students 
The next aspect of the framework proposed by Roche, Clarke, Clarke and Sullivan 

(2014) focuses on the selecting, sequencing and adapting of tasks. Rebecca found it 

challenging to do this beyond following the list of activities and worksheets that were 

provided with the syndicate plan. Some progress began to be made with sequencing ideas 

but this was not secure six months after the beginning of the research. For example, after 

assessing the second group of children achieving below expected levels (at the beginning 

of the second year of the research) she wrote, “now I have this information I am stuck on 

what order to do it in? I have started the year 3's on counting in 2's which will lead to 

doubles and odd and even numbers”.  

Some progress was also made with selecting tasks. Two months into the research 

period she wrote, “Tomorrow I plan to carry on with doubles to 20 and I have found some 

activities on nz.maths [a web-site] to support this” indicating some move towards being 

able to independently locate tasks for teaching and learning. However, this was not secure, 

as indicated by her writing at four months, “I am after as much advice as possible in 

regards to activities and equipment that I can use”. Later on, at about six months, similar 

comments and requests were being made. For example, “I am still working on making 10 

with the year four group so I can move on to addition and subtraction but they can not 

understand the concept! Do you have any ideas on efficient ways of teaching this?”. 

Planning the Teaching and Assessment including Differentiating for Particular 
Students: 

Rebecca was aware early on in the research period that differentiating tasks would be 

one way of supporting this group of children’s particular learning needs. She initially 

wondered about having to plan separate programmes saying,  

I’m going to have to go right back, aren’t I with them? So, do I carry on with my normal 

programme with the majority but have this as completely separate? Not touch on the whole 

syndicate’s plan, and not even touch those on them…..   

After discussions and observing the author’s planning and teaching of the whole class 

followed by the use of differentiated tasks, Rebecca was keen to trial this way of catering 
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for the learning needs of the whole class. She later commented that it appeared to be a 

manageable way of catering for the diversity in learning needs.  

During the research the author shared her written planning with Rebecca, and during 

the audio-recorded discussion, and later on in email conversations, explications and 

modelling of the planning process was provided. During these the author outlined key 

elements of what might be helpful to consider when planning including identifying the key 

idea(s) that children could learn, thinking about the sequencing of ideas, planning key 

questions that could be asked of the children to support their learning, carefully choosing 

appropriate numbers for equations, as well as considering what equipment could be used. 

Tasks and the differentiating of these to cater for diversity in learning needs were also 

discussed. On one occasion Rebecca shared her teaching ‘notes’ with the author. These 

notes included an explanation of an activity, modelled on some of the author’s previous 

planning, and were annotated with the children’s learning over a period of two days.  All 

other written communications listed the ideas Rebecca wanted the children to learn, but 

beyond this she did not appear to formalise or extend the planning provided in the unit. 

Several respectful requests asking for Rebecca’s planning, with the hope of it informing 

and guiding discussions, were made during the research period, but nothing further was 

offered. It must be acknowledged that much teacher planning is done mentally (Roche, 

Clarke, Clarke and Sullivan, 2014), and perhaps this was the case for Rebecca. Learning to 

make pre-existing plans and schemes for teaching ‘one’s own’ is also an important aspect 

of learning to plan (Mutton, Hagger and Burn, 2011), and it appears this is an aspect that 

Rebecca could be supported to develop. 

Conclusion and recommendations: 

When analysing Rebecca’s planning practice against the framework proposed by 

Roche, Clarke, Clarke and Sullivan (2014) it is evident that some aspects were present in 

her planning. She was able to draw on assessment data of student readiness; used the unit 

plan written by another teacher, and was aware of and consulted an appropriate teacher 

handbook outlining the lists of concepts/ideas to be taught. Remaining aspects of the 

framework proposed by Roche et. al. were absent. Neither the provision of numerous 

resources (by the school; and during discussions with the author) including handbooks, 

web-sites and various text books nor an explication and sharing of the planning process 

were enough to support Rebecca, within the six-month research period, to confidently and 

consistently address the questions she had about what to teach, and how to sequence the 

ideas the children needed to learn. Rebecca’s focus on activities rather than identifying 

mathematical learning goals or objectives is consistent with findings by Roche et.al (2014) 

who determined that teachers did not rate ‘establishing specific learning goals’ as a high 

priority.  

Given the importance of planning on what happens in the classroom (Roche, Clarke, 

Clarke & Sullivan, 2014), and the contention that “it is through planning that teachers are 

able to learn about teaching” (Mutton, Hagger & Burn, 2011, p. 399) it is possible that 

engaging in more planning and/or exploring alternative models of planning such as that 

proposed by John (2006), may have enhanced Rebecca’s learning about meeting the needs 

of all children in her class. Bearing in mind the clear limitations of drawing conclusions 

from a small and truncated case study (due to the teacher’s ill health), it appears the 

provision of resources such as text-books and web-sites on their own were not sufficient to 

support a beginning teacher’s planning. It seems that at least some beginning teachers need 

more specialised and longer-term support to establish the wider understanding and 
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expertise needed to plan, including establishing specific learning goals. This is consistent 

with the findings of Desimone, Hochberg, Porter, Polikoff, Schwartz and Johnson (2014) 

who point towards the need for the support of beginning teachers to focus on deeper 

understandings of the teaching process rather than simply being provided with resources. 

The framework proposed by Roche et. al. (2014) could be a useful starting point to guide 

planning, with a particular focus on encouraging beginning teachers to check school, 

curriculum and web documents and other relevant teacher resources in order to establish 

specific learning goals, select and sequence tasks and plan for teaching and assessment 

including suitable differentiation. This is a complex task, particularly for the beginning 

teacher, unfamiliar with each and every mathematics unit they teach.  
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Analysis of mathematical notations must consider both syntactical aspects of symbols and 
the underpinning mathematical concept(s) conveyed. We argue that the construct of syntax 
template provides a theoretical framework to analyse undergraduate mathematics students’ 
written solutions, where we have identified several types of symbol-related errors. A focus 
on syntax templates may address the under-developed symbol sense of many tertiary 
mathematics students, resulting in greater mathematics success, and with the potential to 
improve retention rates in mathematics. 

Introduction 
Mathematics derives much of its power from the use of symbols (Arcavi, 2005), but 

research at secondary level has shown that their conciseness and abstraction can be a 
barrier to learning (Pierce, Stacey, & Bardini, 2010; MacGregor & Stacey, 1997). Since 
symbols form the basis of mathematical language, mathematical fluency, like fluency in 
any language, requires proficiency with symbols, which we call symbolic literacy. Under 
the notion of symbolic literacy lies the notion of symbol sense described by Arcavi (1994, 
2005), which includes among other components the ability to manipulate, read through 
symbolic expressions, realise that symbols can play different roles in different contexts 
(this will be emphasised throughout this paper), and develop an intuitive feel for those 
differences. We have privileged the term literacy in order to convey the idea of 
mathematics as a language of discourse (Usiskin, 2012) that can take place in oral or 
written form.  

Mathematics is, among its many other attributes, a language of discourse. It is both a written 
language and a spoken language, for – particularly in school mathematics–we have words for 
virtually all the symbols. Familiarity with this language is a precursor to all understanding. (Usiskin, 
2012, p. 4) 

The notion of symbolic literacy encompasses the understanding of what we believe to 
be one major feature of mathematical development (see also Usiskin, 1996; Rubenstein 
and Thompson, 2001) and is at the core of our current studies (e.g., Bardini & Pierce, 
2015). However, for the purpose of this paper we will focus on its written aspects since this 
feature is the nature of our data. 

Quinnell and Carter (2012) note that while inaccuracies in spelling and word usage in 
everyday English text usually do not prevent the reader from understanding the text, even 
small errors in the use of mathematical symbols may have a major impact on making 
meaning of the written mathematics. Take, at a very basic level, the common error of 
omission or misuse of parentheses. Students do not always recognise, for example, that 

( )21−  and 21−  have different meanings or that 
2

2 6 4⎡ ⎤+ ×⎣ ⎦ and ( )
2

2 6 4⎡ ⎤+ ×⎣ ⎦  do not mean 

the same and do not have the same value.  
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At university, not only does mathematics become much more symbolic, but its writing 
is more subtle and requires increased flexibility from the reader; we anticipate that many 
students may have difficulty with the new and more intense ways in which symbols are 
used at university, referred to as symbol load in our previous work (Bardini & Pierce, 
2015). In a study involving first year university physics students (Torigoe & Gladding, 
2007), it was found that students’ performance is highly correlated to their understanding 
of symbols. We anticipate that similar outcomes apply to other mathematical sciences at 
university, with the consequence that students may not understand the mathematical 
content as well as they did at school, potentially leading to a decrease in positive affect, 
which in turn might discourage enrolment in further mathematical subjects. 

As a first step towards investigating these larger questions our aim is to provide tools 
that enable us to better examine students’ understanding and use of mathematical symbols 
and therefore gain a better comprehension of students’ symbolic literacy. In the following 
sections we will present the frameworks underlying the construct of such tools and show 
how these enable us to gain a fine-grained description of students’ understanding of 
symbols, in particular through their writings.    

Theoretical Framework 
Skemp (1982) identified two levels of language, distinguishing between the surface 

structures (syntax) of mathematical symbol-systems and the deep structures that embody 
the meaning of a mathematical communication—the mathematical ideas themselves, and 
their relationships. 

Serfati (2005) also provides us with an epistemological approach to mathematical 
notations that takes into account both the syntactical aspect of a symbol and the 
underpinning mathematical concept(s) conveyed. Note that we will use the term symbol 
throughout this paper, but in this particular instance the term sign could be thought to be 
more appropriate (the limitations of this paper do not allow us to fully discuss this).  

Following Serfati’s work we can analyse symbolic expressions by considering each of 
their components and distinguishing three features:  

• the materiality. The materiality of a symbol focuses on its physical attributes (what 
it looks like), including the category the symbol belongs to (a letter, a numeral, a 
specific shape, etc.). 

• the syntax. The syntax of a symbol relates to the rules it must obey in the symbolic 
writing. This includes the number of operands for symbols standing for operators 
but also the legitimacy of a symbol being juxtaposed to adjacent symbols. 

• the meaning. The meaning of the symbol is the concept being conveyed (the 
representation of an unknown, of a given operation, etc.). Meaning for Serfati is 
that commonly agreed by the community of mathematicians and it does not refer to 
a person’s individual understanding. 

To work with a mathematical symbol, one not only has to recognise it in the text (i.e., 
through its materiality), but to select the right meaning and appropriate syntax in that 
context, which sometimes has to be interpreted very locally (e.g.,, the symbol ‘–’ in front 
of a number, between matrices). 

Since we are considering students’ symbolic literacy from a writing perspective, the 
syntactical aspect of mathematical expressions plays a substantial role. Sherin (1996) 
provides an alternative yet closely related framework to Serfati’s notion of syntax 
(originally called combinatorial syntax in Serfati 2005) for the syntactical aspect of 
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mathematical expressions. In a study with third semester engineering students, Sherin 
asserted that particular arrangements of symbols in physics equations express particular 
meanings for students, allowing them to understand the equations in a relatively deep 
manner. He introduces the concept of symbol patterns, which can be understood as 
templates for the arrangement of symbols. As the students developed physics expertise, 
they acquired knowledge elements that Sherin (1996) refers to as symbolic forms 
consisting of two components: a symbol template, for example □ = □, and a conceptual 
schema. The schema is the idea to be expressed and the symbol template specifies how that 
idea is written in symbols, so that students learn to associate meaning with certain 
mathematical structures. Sherin’s symbolic forms bear resemblance to Tall’s (2001) 
procepts.  

Methodology 
The research described in this paper formed part of a preliminary study of the extent to 

which first year university mathematics students experience symbol overload due both to 
increased symbol intensity and their lack of familiarity with the symbols themselves. This 
preliminary study led to a current three-year project on this matter funded by the Australian 
Research Council.  

The participants (21 in total) were a tutorial class of first semester undergraduate 
students enrolled in Calculus 1 in a major Australian university. Data was collected during 
normal weekly tutorials in which students completed worksheet exercises and problems 
based on their current lecture topics. It was the normal practice in these tutorials for 
students to work, standing in pairs or groups, writing their solutions on whiteboards. The 
tutor moved around the tutorial room, checking students’ progress, pointing out errors in 
the students’ solutions and suggesting appropriate methods when students were unsure 
how to proceed. As observers, the authors of this paper were able to photograph students’ 
solutions but were not able to converse with them as this could disturb the progress of the 
students’ work. These photographs constituted the data. The students’ written solutions 
captured in these photographs were analysed in order to look for evidence of facets of their 
symbolic literacy through identified errors in particular. This paper focuses on students’ 
solutions to some exercise questions during one of two tutorials relating to complex 
numbers (tutorials 7 and 8, end of April 2014).  

Results and Discussion 
The student solutions included below have been selected as representative illustrations 

of typical errors made by the students. These will be analysed by both considering Serfati’s 
(2005) notions of materiality, syntax, and meaning and by incorporating the idea of symbol 
template (Sherin 1996) that we will rather call syntax template so to ensure coherence with 
Serfati’s framework. For most of these students, the week of tutorial 7, which had included 
two lectures on the topic, was their first encounter with complex numbers. The materiality, 
that is, the shapes of the symbols and their combination with other symbols, were all 
familiar from school algebra but some of the syntax and meaning were not. For example 
while students were already familiar with Latin letters standing for unknowns, variables, 
etc., the letter i in a complex number takes a very precise and new meaning. Also, while 
square roots were so far applicable to positive numbers, here the syntax of square root is 
expanded to include negative numbers. 
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It was clear that every example in these practice exercises involved complex numbers 
so students were focusing on applying their new learning. In these circumstances it seems 
that errors in their established templates for syntax were exposed. Illustrations of such 
errors come from students’ responses to questions in tutorial 7 and are detailed in what 
follows. 

Illustration 1 
Question 1 of tutorial 7 asked: “Simplify the following, expressing your answers in 

Cartesian form a + ib where a and b are real numbers. (a) −49 ; (b) −𝑖!”. Figure 1 shows 
the solution to those items given by two groups of students. 
 

Figure 1. Answers to Question 1a and 1b. 

Figure 1a shows the solution to Question 1a, where students have omitted to take the 
square root of 49, resulting in an incorrect answer of 49i instead of 7i. We conjecture that 
this is not a mere case of having forgotten (a common response from students and, we 
believe, a likely reply from these students had we had the opportunity to query them). We 
believe that one potential source for this error lies in the difference in meanings that a same 
materiality of a symbol (here ‘   ’) conveys. So far, students have always decoded ‘   ’ as 
meaning the process take the square root of along with its specific properties (the same 
that apply for exponents). With the introduction of the imaginary unit i with the property i2 
= –1, ‘ −1’ is no longer considered as a square root of or, in other words, that its syntax 
template is of the form  , rather it has to be considered as one block □, and perceived 
as the symbolic representation of i. Figure 1a shows that the students did this successfully, 
moving from −1  (third line) to i (fourth line). However, it seems that the students at the 
same time see the whole sentence ‘ −1× 49’ with the syntax template  ×  and 
apply (wrongly) the properties for square roots, in particular the one that says that if you 
multiply two square roots (provided the arguments are the same) then they cancel out. 

In Figure 1b, the students have incorrectly evaluated 5
1−  as –i instead of i. Similarly 

to students’ response shown in 1a, they have correctly translated the symbol i into the 
symbol block −1, but this seems to be what causes them to move incorrectly from the 
second line to the third. Having considered −1 as one element, this might have led 
students to now view − −1

!
 with the syntax template negative to an odd power is 

negative and too quickly applying this rule to what the block −1 means (this thinking is 
apparent from the usage of brackets in ‘(–i)’), leading to the incorrect intermediary result 
‘–(–i)’.   

 
                                    a 

 
             b 
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Illustration 2 
Equally interesting to looking at students’ answers is analysing the questions 

themselves, since being symbolically literate also means, in some sense, to appropriately 
read and make meaning of what is asked, including having to sometimes decode hidden 
messages in the stimulus.   

In Question 4b of the tutorial, students were asked: “Find the modulus of the following 
complex numbers without multiplying into Cartesian form: 
!!!(!!!!)(!!!!)
(!!!!)(!!!!)

” 

Question 1, for the tutorial, required students to flexibly navigate between different 
meanings of a symbol with the same materiality (   ); that is, to easily translate square roots 
in terms of imaginary units as well as to use the fact that i = −1. In order to successfully 
answer Question 4, students must, on the contrary, lock the meaning of i as a symbol 
standing for the imaginary unit, without further considering its intrinsic property. Should 
the students replace i by −1, that would indeed lead them to the numerical dead end 
!!"# !!!!"
!" !!!!"

. In fact (and as a consequence), the whole sentence, for example, 3–7i is now 
to be seen as a whole. This is reinforced by the prompt in the stimulus without multiplying 
into Cartesian form. Because i has the same syntax as any other letter, one might be 
tempted to apply the distributive law to (3–7i)(2+3i). Whilst applying the distributive law 
eventually leads to the expected answer (5/2), underlying the question is the need to work 
with properties of the modulus of complex numbers (the modulus of the product of 
complex numbers). The need to see the sentence as a whole goes beyond the syntactical 
interpretation just described (i.e., to not apply algebraic manipulations as one would for 
syntactically similar expressions). This specific item required going (or at least was 
intended to go) beyond the syntax template  
‘□ – □i’ and rather view it as a complex number. It is the context (complex numbers) and 
certainly the mathematical conventions (except if we are in electricity or electronics 
courses where j stands for the imaginary unit) that guide the interpretation of the syntax. 
More importantly, it is the context that will signal an efficient approach to finding the 
appropriate answer. This will be discussed below.  

Figure 2 shows the approach taken by two groups of students in Question 4. First of all, 
let us note that students have indeed recognised each element of the expression as a given 
complex number as they then immediately start by (correctly) applying the definition of 
the modulus of complex numbers and their properties. They then carry out the correct 
mathematical procedures to finally provide numerical answers. The students have certainly 
failed to notice that 13 is a factor of 52, hence not recognising that the fraction 13/52 is 
equivalent to ¼, yet their answer is mathematically correct. So where is the problem (if 
any)?  
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a 

 
b 

Figure 2. Unsimplified numerical answers. 

At a basic level, we expected students to question their approach: is it reasonable, at 
this stage of their mathematical experience that the question posed is meant to test the 
ability of manipulating square roots? Also, students seem to blindly manipulate 
mathematical expressions, without ever questioning their meaning in context (certainly a 
magnitude of a complex number can take any numerical positive value, but we expected 
that students would have used the meaning of the original expression–the modulus of the 
complex number–to try and make sense of their final answer and, therefore, prompt them 
to simplify the result). But the issue is less about students providing a mathematically valid 
answer than it is about them having not fully unravelled the subtleties of the question, 
including reading beyond the mere syntax of the mathematical expression provided. In fact, 
a successful and more efficient solution to the problem requires interpreting the modulus of 
complex numbers without necessarily having recourse to the Pythagorean formula, and to 
rather interpret the meaning of, for example, 3− 7𝑖  (and all other expressions) in the 
geometrical sense. Having done so, students would have been able to cancel out pairs of 
moduli (e.g., 3− 7𝑖  and 7+ 3𝑖 ) and come up with a very much more efficient solution. 
We see in this example to the complexity of being able to navigate between meanings of 
expressions with same materiality and we anticipate this is even more problematic if 
students are too often exposed to drill types of exercises, as these students’ responses seem 
to suggest.    

Illustration 3 
Question 5 of the tutorial asked:  

     “Find an argumentθ , where −𝜋 < 𝜃 ≤ 𝜋, for the following complex numbers. For part 
(iii), use facts about the argument of a product or quotient, rather that simplifying the 
expression. 
(a) (i) –5 (ii) 1 + i  (iii) –5(1 + i) 
(b) ( i) –2 + 2i  (ii) –1– 3i (iii) !!!!!

!!! !!
” 

Taking a generic complex number, a bi+ , the appropriate symbolic form for the 

argument θ is 1tan b
a

θ −=  (or arctan b
a

θ = ), taking into account, of course, the signs of a 

and b to determine the appropriate angle. The students whose solutions are shown in 
Figures 3a, 3b, and 3c have each obtained the correct values for the arguments but all three 
show flaws in their written responses.  
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a b c 

Figure 3. Incorrect symbol template and disregard for meaning of equals sign. 

First is the confusion between the tangent and the inverse operation, leading to an 
inappropriate use of the syntax template for the tangent of an angle. In fact, as tautological 
as it may seem, one has to note that when considering a syntax template, not only are we 
considering it as a template (much as equation editors in document processing software) 
but also the syntactical rules that apply for each of its elements (precisely what Serfati 
2005 called combinatorial syntax). It is almost as if each of the empty boxes of the 
template come with a precise domain (in the functional sense). So, for example, the symbol 
   has the template of the form  , where the empty box has to be filled by a number 

(given or unknown). Interestingly enough, some of these domains evolve or change 
depending on the mathematical context where they are used. In the case of   , we have 
seen that, while we remain within the set of real numbers ℝ, only positive numbers can fill 
the empty box. Once we incorporate the set of complex numbers ℂ, this restriction is no 
longer valid and the template for the same materiality’ (loosely described) then gains an 
extended domain. Students’ responses in Figure 3 suggest that students do not consider the 
syntax of expressions when it comes to the domain of the template for  tan , not realising 
that tan prompts for its argument to be an angle. It would seem that students should be 
encouraged to verbalise their symbolic expressions, stating orally that the argument is 
equal to the angle whose tangent is (see Figure 1b) and linking this with the appropriate 
syntax template. 

The students’ syntax, if read aloud, does not make sense. They seem to be working out 
the answer without expecting that the symbols they are writing convey a meaning to the 
reader. Their responses suggest they are using ‘=’ to say “and then I did something (the 
reader must guess what that was) and the result is”. This and the result is meaning of the 
‘=’ sign dates from primary school and is deeply set in students’ thinking. The notion of 
expecting symbols to have meaning and a habit of checking the meaning of the symbols 
used is an aspect of working mathematically that needs to be cultured at all levels: primary, 
seconday, and tertiary. The work shown in Figures 3a, b, and c suggests that students have 
thought about the meaning of the symbols, indicating the size and position of the angle 
locating the complex number on the Argand plane, but have only taken this into 
consideration once they had finished their calculations.  

Conclusions and Implications 
The examples that we have chosen illustrate the value of following Serfati’s (2005) 

approach to analysing mathematical notation that takes into account both the syntactical 
aspect of a symbol and also the underpinning mathematical concept(s) conveyed.  
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First, careful consideration of materiality is important for both teachers and students. 
The choice of letters and the form of the symbol act as a cue to the student in making 
choices about efficient solution methods (Illustration 2). Teachers need to help their 
students learn to recognise such cues and students need to take a moment to consider the 
makeup of each symbol rather than relying on unthinking recognition of syntax templates.  

Secondly, in the examples shown above it is clear that the students’ focus is on the new 
aspects of working with complex numbers. We can see them trying to employ new syntax 
templates but either failing to look at familiar materiality in a new way or, in a 
combination of new and old, misapplying old syntax templates. The notion of syntax 
templates can help teachers identify likely causes for students’ errors and provides a way 
of talking about the structure and meaning of symbols where in one context students need 
to recognise a symbol as indicating a process but in another identifying a combination 
signifying a concept (Illustration 1)(Tall et al., 2001). 

Thirdly, Illustration 3 highlights what happens when students do not expect 
mathematics to be read with logical meaning. Here the lack of conventional templates, 
where ‘=’ indicates that the expressions prior and following are equal, leave the reader 
guessing as to the meaning intended.  

Mathematical literacy (Usiskin, 2012) may be promoted through contemplation of 
syntax templates by both teachers and students.  
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We assume many things when considering our practice, but our assumptions limit what we 

do. In this theoretical/philosophical paper I consider some assumptions that relate to our 

work. My purpose is to stimulate a debate, a search for alternatives, and to help us improve 

mathematics education by influencing our future curriculum documents and practice. 

Many assumptions are made about mathematics education practice at all levels of 

education; these need to be identified and questioned as some are no longer appropriate. 

They relate to our aims, and our conceptions of mathematics, curriculum, teaching and 

learning, thinking, and assessment; and problematising these is the basis of this paper.  

Educational Aims 

The taken-for-granted aim of many who teach mathematics is to follow a prescribed 

curriculum knowing that learners will be assessed summatively. This may seem cynical, 

but it is also the view of many students, parents, and future employers. It assumes that 

summative assessment is more important than diagnostic, formative, or self-assessment. 

While many able students often find such assessment tasks trivial, less-able students learn 

from such assessment that they are not mathematically capable.  

But, putting assessments to the side for the moment, what are our general educational 

aims and are these relevant for mathematics? Early in my teaching my ideas were 

influenced by a set of aims published by our teacher organisation (Munro, 1969, p. 1), 

these were “the urge to enquire, concern for others, and desire for self respect.” 

These hardly changed when our new curriculum (Ministry of Education, 2007, p. 12) 

identified five key competencies, “thinking, using language, symbols and text, managing 

self, relating to others, participating and contributing,” which I interpreted as aims. For me 

both sets of aims are similar and relate to mathematics and to other subjects. For me, 

thinking includes caring thinking which implies: concern for and relating to other people 

and living things, and caring for and respecting self. Accepting and interpreting these aims, 

our task is not to prepare students for the future by teaching for assessment, but: to foster 

student enquiry, thinking, and self-management. And, as enquiry involves creative and 

critical thinking, and self-management involves metacognitive thinking, these aims 

become one key aim, thinking, but it is rarely implemented.  

Defining Mathematics 

Everyone knows what mathematics is, but it is difficult to define without words such as 

arithmetic, geometry, algebra, statistics, … This is evident with dictionary definitions, for 

example: “Mathematics is a group of related sciences including algebra, geometry, and 

calculus, which use a specialised notation to study number, quantity, shape and space.” 

But, is mathematics a subject formed by a partitioning of knowledge into disciplines, 

subjects, topics and sub-topics, or, is knowledge holistic? For me all knowledge is 

interrelated, which implies that when teaching a subject we should emphasise links with 

other subjects. I see mathematics as the study of relations, relations are sets of ordered 
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pairs, and all operations are relations where the first element of the ordered pair is itself 

another ordered pair, e.g.,  + = {((2, 3), 5), ((1, 4), 5), …}. This definition from the ‘new 

maths’ of the 1960s as presented by Papy and Papy (1963/68, 1971) unifies mathematics; 

and I believe we need to integrate mathematics with other subjects whenever possible.  

Curriculum 

Rather than using thinking (or educational aims) as a basis for planning, teachers often 

begin with the curriculum which has been defined as ‘all that is planned for the classroom’, 

where the classroom may be at any level of formal or informal education, or in the 

classroom of life where learning is determined by and unique to the learner. Within each 

level of formal education curriculum documents have been written, these include: 

 the regional level (national/state/district curriculum; or assessment syllabus); 

 the institutional level (school scheme/institution curriculum); 

 the individual teacher level (reinterpretation of curriculum to ‘suit’ the students) 

 the learner level (student-constructed learnt curriculum). 

The traditional model for curriculum was derived from the ‘tree of knowledge’ in the 

Bible (Genesis, 2:17). This metaphor implies a knowledge structure with the trunk as the 

fundamental ideas, branches as the disciplines, and on to small branches, twigs and leaves.  

An alternative is a rhizome metaphor from Deleuze and Guattari (2004/1980). This is 

based on the notion from botany—a rhizome being a plant with roots that grow 

underground that sends up shoots all over the place. These shoots seem disconnected, but 

are linked. What we learn seems like this; we learn little bits first and the connections 

come later.  

Both metaphors imply organising curriculum by structuring knowledge. The tree 

implies a formal organisation, while the rhizome is less rigid, each shoot represents a topic 

and only after numerous topics have been explored will the connected structure of our 

subject emerge. With both metaphors knowledge is the goal—the ‘content’ rather than the 

‘context’ for learning. With these metaphors the assumption is that some specific 

knowledge needs to be learnt by everyone regardless of beliefs, backgrounds, and interest.  

Considering curriculum more radically involves thinking of knowledge and learning as 

a complex/living/emerging system. Every aspect is connected and interacts with every 

other aspect and complexity implies that all connections and interactions are unpredictable. 

This is based on the work of the Maturana and Varela (1987) who saw living and learning 

as a complex system, and said ‘to live is to learn’; it also explains how other living things 

learn (e.g., Anathaswamy, 2014; Birkhead, 2012; Chamovitz, 2012). From this perspective 

all learning is connected, knowing (epistemology) is inseparable from being (ontology); we 

are always learning, and our task as educators is to enrich the living-learning process. 

However, what is learnt differs for individuals because of differing degrees of awareness, 

ability to ‘be’ in the learning moment, prior knowledge, attentiveness, and ability to make 

sense of what is said; and learning occurs consciously and subconsciously with each 

learner developing a unique web of understanding that grows in complexity over time.  

Teaching and Learning 

From this ‘living is learning’ perspective, teachers are merely catalysts for learning; but 

powerful catalysts who influence the direction, speed, and depth of learning. Traditionally 

teachers based their work on learning theories; and theories like theorems are based on 
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assumptions that are not made explicit, so practitioners are often not aware of what they 

are assuming. I have a list of over 160 theories, though none start with X; they cannot all be 

true as they contain elements that are contradictory; Table 1 is an abbreviated version of it: 

Table 1  

Theories related to learning; what is the X-factor? 

Theories related to learning 

Abstraction theory Job-based learning Self-directed learning 

Behaviourism Kinaesthetic education Trial and error 

Communities of practice Lecturing Unconscious learning 

Drill and practice Mastery learning Vocational-based learning 

Enactivism  Narrative pedagogy Women’s ways of knowing 

Friere’s critical education Observation-based learning X  ???? 

Goal-based learning Programmed instruction Yin-yang learning 

Holistic learning Question-based learning Zone of proximal development 

Imitative learning Radical constructivism  

It is useful to think about the learning theory that influences one’s work, and wonder 

what the originator of the theory assumed, and how the theory is interpreted today. I am 

drawn to theories E and Q in the table—Q is self-explanatory, and E, enactivism, best fits 

with the view of learning I described when I wrote (Begg, 2013, pp. 81–82) the essence of 

enactivism is, “learning is living, living is learning, and this is true for all living 

organisms.” From this perspective, I see we and the world as inseparable; we co-emerge—

cognition (learning) cannot be separated from being (living). Knowledge is the domain of 

possibilities that emerges as we respond to and cause changes within our world.  

As teachers we know our task is to teach. For me teaching is ‘stimulating enquiry by 

asking questions’, not ‘telling’; and this is possible. The best mathematics lessons I have 

seen was in Japan—during the 50-minutes the teacher only asked questions, “What do you 

think? What do you others think? …” Accepting the cultural concern regarding 

individualism, the teacher ensured that group work dominated so responses given by 

individuals were group ones and no ‘loss of face’ occurred. This epitomised ‘teaching as 

asking, not telling.’ Related to teachers ‘asking’ is learners ‘researching and thinking’; thus 

our task as teachers is to provide researching/thinking activities, but that is not always 

easy. As Heidegger (2004/1954, p. 15) puts it, “Teaching is more difficult than learning 

because what teaching calls for is this: to let learn” and I would add: ‘and to let think!’ 

Thinking 

Mathematical thinking is often considered as being logical (or critical) thinking; but all 

the other forms of thinking also seem to me to be relevant within mathematics education. 

There are many possible classifications of the forms of thinking; my own classification 

divides thinking into nine slightly overlapping forms, namely: empirical, critical, creative, 

meta-cognitive, caring, contemplative, subconscious, cultural, and systems thinking.  

Empirical Thinking 
Empirical or sense-based thinking occurs when we are aware through our senses—

seeing, hearing, feeling, tasting, or smelling. It is the dominant form of thinking of young 

children and the starting point for most conscious thinking. It seems valued by both 
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western and non-western people; it is important both in its own right and as the basis for 

other forms of thinking. Being aware through one’s senses and remembering is nearly 

automatic—though by improving one’s noticing skills (Mason, 2002) or by becoming 

more aware (Depraz, Varela, & Vermersch, 2003), the process can become richer.  

Empirical thinking involves sensation followed by perception (Restak, 2012); sensation 

involves detection of information (awareness) using sense organs, and perception is the 

interpretation/analysis of that information so that it can be remembered and used for some 

purpose. Interpretation involves constructing meaning, thus empirical thinking is not direct 

knowing as interpretation is based on prior experience. Sometimes, before a sensation has 

been interpreted, our body has already reacted unconsciously but intelligently to it, e.g., 

one cuts one’s finger and the body’s cells immediately begin to ‘intelligently’ repair the cut 

before the brain receives and interprets the cutting sensation. 

In mathematics education the main forms of sense-based thinking are visual thinking 

(interpreting and imagining 2 and 3-dimensional diagrams; using Venn diagrams, arrow 

graphs, flow charts, Cartesian and statistical graphs, symbols, signs, and gestures; 

picturing, modelling ideas; noticing (Mason, 2002)); and aural/oral thinking (involving: 

making sense/interpreting what one hears, and saying what one means).  

Critical Thinking:    
Critical (rational or logical) thinking is fundamental to mathematics; it involves logic, 

(which depends on a ‘logic’ system and initial assumptions). Usually western logic is taken 

for granted and initial assumptions are made without considering alternatives. Absolute 

proof is not possible with critical thinking as it depends on assumptions made and the logic 

system used. One can gather evidence to support a hypothesis; and if all the assumptions 

are made explicit then a ‘relative’ proof may be useful—but one counter-example 

disproves a hypothesis. Words (or symbols) are usually used in critical thinking, but 

diagrams can also be used (e.g., Venn diagrams in set theory)—proofs are not always 

possible with diagrams, but diagrams are useful when exploring a problem; though they 

can mislead (e.g., ‘are two straight line that never intersect parallel?’ One approach is to 

draw many examples and conclude that that is true; but it is not true in 3-dimensions).  

Western critical thinking has dominated western thinking and resulted in ‘advances’ in 

many subjects, but the underpinning assumptions seem often not to be made explicit. This 

has resulted in ‘solutions’ to problems without consideration of the consequences (e.g., 

science problems have been solved without considering the environment; western 

economics has been based on having more, not having enough; and western philosophy has 

been concerned with individual rights, not community good). 

Creative Thinking 
Creative thinking occurs in art, music, literature, but also in other aspects of life when 

we consider alternatives and ask “what if …?” Our ideas of self, of others, and of things 

we learnt at home and school depend on assumptions and one can be creative by making 

these explicit, questioning them, and considering alternative assumptions that other people 

make. Creative thinking can involve making connections within contexts, finding 

alternative connections, and finding different solutions to problems in different contexts, or 

with different initial assumptions (and often assumptions are culturally specific), imagining 

possibilities, visualising options, conjecturing, modelling reality, designing things, making 
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and seeing patterns, generalising and specialising, and using analogies. It is important in 

mathematics at all levels as many problems can be solved in different ways.  

Metacognitive Thinking 
Metacognition is monitoring one’s thinking; it involves: learning to learn, thinking 

about thinking, reflecting, and self-assessing. It occurs consciously, unconsciously, and 

automatically. The more one attends to this consciously the more one feels in control. 

Typical questions one might ask oneself are: Have I done enough? Should I do more? 

What else could I do? What have I assumed, and could I make a different assumption? Am 

I happy with this, or do I need to improve it, and how might I improve it?  

Caring Thinking 
Lipman (2003) wrote about caring thinking, and his ideas fit with aims related to self, 

family, others, living things, the environment, and culture. Caring is influenced by values, 

and activities for clarifying values help learners become more aware of (and strengthen) 

their values. One value is respect, including respect for others with different values. Caring 

depends on cultural beliefs about ‘being’, and one may ask, are we all separate; could we 

exist without other people, other living things, and our planet? Caring thinking involves 

ethical thinking, emotional thinking and critical thinking. It relates to caring for self, for 

others, and for the community (local, national and international), and for other living 

things. In education caring is involved when someone is stuck with a problem—when 

should one intervene? One person steps in at once to help so the person is not frustrated; 

another allows the person time to consider alternatives—both reflect caring thinking.  

Contemplative Thinking 
Contemplative thinking can involve having hunches (intuition), noticing, being still, 

meditating, and developing awareness. It is associated with religious contemplation and is 

evident in Shamanic, Vedic, Buddhist, Christian, Islamic (Sufism), and Jewish (Cabalistic) 

traditions; and in the ways of knowing of numerous indigenous cultures (Abram, 1997; 

Buhner, 2014; Davis, 2007; Kharitidi, 1996; Wolff, 2001). Contemplation is not 

emphasised as it was in the past because we emphasise science and critical thinking, but 

numerous scientists, mathematicians, and philosophers acknowledge its importance 

(Buhner, 2014). Contemplative thinking builds on empirical thinking and complements 

critical thinking, thus developing contemplative thinking (or awareness) means developing 

noticing skills (Mason, 2002), sensory awareness, and openness using analogical thinking 

(Buhner, 2014). Teachers want students to be reflective, but when asking students to reflect 

on something they often mean ‘think critically about it’. Reflecting from a contemplative 

perspective means holding an idea in one’s mind without processing it. 

Subconscious Thinking 
Subconscious, unconscious, or bodily thinking is important. Mlodinow (2012) wrote 

how we are only aware of 5% of what goes on in our brains; our brains unconsciously 

handle the other 95%. This means our subconscious thinking shapes our empirical (sense-

based) thinking, our ever-changing memories, our social interactions, our logic, and our 

cultural beliefs; how we think about self, others, the world around us; and the assumptions 

that influence our conscious thinking. According to Davis, Sumara and Luce-Kapler (2008, 

p. 24) our sense organs register about 10 million bits of information each second but we 
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are only consciously aware of about 20 of these bits; our subconscious ‘thinking’ or bodily 

knowing occurs within the cells of our bodies (and within the cells of all living things) and 

these cells ‘know’ what must occur for life—but we are not consciously aware of this 

knowing. Intuition involves the subconscious becoming conscious. One example of this 

emerged when a mathematics professor was asked, ‘how do you go about solving these 

difficult problems?’ He replied, ‘I read the question carefully before going to sleep, then 

when I wake up I write out the solution.’ Thus, mathematics not only involves 

logical/critical thinking, it also involves contemplative (or unconscious) thinking.  

Cultural Thinking 
Cultural thinking includes communal/collective and global thinking; and differences 

arise with people from different cultures. Nisbett (2003) wrote about the different ways 

that Asians and Westerners think, and indigenous peoples think differently in other ways. 

These ways are not right or wrong, just different—different starting assumptions, different 

experiences, different vocabulary, different beliefs and philosophies, different logic 

systems, different emphasis on nouns and verbs, and so on. An example of this (Nisbett, 

2003, p. 141) is when given three pictures—some grass, a hen, and a cow—and asked what 

goes with the cow? Westerners used an animal/vegetable division; while easterners used a 

thematic relationship cows eat grass. Two other examples of cultural thinking are: 

 from economics—maximising profit is the basis of decisions in some countries, but 

in other countries environmental considerations are more important; 

 regarding self-image—my western-enculturated brain believes I am a self-

sufficient individual, yet I cannot exist without the world, the air to breath, and the 

life forms that provide food; so, am I an individual, or a part of a bigger organism? 

(And that raises the question, how do people from other cultures see themselves?) 

Systems Thinking 
Systems thinking is based on notions of complex (rather than simple or complicated) 

systems. Simple systems are mechanistic, based on cause and effect relationships  

(A causes B); complicated systems are also predictable though not always obviously  

(A causes B which causes C which causes … which causes Y which causes Z). Contrasting 

with these are complex systems; complexity assumes a web of interrelationships with ideas 

emerging that are not predictable (A, B, C, … all interact but the result is unpredictable as 

the result emerges from the complexity of the interactions). Systems thinking explains how 

small catalytic events that are separated by distance and time can cause significant changes 

in complex systems. Systems thinking techniques are used to study physical, biological, 

social, scientific, engineered, human, and conceptual systems; and it explains how students 

who have attended the same class come away with different learning because of slightly 

different initial ideas.  

Thinking in Education   
These nine forms of thinking seem to imply a partitioning of thinking into categories, 

but these overlap and merge. When focusing on a task one does not limit oneself to one 

form of thinking, one moves smoothly from form to form as the task progresses. 
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For example: 

  firstly noticing, sensing, or perceiving a situation (empirical thinking), 

    then analysing it using logic (critical thinking), 

      pausing and reflecting (contemplative thinking), 

        deciding to stop and reconsider (metacognition), 

          asking oneself, might another assumption be made (creative thinking), 

            thinking of possible undesirable implications (caring thinking), 

              being influenced by notions we are unaware of (unconscious thinking), 

      and so on …  

Within education, every topic in every subject at every level is a context for thinking. 

Thinking in mathematics education is more than listening and remembering, and is 

enhanced by activities involving: communicating, connecting, problem solving (and 

problem posing), applying knowledge, using tools (including IT), and reflecting (which 

links with metacognitive thinking and self-assessment). Ideally such activities need to be 

included when designing thinking/research focused classroom activities (such as literature 

reviews, projects, creative activities, discussions, and free-writing). For me research simply 

means ‘enquiry’; and research tasks come in many sizes and in all subjects, and can 

involve independent or group learning, problem-solving, project work, and tutorials where 

groups of students with their teacher discuss their plans and progress with projects and 

receive feedback. 

Assessment 

The dominant types of assessment are internal (in-school) and external (for awards), 

but traditionally there are three forms:  

 diagnostic before learning to find what students need/want to know; 

 formative  during learning to find how students are forming ideas/ 

coming to know; 

 summative after learning  to find what students know (and understood). 

For me, changing our emphasis from knowing to thinking shifts the focus of assessment 

from summative to formative and to an emphasis on metacognition (thinking about 

thinking) and life-long learning. The responsibility for all forms of assessment shifts from 

teacher to learner and becomes self-assessment; which fits with preparing our students for 

life-long learning. Additionally, when the mode of learning involves research projects then 

the assessment is unlikely to be whole class, but rather, project based. 

Conclusion—Making Changes 

I see virtually everything we are doing in mathematics classrooms as needing to be 

changed! Our efforts to change in the past have been like ‘shifting the deck chairs on the 

Titanic.’ What should we do to implement our aims? How can we encourage thinking? 

Can we change our teaching to ‘let learn’ and shift from telling to asking? How might we 

reduce the subject silo effect? What forms of assessment are appropriate? Should we 

encourage learning to learn rather than learning what is taught? Will learning to learn 

prepare students for a lifetime of learning?  

In the past educational authorities sought ‘top-down change’ by legislation with new 

curriculum or assessment policies, but the desired changes were never fully implemented. 

The alternative is ‘bottom-up-change’ with small groups of teachers taking professional 
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responsibility and making numerous small changes. In this situation the role of 

mathematics educators is to model the ideal changes, discuss them, and encourage and 

support practitioners in their efforts to change. My aim is that we re-conceptualise: 

 teaching as asking, not telling;  

 learning as researching and thinking, not memorising; 

 assessment as formative and self-assessment, not summative;  

 mathematics as being integrated with other subjects, not separated from them: and 

 making changes as our personal responsibility, not that of external authorities.  
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The context in which mathematics is used is an important aspect of numeracy. Therefore, 

students’ numeracy capabilities need to be developed in subjects across the curriculum. The 
case study of a secondary school history teacher is presented to demonstrate how a 

framework for identity as an embedder-of-numeracy can be used to identify ways that this 

teacher might be supported to embed numeracy into the history curriculum. While the 

framework was generally effective for this purpose, a potential limitation was identified. 

Introduction 

The pressure on schools to demonstrate improved outcomes on the National 

Assessment Plan - Literacy and Numeracy (NAPLAN) influences school organisation, 

curriculum, and pedagogy (Hardy, 2014). This includes the use of practice tests and 

teaching to the test with some resultant focus on a definition of numeracy as the 

mathematical skills required to successfully answer NAPLAN questions. However, 

numeracy encompasses much more than just mathematics. The Organisation for Economic 

Co-operation and Development (OECD) defines mathematical literacy (the term used in 

some international contexts) as: 

an individual’s capacity to formulate, employ and interpret mathematics in a variety of contexts. It 

includes reasoning mathematically and using mathematical concepts, procedures, facts and tools to 

describe, explain and predict phenomena. It assists individuals in recognising the role that 

mathematics plays in the world and to make well-founded judgments and decisions needed by 

constructive, concerned and reflective citizens (OECD 2013, p. 25). 

This widely accepted definition of numeracy recognises that the context in which 

mathematics is used is as an important aspect of numeracy. In fact, Steen (2001) argued 

that context is what distinguishes numeracy from mathematics, and if students are to 

develop the capabilities needed to become numerate, they need to be provided with 

opportunities to use mathematics in a range of contexts; in other words, in subjects across 

the curriculum. While the need for this type of approach has also been recognised in 

Australia for some time (DEETYA, 1997), it is only recently with the introduction of the 

Australian Curriculum (ACARA, 2014), where numeracy was seen as a general capability 

to be developed in all subjects, that there has been a national approach to this. However, 

for this approach to be successful, teachers from all disciplines need to exploit numeracy 

learning opportunities that exist in the subjects they teach. Therefore, there is a need to 

investigate how teachers can be supported to develop this capacity. One way of doing this 

is to use teacher identity as the analytic lens.  

This paper builds on previous research in which a framework for identity as an 

embedder-of-numeracy was developed (Bennison, 2015, hereafter referred to as EoN 
Identity). Specifically, the purpose of this paper is to investigate the efficacy of the EoN 
Identity framework to answer the following research question: In what ways can the EoN 

Identity framework be utilised to identify ways to support a teacher to develop the capacity 

to embed numeracy into the subjects she/he teaches? 
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A Framework for EoN Identity 

An individual’s identity develops as they negotiate meaning through individual 

cognition and social interactions within their environment; it is dynamic and context 

dependent (Wenger, 1998). These attributes make teacher identity a useful construct for 

investigating how teachers can be supported to exploit numeracy learning opportunities 

across the curriculum. However, it is difficult to design empirical studies that capture the 

complexity of teacher identity but are still viable practically (Enyedy, Goldberg, & Welsh, 

2005). To overcome this limitation, a framework for EoN Identity was developed that 

identifies characteristics that are most likely to have greatest impact on a teacher’s capacity 

to embed numeracy into the subjects they teach (Bennison, 2015). The two understandings 

that underpin the EoN Identity framework are that: 

1. being numerate involves having the dispositions that support the critical use of 

mathematical knowledge and appropriate tools in a range of contexts: these five 

dimensions of numeracy are encapsulated in the numeracy model developed by 

Goos, Geiger, and Dole (2014); and 

2. the belief that the best way for teachers to support numeracy learning is to embed 

numeracy into the subjects they teach in order to enhance discipline learning. 

In Goos et al.’s (2014) numeracy model, numeracy requires dispositions (i.e., confidence 

and willingness) to use mathematical knowledge (concepts and skills, problem solving, and 

estimation) and representational, physical, and digital tools (e.g., graphs, measuring 

instruments, and calculators, respectively) in a range of contexts (both within school and 

beyond school settings). These four dimensions are set within a critical orientation that 

enables decisions and judgments about mathematical information. (See pp.83-85 for 

further elaboration). This model of numeracy was used to underpin the EoN Identity 

framework because each dimension of numeracy was made explicit and the model 

provided an effective means of describing a teacher’s personal conception of numeracy and 

classroom activities. The second of the understandings that underpinned the EoN Identity 

framework stemmed from recognition of the important role numeracy has for conceptual 

understanding in disciplines across the curriculum. For example, an understanding of 

chronological conventions was seen as essential to conceptual understanding of history 

(Blow, Lee, & Shemilt, 2012), whereas lack of well-developed numeracy skills was 

identified as a barrier to learning science (Quinnell, Thomson, & LeBard, 2013). 

The EoN Identity framework (summarised in Table 1) was arranged around five 

domains of influence: knowledge, affective, social, life history, and context. Within each of 

these domains were characteristics that impact on a teacher’s capacity to support numeracy 

learning. For example, mathematical content knowledge (MCK), pedagogical content 

knowledge (PCK) and curriculum knowledge (CK) were the aspects of the knowledge 

domain. Only these types of knowledge, instead of all of the types of knowledge that 

Shulman (1987) suggested were needed for teaching, were included because, in order to 

support numeracy learning, a teacher needs to be competent in the mathematics inherent in 

the discipline (MCK), be able to use curriculum documents to identify where numeracy 

would support discipline learning (CK), and be able to design tasks that utilise some or all 

of the dimensions of numeracy in Goos et al.’s (2014) numeracy model (PCK). These 

nuanced meanings of MCK, PCK and CK focus on the knowledge needed to support 

students’ numeracy learning. (See Bennison, 2015 for further details of how the framework 

was developed). 
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Table 1  

Framework for identity as an embedder-of-numeracy (adapted from Bennison, 2015, p.15) 

Domains of influence Characteristics 

Life History Past experiences of mathematics  

Pre-service program 

Initial teaching experiences 

Context School policies 

Resources 

Knowledge  Mathematics content knowledge (MCK) 

Pedagogical content knowledge (PCK) 

Curriculum knowledge (CK) 

Affective Personal conception of numeracy 

Attitudes towards mathematics 

Perceived preparation to embed numeracy 

Social School communities 

Professional communities 

Research Design and Methods 

The data presented in this paper were drawn from a two-year study (2013-2014) that 

was conducted in two schools in Queensland: one metropolitan and one regional. The 

study employed case study methodology (Stake, 2003) with Kylie (pseudonym), the 

teacher who is the focus of this paper, being one of eight teachers who were recruited for 

the study. These teachers had different disciplinary backgrounds and levels of experience 

and were recruited because they had previously agreed to participate in a larger study 

(hereafter referred to as the Numeracy Project). Thus, they had indicated an interest in 

developing their capacity to support numeracy learning across a range of disciplines 

(English, mathematics, science, and history) and provided an opportunity to learn about 

how teachers develop an EoN Identity. 

The main sources of data for the study were semi-structured interviews with the 

teachers and lesson observations. Kylie was visited six times during the study. On each 

occasion, at least one lesson was observed and she was interviewed after the lesson(s) 

about the tasks she had used as well as student and teacher learning. She participated in 

two additional interviews: a scoping interview that was conducted near the beginning of 

the study (but after Kylie had participated in two workshops for the Numeracy Project) and 

a final interview that was conducted during the last school visit. The first of these 

interviews was about her background, beliefs about numeracy, and school context, whereas 

the final interview asked Kylie about her experiences during this study and provided an 

opportunity to get clarification of comments she had made during earlier interviews. 

Lesson observations and post lesson interviews provided data for this study and the 

Numeracy Project, whereas the scoping interview and final interview, the sources of data 

for this paper, were conducted solely for this study. 

Data analysis involved coding the transcripts of Kylie’s scoping and final interviews to 

identify comments that were related to aspects within each of the domains of influence. For 

example, comments she made about her studies of mathematics at school were included in 
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both her knowledge and affective domains because they gave some indication of her MCK 

and her attitudes towards mathematics, respectively. Judgments were made about her level 

of MCK, PCK, and CK based on her comments during interviews. 

Kylie’s EoN Identity 

Life History Domain 
While at school, Kylie focussed on humanities subjects and reported that: 

[M]aths was something I kind of endured … Like, I did Maths A [a subject taken in the final two 

years of school by students who do not require a knowledge of calculus], and I did quite well in 

Maths A, but I took it because it was the easy one (Final interview). 

At university, Kylie completed a Bachelor of Arts degree, majoring in Ancient History and 

English Literature. Although her studies at university did not require any further formal 

mathematics subjects, she reported that she used mathematical knowledge, especially 

statistics, in some of her history courses. After travelling and working overseas, Kylie 

returned to Australia and completed a Graduate Diploma in Education with teaching areas 

in English and History. Although she could not remember much emphasis being placed on 

literacy and numeracy during her pre-service teacher education program, she did remember 

having to comment on both in an assessment task for a course she completed during her 

final semester. However, Kylie reported that numeracy was not a focus for her in this task.  

When this study commenced, Kylie was at the beginning of her teaching career in a 

secondary school in a regional city. During the study, she taught mainly junior classes 

(Years 8 and 9), which she took for English and history. However, the focus in this paper is 

on her EoN Identity in the discipline of history. 

Context Domain 
There were three aspects to Kylie’s context domain: the Australian Curriculum, the 

school where she teaches, and the Numeracy Project. 

Australian Curriculum. The Australian Curriculum: History (ACARA, 2014) was 

implemented in Kylie’s school in the first year of the study. Although the numeracy 

demands in history were identified with icons and online filters in curriculum documents, 

Kylie felt that “the numeracy that’s outlined isn’t particularly in depth or challenging” 

(Final interview). Despite this lack of guidance from curriculum documents, over the 

course of the study Kylie identified a number of learning opportunities that existed within 

the history curriculum. 

The implementation of the new curriculum presented Kylie with some challenges. She 

felt pressure to cover the content: “We don’t have time at the moment and that’s what I am 

particularly concerned about” (Scoping interview), and would like to see reduced content 

to allow greater focus on historical skills such as reading maps and constructing graphs. 

Access to appropriate resources was also an issue for Kylie, who described some of the 

difficulties she experienced with a research project on the medieval period.  

[W]e just didn’t quite have enough resources … we only have one free computer lab … four classes 

on each line … we’ve had one lesson on computers and the rest has been from books. Obviously we 
are building up books, [but it] will probably take a couple of years before we have enough books 

(Scoping interview). 
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Kylie’s school. The school where Kylie taught was located in a regional city where the 

main industry was mining. The school was classified as being in an average socioeconomic 

area and had around 1,000 students who came from both metropolitan and rural areas. 

School NAPLAN results for numeracy had been close to the Australian schools’ average 

but those for some aspects of literacy, although close to the Australian schools’ average, 

had declined over the last couple of years. This had resulted in “such a focus in English to 

prepare students for NAPLAN” (Scoping interview). 

In the final year of the study, the school had set up a number of committees and each 

teacher was asked to join one. As Kylie had participated in the Numeracy Project and had 

taken on the role of Literacy Coach, she joined the Literacy and Numeracy Committee. 

The task for this committee was to track implementation of literacy and numeracy 

strategies in the school in order to evaluate their impact on NAPLAN data. In light of a 

decline in NAPLAN results for literacy, the focus of the committee had been on 

implementing a whole school approach to literacy. A similar approach was not considered 

necessary for numeracy: “The numeracy people, the Maths department, feels that on their 

level they’ve achieved this prize for what they are doing” (Final interview). 

Numeracy Project. Kylie and three other teachers from her school participated in the 

Numeracy Project. This project investigated the potential of professional development 

based on Goos et al.’s (2014) numeracy model for supporting teachers to promote 

numeracy learning across the curriculum. Teachers across a range of disciplines had been 

recruited from primary and secondary schools in Queensland and Victoria. During the 

project (2012-2014), the teachers participated in cycles of professional development 

workshops followed by visits to the school by researchers who observed lessons where 

teachers implemented activities to support numeracy learning and interviewed the teachers. 

Knowledge Domain 
Although Kylie felt that she “probably need[ed] a refresher for a lot of [the 

mathematical knowledge]” (Scoping interview) required for embedding numeracy in 

history, her mathematics background (as outlined earlier in the section on her Life History 

domain) had probably given her the requisite MCK. With a major in Ancient History, 

Kylie had a strong discipline background. However, as the history curriculum was still 

relatively new, it may take time for her to develop the CK needed to identify where 

numeracy can be used to support discipline learning in history. 

Prior to her participation in the Numeracy Project, Kylie had not had any opportunities 

to learn about embedding numeracy in history. Early in this study, Kylie thought that she 

needed to learn how to “adequately incorporate numeracy without losing the focus on 

historical issues” (Scoping interview). However, by the end of this study, she had 

demonstrated some PCK through her classroom practice. For example, she described a 

lesson where she utilised a scaled timeline to assist students to understand that historical 

events had duration and could be concurrent. 

I was trying to get them to think about timelines because my students, like, we have been trying 

timelines since we started this unit at the end of last term and we have done two or three and they 

are just [pause] having trouble with the times themselves, like, they’re having troubles conceptually 

understanding when things happened. So we did a whole world timeline about all the ideas we could 

think of. Like, ‘When was the relationship between the Black Plague and the Age of Discovery?’ 

And, ‘When was Captain Cook and the Age of Slavery?’ And, ‘When, you know, what was 

happening in Australia at this time?’ But they’re just [pause]; to them 1400 to 1600 is just this 

blurry blob in the middle of nowhere. They just have no idea what’s going on (Final interview). 
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Affective Domain 
Kylie reported that before her participation in the Numeracy Project, she did not “have 

an awareness of what numeracy was … [and was] probably one of those teachers who was 

like, ‘Numeracy, well I’m sure they’ll cover that in maths’” (Scoping interview). However, 

even in the early stages of the Numeracy Project, Kylie felt that her ideas about numeracy 

were changing as numeracy became more obvious to her. Initially, she thought that 

numeracy was important, although not as important as literacy, but had come to believe 

that “if you are innumerate, that’s on a level with not being able to read” (Final interview). 

Kylie felt that embedding numeracy in subjects across the curriculum required explicit 

attention to numeracy within subjects and breaking down the view, held in Kylie’s opinion 

by many teachers and students, that each subject has its own knowledge and practices that 

are only applicable within that subject. 

Kylie thought that there were many opportunities to use numeracy to develop students’ 

conceptual understanding of history. For example, she thought that using representational 

tools enabled students to gain a better understanding of some of the data that was 

encountered in history. 

We spend a lot of time discussing the concepts, like, ‘What percentage here? What percentage 

there?’ … We don’t spend a lot of time transferring that into easy to look at information … We 

don’t particularly follow through with those kinds of tools like turning it into a pie chart, into a 

graph (Scoping interview). 

Kylie also described how she had used numeracy to a The purpose of the paper is to test 

the existing framework for identity as an embedder-of-numeracy with empirical data. ssist 

students to understand what it was like in medieval times. 

[W]e look at the Black Plague and how many were affected and if, what percentage of people in the 

world today. Like, we did how many people in the world would have been killed, one to two thirds, 

one to two thirds of the world, of Europe and then we looked at the school and then we looked at the 

classroom and decided who gets killed by the Black Plague. They all re-enacted it with disgusting 

accuracy and so it’s much simpler. They just needed to understand how bad the Black Plague was. 

So it was a very easy concept to apply numeracy to … we said it was devastating and I think the 

problem was that they didn’t understand, like, they have a lot of difficulty identifying the concepts 

in the medieval world … it was trying to build their understanding (Scoping interview). 

Kylie was reasonably confident that she could deal explicitly with the mathematical 

content in history lessons: “Once I look at it I can probably do it as long as it’s not too 

complicated” (Scoping interview).  

Social Domain 
As teachers at Kylie’s school were allocated to staffrooms based on their discipline, 

Kylie shared her staffroom with other English teachers as well as with Business and 

Information Technology teachers. She reported that some of her English teaching 

colleagues found it strange that she had participated in a research project on numeracy and 

that the general feeling in her staff room was that there was no difference between 

numeracy and mathematics. Although there were three other teachers at Kylie’s school 

who participated in the Numeracy Project, opportunities to work with these teachers had 

been limited because they were located in other staffrooms. Kylie expressed a desire for 

more internal professional learning within her school community and more integrated 

planning across disciplines, which she felt, could be achieved by having: 
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a general meeting at the beginning [of the year] and just that awareness and that way it would open 

those communication lines … breaking down those kid’s ideas … separate ideas, separate subjects, 

separate skills. When it’s not. It’s one subject, one skill (Final interview). 

Apart from her interactions with researchers and teachers from other schools who were 

also participants in the Numeracy Project, opportunities for Kylie to network with others 

outside her school community were limited. She was not involved in any professional 

associations for history and, although she had seen advertisements for a small number of 

professional development workshops about numeracy, the majority of these were offered 

in the state’s capital city or another regional city, both about 500 kilometres from her 

school. Kylie had discussed her plans for embedding numeracy in history with a 

mathematics teacher from another school whom she lives with. She had found these 

discussions useful, even though were limited to whether students in a particular year level 

could be expected to understand the mathematics needed for the tasks she was planning. 

Discussion 

Kylie’s EoN Identity included affordances and constraints on her capacity to embed 

numeracy into the discipline of history. Kylie’s life history domain has contributed to the 

current state of her knowledge and beliefs. Within her knowledge domain, she seemed to 

have the appropriate MCK and her CK is likely to develop over time as she becomes 

familiar with the new curriculum. However, the absence of a focus on numeracy across the 

curriculum during her pre-service teacher education program suggests that she may need 

support to develop the appropriate PCK. Kylie’s affective domain was supportive of an 

across the curriculum approach to numeracy. Although her initial understanding of 

numeracy was focused on mathematics, only one of the five dimensions in Goos et al.’s 

(2014) numeracy model, her personal conception of numeracy appeared to be broadening 

as a result of her participation in the Numeracy Project. She provided evidence that she 

saw a need for numeracy in supporting students’ learning in the discipline of history, in a 

similar way to that described by Blow et al. (2012), and expressed confidence that she had 

the mathematics ability to support this. Within Kylie’s context domain, the new history 

curriculum and her participation in the Numeracy Project provided support for an across 

the curriculum approach to numeracy. However, Kylie must overcome the challenges that 

implementation of the new curriculum brings in a school environment where the focus is 

primarily on improving students’ NAPLAN performance in literacy: a focus that can 

influence pedagogy (Hardy, 2014). Kylie’s social domain, apart from her interactions with 

those associated with the Numeracy Project, although not negative, did not actively 

promote an across the curriculum approach to numeracy. 

This analysis suggests that there are several ways that Kylie could be supported to 

strengthen her EoN Identity. Within her knowledge domain, her main need appeared to be 

increasing her PCK to enable her to design tasks that support numeracy learning while at 

the same time enhancing conceptual understanding in history. However, there are also 

changes that could be made within her context and social domains to facilitate this 

learning. For example, within her context domain the Literacy and Numeracy Committee 

could put greater emphasis on a whole of school approach numeracy or within her social 

domain, the expertise of the mathematics department could be utilised to assist teachers of 

other disciplines in their planning for numeracy. 
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Concluding Remarks 

In this paper, the EoN Identity framework (Bennison, 2015) has been used to describe 

Kylie’s EoN Identity and identify some ways to support her to embed numeracy into the 

discipline of history. However, as identity is dynamic (Wenger, 1988), the EoN Identity 

framework provides a snapshot Kylie’s EoN Identity at one point in time and her current 

needs to support embedding numeracy into history. At a different time in her career, and 

for other teachers, the aspects of the domains of influence will be different: resulting in 

different EoN Identities and needs. One of the strengths of the EoN Identity framework is 

that it accommodates the temporal nature of identity because the domains of influence 

overlap and are continually changing. 

The purpose of the empirical phase of the study reported on in this paper was to test the 

framework for EoN Identity that was developed from a theoretical perspective (see 

Bennison, 2015). Therefore, extensive data collection was warranted. However, a potential 

practical limitation of the EoN Identity framework is the time required to collect sufficient 

information to describe a teacher’s EoN Identity. Therefore, further research in needed to 

fully test the EoN Identity framework with the case studies of the other teachers 

participating in the study and to develop a streamlined means of collecting adequate 

information for describing a teacher’s EoN Identity. 
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In this paper we report on two assessment tasks extracted from a larger study. The tasks 

involved number-line placements on two different number lines (0-to-10 and 0-to-20) and 
place-value understanding. Participants were 119 children from four different classes 

(Years 1-3). Children’s placements were more accurate on the 0-to-20 than the 0-to-10 

number line but many found midpoint placements difficult. Children with good place-value 

understanding were better than their peers at making accurate number-line placements.  The 

findings have implications for practitioners in making more explicit the connections 

between number and space.  

Background 

The representation of numerical quantity is a complex multi-dimensional domain. 

Dehaene, Piazza, Pinel, and Cohen (2003) propose three systems that contribute to the 

processing of number, each involving activation of different parts of the brain. The verbal 

system represents numbers as words and focuses particularly on the memorisation and 

recall of number facts. The other two systems are nonverbal, including a “visual system” 

that encodes numbers in terms of a mental number line running from left to right, and a 

“quantity system” that represents the size and distance relations between numbers. One 

type of magnitude estimation comprises translation from one non-numerical magnitude 

into another form of non-numerical magnitude, such as estimating a quantity by indicating 

it as a position on a number line. The other type of magnitude estimation is numerical, such 

as assigning line lengths to numbers.  

The nature of the cognitive systems associated with magnitude estimation are strongly 

debated in the literature (Moeller, Pixner, Kaufmann, & Nuerk, 2009; Núñez, 2011; Núñez, 

Cooperrider, & Wassmann, 2012). Number seems to be initially coded logarithmically 

where the distances between adjacent numbers on the mental number line decrease as their 

magnitudes increase. It has been argued that formal schooling and other cultural practices 

lead to changes in coding from logarithmic to linear (Booth & Siegler, 2008; Siegler & 

Booth, 2004; Dehaene, Izard, Spelke, & Pica, 2008; Núñez, et al., 2012), and this is 

correlated positively with mathematics achievement. For example, learning to integrate 

tens and ones in the place-value system could help to explain the apparent transition from 

logarithmic to linear representations with age (Moeller et al., 2009). 

Older children are better at magnitude estimation than younger children, and smaller 

numbers are represented more accurately than larger numbers (e.g., Barth & Paladino, 

2011; Praet & Desoete, 2014; Rouder & Geary, 2014). Children’s ability to place numbers 

on a number line is strongly related to their understanding of proportional reasoning and 

overall mathematical achievement (Rouder & Geary, 2014). Anchor points at the 

beginning and end of the line are used to help place numbers by children as young as six 

years old. Older children (7- to 10-year-olds) are able to make use of a third anchor point 

(the midpoint) to place numbers more accurately (Slusser, Santiago, & Barth, 2013). 

Understanding geometric ideas such as the axis of symmetry also helps children to use the 
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midpoint in making placements on a number line (Mulligan & Mitchelmore, 2013; Spence 

& Krizel, 1994). 

The research on numerical magnitude and number-line representation links to the 

distinction made by Yackel (2001) between counting-based and collections-based 

approaches to working with numbers. Both approaches are important for developing a deep 

and connected understanding of number. There is an ‘inherent contradiction’ in the way 

that Western children are initially encouraged to count by ones (unitary counting-based 

concepts), but then are expected to reorganise these into collections-based concepts 

involving units consisting of tens and ones when place-value instruction begins (Yang & 

Cobb, 1995).  

Research on children’s awareness of mathematical pattern and structure (AMPS) 

shows the importance of students developing an awareness of structural relationships in 

mathematics (e.g., Mulligan, 2011). Low levels of AMPS seem to be associated with 

having poor visual and working memory. Mulligan found that students with low AMPS 

tended to “rely on superficial unitary counting by ones” (p. 36), and did not develop 

efficient and flexible strategies for solving problems. AMPS also appears to impact on the 

development of measurement concepts and proportional reasoning. Mulligan’s work on 

promoting awareness of pattern and structure is consistent with other research on the 

importance of helping children develop knowledge of place-value structure (Cobb, 2000; 

Fuson, Smith, & Cicero, 1997; Thomas, Mulligan, & Goldin, 2002).  

The development of place-value understanding requires children to be familiar with the 

concept of unit, and appreciate the difference between units of ten and units of one. 

Children need to be part-whole thinkers in order to partition numbers into tens and ones 

(Fuson, Smith, & Cicero, 1997; Ross, 1989). A key feature of place-value development is 

the shift from a unitary (by ones) way of thinking about numbers to a multi-unit conception 

(e.g., tens & ones). Place-value knowledge has four major properties: positional, base-ten, 

multiplicative, and additive (Ross, 1989). Because place-value understanding is inherently 

multiplicative, it is more complex than additive thinking (Clark & Kamii, 1996; Vergnaud; 

1994). Multi-digit arithmetic requires not only an understanding of the place-value system 

for the Arabic number system but also an understanding of the magnitude of numbers 

(Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 2011).  

The theoretical perspective taken in this paper was informed primarily by the extensive 

work of Mulligan and colleagues on the importance of pattern and structure for 

mathematical thinking (e.g., Mulligan, 2010, 2011; Mulligan, Mitchelmore, English, & 

Crevensten, 2013) and the literature in the multiplicative conceptual field (e.g., Clark & 

Kamii, 1996; Vergnaud, 1994). These two fields of research led to the research question 

focussing on the relationship between young children’s number line placements and place-

value understanding. We explored how accurately young children mapped one- and two-

digit numbers on number lines, their understanding of two-digit numbers, and the 

relationship between these constructs. This research was part of a larger study that focused 

on developing children’s part-whole thinking through the use of multiplication and 

division problem-solving contexts. Selected baseline data from the study was analysed to 

answer the research question. 

The Study 

This exploratory study was set in an urban school (medium socioeconomic status) in 

New Zealand. The participants were 119 five- to seven-year-olds (59 girls and 60 boys) 

from Years 1 to 3 (average age at each year level: 5.5, 6.5, 7.3 years). There were 42 Year 
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1, 34 Year 2, and 43 Year 3 children from four different classes. The children were from a 

diverse range of ethnic backgrounds, with approximately one third Māori (the indigenous 

people of New Zealand), one third European, one fifth Asian, and the remainder from other 

ethnicities including African and Pasifika (Pacific Islands people). Approximately one 

quarter of the children were English Language Learners. The children were assessed using 

an individual diagnostic task-based interview designed to explore number knowledge and 

problem-solving strategies. The assessment tasks included: subitising, addition, 

subtraction, multiplication, division, basic facts, incrementing in tens, counting sequences, 

number-line placement, and place value. The two tasks reported in this paper focused on 

the latter two categories.  

In the first task (number-line placements), children were shown a number line with 0 

and 10 marked on it (see Figure 1). The interviewer said: “This number line goes from zero 

to ten. Where does five belong on this number line?” The children then indicated the 

estimated position on the number line, which was recorded by the interviewer. This was 

followed by questions about the placements of two and one. Children were then shown 

another number line with 0 and 20 marked on it (See Figure 1). The same process was used 

for the placement of 19, 10, and one. Later, the researcher measured and recorded the 

distance in millimetres between zero and the child’s placement of the target numbers on 

the number lines. The number line placements were coded from 0 to 3 based on the 

accuracy of the position. Placements within 10 per cent of the target position were coded 3, 

11 to 20 per cent were coded 2, 21 to 50% were coded 1, and the others were coded 0.  

 

Figure 1. Record of one child’s responses to number-line placements  

In the second task (place value), children were shown a picture of two ten-sticks (each 

ten stick represented by a row of five grey boxes joined to a row of five white boxes) and 

four singleton boxes. The children were asked to find the total number of boxes (their 

strategy was recorded) and then to write this number above the picture. The interviewer 

circled the digit “4” in “24” and asked: “which boxes might the four mean?” The collection 

indicated by the child was circled and a line drawn connecting the boxes with the digit “4.” 

The interviewer circled the digit “2” in “24” and asked: “Which boxes does the ‘2’ in ‘24’ 

mean?” This was recorded in the same way as the “ones” digit. Finally, the interviewer 

asked: “So, what is the ‘2’ in ‘24’ telling you?” The interviewer recorded how the children 

determined the total number of boxes, and whether they linked the “4” to four boxes, and 

“2” to 20 boxes. Figure 2 shows a record of one child’s correct responses to the task.  
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Figure 2. Record of one child’s responses to questions about the meaning of 4 and 2 in 24  

Results 

The first task required children to estimate the placement of numbers on the two 

different number lines, 0-to-10 and 0-to-20. Table 1 shows the median number-line 

placements for 5, 2, and 1 on the 0-to-10 number line, and 19, 10, and 1 on the 0-to-20 

number line (measured in millimetres) by year group. The table also shows the discrepancy 

between the median and correct position in brackets, and the minimum and maximum 

values (range). 

Table 1 

Median Number-Line Placement in mm, (Discrepancy), and Range for Each Year Level  

  Correct Place Y1 (n=42) Y2 (n=34) Y3 (n=43) 

0-to-10 Line 

    Place “five” 80 40  (40) 38  (42) 67  (13) 

Range 

 

1 to 169 15 to 100 21 to 85 

Place “two” 32 12  (20) 12  (20) 14  (18) 

Range 

 

3 to 157 4 to 25 6 to 31 

Place “one” 16 5  (11) 3  (13) 5  (11) 

Range 

 

1 to 170 1 to 12 1 to 19 

     0-to-20 Line 

    Place “nineteen” 152 142  (10) 147  (5) 148  (4) 

Range 

 

2 to 169 71 to 155 79 to 156 

Place “ten” 80 84  (-4) 74  (6) 78  (2) 

Range 

 

-2 to 162 29 to 132 33 to 130 

Place “one” 8 7  (1) 5  (3) 6  (2) 

Range 

 

-2 to 145 1 to 11 1 to 15 

Year 3 children were, on average, far more accurate with their placements than the 

other year groups. These children were also most accurate in placing 10 and 1 on the 0-to-

20 number line, with a median discrepancy of only 2 mm short of the correct position. 

Their accuracy was greater on the 0-to-20 number line than on the 0-to-10 number line, 
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and they were least accurate in placing 2 on the 0-to-10 number line, with a median 

discrepancy of 18 mm short of the correct position.  

Year 1 and Year 2 children were most accurate in placing 1 on the 0-to-20 number line, 

with the median placements being less than 5 mm short of the correct position. The next 

most accurate placement for these children was 10 on the 0-to-20 number line, with the 

median position 4 mm beyond the actual position for Year 1 (shown as a negative value in 

Table 3), and for Year 2, the median placement was 6 mm to the left of the position (a 

positive value).  

The second task (place-value) was given to all children who could successfully 

complete several ten-structured tasks such as subitising a ten-frame and finding half of 20. 

This reduced the sample size for the place-value tasks to 12 Year 2 and 35 Year 3 children 

(n = 47). Table 2 shows the strategies used by the 43 out of 47 children who correctly 

determined that there were 24 boxes in total (see Figure 2). These strategies included 

counting by ones, fives, and tens. Approximately half of the children counted by tens to 

determine the number of boxes. Almost one-quarter counted by ones (n = 12), while seven 

children counted by fives.  

Table 2 

Strategies Used to Count 24 Boxes and Make the Links between Digits and Quantity  

Year By ones By fives By tens Links “4” to 4  

Boxes 
Links “2” to 20 
boxes 

2 6 1 4 8 3 

3 6 6 20 32 20 

When asked to link digits with quantities, most (85%) of these 47 children were able to 

link the “4” in “24” to four single boxes (see Table 2). Twenty-three children (49%) made 

the correct place-value link (the “2” in 24 to two tens or to 20). The children who could 

count 24 boxes by tens were not necessarily the same children who could link the “2” in 24 

to 20 boxes. Individual profile data showed that one Year 2 and 17 Year 3 children counted 

by tens and made this place-value link. The 23 children who were able to connect the “2” 

in “24” to two tens or 20 were selected for further analysis to explore the relationship 

between place-value understanding and number-line knowledge. The accuracy of their 

number-line placements is shown in Table 3.  

Table 3 

Accuracy of Number-line Placements for the 23 Children who Correctly Linked 2 in 24 
with Two Tens or 20  

  0-to-10 number line   0-to-20 number line 

Number "five" "two" "one" 

 

"nineteen" "ten" "one" 

Actual length 80 mm 32 mm 16 mm   152 mm 80 mm 8 mm 

≤ 10% 10 2 1 

 

22 13 8 

11-20% 6 1 4 

 

1 4 2 

21-50% 3 7 5 

 

0 5 9 

> 50% 4 13 13   0 1 4 
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Placing 5 on the 0-to-10 number line (the midpoint) was easier for these children than 

placing 2 or 1 (43% vs. 9% and 4%, respectively). All but one child accurately placed 19 

on the 0-to-20 number line (96%). They were not so accurate in placing either 10 or 1 on 

the 0-to-20 number line (57% and 35% within 10% of the target, respectively). The 

placement of 10 (the midpoint) was more accurate than the placement of 1, showing 

children did not notice that 19 and 1 are equidistant from the two endpoints. These children 

were more accurate in placing numbers on the 0-to-20 number line than the 0-to-10 

number line. When the 23 children who made accurate place-value links were compared to 

the 43 Year 3 children (the oldest year group), the 23 children were slightly better at 

making number-line placements, with a greater proportion making the most accurate 

placements (within 10% of the target) for 5 and 10 (43% vs. 35%; 57% vs. 49%). 

Discussion 

The assessment tasks reported in this paper were designed to explore young children’s 

number-line knowledge reflected in the placement of one- and two-digit numbers on 

number lines, and their understanding of two-digit numbers as represented by ten sticks 

(composed of two groups of five) and singleton boxes. The 119 children were more 

accurate in placing numbers on the 0-to-20 number line than 0-to-10. This could be 

explained by the fact that the 0-to-10 line (two anchor points) was presented first to help 

the children to become familiar with the task. The first placement question for the 0-to-10 

line was 5, but most children did not recognise 5 (the midpoint) as a third anchor point that 

could help in making a more accurate placement (Rouder & Geary, 2014). This recognition 

of the midpoint relates to understanding about an axis of symmetry and proportional 

reasoning, which was evident in responses from older children in other studies (e.g., 

Mulligan & Mitchelmore, 2013; Spence & Krizel, 1994).  

Overall, children were more accurate in placing 19 on the 0-to-20 line than 1, failing to 

recognise that both these placements were equidistant from the anchor points at each end. 

These young children had not yet established number-to-space connections that could have 

supported their number-line placements (Núñez, et al., 2012). A few children made 

negative placements (i.e., to the left of zero), lacking awareness that all whole numbers are 

to the right of zero. Other children placed 10 and 19 to the right of 20, suggesting that they 

had some weaknesses in their knowledge of number sequences. 

Many of the children in this study did not appear to have developed a sense of the 

midpoint as the third anchor point because of little or no experience with number-line 

placement. This finding is consistent with researchers who have found that the use of the 

midpoint to make number line placements appears about the third year of school (e.g., 

Barth & Paladino, 2011; Slusser et al, 2013). This could be explained by the focus in many 

New Zealand schools on teaching number in isolation from the other domains within the 

mathematics curriculum. This practice does not help children to build the connections 

highlighted by the research on spatial structuring and number. For example, experiences 

with the axis of symmetry in the context of geometry, as well as halving quantities and 

shapes could help children build a deeper more connected understanding of the 

relationships among numbers (Mulligan & Mitchelmore, 2013). 

In the place-value task, children used a range of strategies to determine that there were 

24 boxes in the picture. Half of the children recognised that two groups of ten (as 

represented by ten-sticks) made 20 in total, and quickly determined that there were 24 

boxes altogether. This is consistent with the work of Fuson and colleagues (1997) on the 

developmental trajectory from unitary to ten-structured thinking, and then progression to 
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multi-unit conceptions of number. A few children (n = 7) took advantage of the quinary 

structure of the ten-sticks and counted by fives to 20 (Mulligan, 2010). One quarter of the 

children counted the ten-sticks by ones (unitary counting), and this included both Year 2 

and Year 3 children. This could be explained by the continued emphasis in the early years 

of school on counting by ones, as reflected in curriculum documents such as the 

Mathematics Standards (Ministry of Education, 2009) which expect children after one year 

at school to add by counting all, and after two years at school, to add by counting on.  

Only 18 children used groups of ten to determine that there were 24 boxes, and 

correctly linked the “2” in “24” to 20 boxes. Despite having the beginnings of place-value 

understanding (as reflected in linking digits to quantities), five of the 23 children had used 

counting by ones to determine the total, ignoring the groups of five and ten clearly evident 

in the picture. These results reflect the complexity of part-whole understanding and ten-

structured thinking (Fuson et al, 1997; Ross, 1989).  

The 23 children, mostly from Year 3, who successfully made place-value links 

between digits and quantities, were also reasonably competent with the number-line 

placement task. This provides evidence that their recognition of the linear aspect of number 

lines is consistent with research showing that older children perform better on magnitude 

estimation (Praet & Desoete, 2014; Rouder & Geary, 2014). However, these children were 

more accurate in placing 19 and 10 than 1 on the 0-to-20 number line, and placing 5 than 2 

or 1 on the 0-to-10 number line. Perhaps it was easier for them to place the 5 and 10 

because they used the midpoint as a third anchor point to make the placement. They also 

may have used their awareness of the axis of symmetry (Mulligan & Mitchelmore, 2013). 

The findings reported here could be useful for classroom teachers in emphasising the 

importance of helping children make connections between different representations of two-

digit numbers. Multiple representations for two-digit numbers, including using materials 

such as Unifix cubes, ten-frames, Slavonic abacus, numeral cards, and number lines, could 

help children strengthen connections between visual and non-visual systems. Links 

between measurement concepts, proportional reasoning, and numerical magnitude could be 

made as children learn to divide a distance on a number line in order to estimate more 

accurately the placement of numbers (e.g., by folding a number line in half). By varying 

the anchor point at the right-hand end of the number line (e.g., 0-10, 0-20, 0-100), an 

appreciation of proportionality could be further developed (e.g., half of 10 is 5, half of 100 

is 50). This could strengthen understanding of relationships among numbers and enable 

children to make more accurate number-line placements.  
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Despite the Ministry of Education Statement of Intent 2014 – 2018 that the performance of 
the education system for priority students – Māori, Pāsifika, students with special education 
needs and students from low socio-economic areas needs to improve rapidly these groups 
remain a concern in the New Zealand Education System. This article explores what 
happens to a group of Pāsifika students and their teachers when the teachers draw on 
Pāsifika focused culturally responsive teaching in the mathematics classroom. Changes to 
the identity and mathematical disposition of the Pāsifika students are illustrated when their 
ethos becomes the cultural capital valued in the classroom using teacher and student voice.      

Introduction  
In New Zealand a disproportionate number of Pāsifika students perform below their 

European and Asian counterparts (New Zealand Qualifications Authority, 2013). In order 
to address significant disparities in numeracy and literacy achievement the Ministry of 
Education affords priority to this specific group of learners (Ministry of Education, 2014). 
The goal for priority Pāsifika learners is placed on ensuring high quality and inclusive 
teaching that incorporates aspects of the students’ language, identity, and culture. 
Educationalists are charged with the responsibility to place them, their parents, fānau 
(families), and communities central to changes aimed to increase Pāsifika capability and 
competence. Central to the changes is the goal to draw on knowledge and understandings 
of Pāsifika culture and its use in Pāsifika focused pedagogy – a goal which may hold 
challenges for many teachers. Developing appropriate pedagogy situated within the known 
world of their Pāsifika students is difficult given that the cultural experiences of Pāsifika 
learners may be different in both obvious and subtle ways from those commonly 
experienced by many New Zealand teachers. This paper explores what happens when 
teachers explicitly explore ways they can engage with the language, culture, and identity of 
their Pāsifika students to structure the mathematical activity in the classroom. The key 
question we examined was: What is the effect on Pāsifika students’ relationship with 
mathematics when teachers use Pāsifika focused culturally responsive pedagogy?  

Literature Review 
Pāsifika students enter New Zealand schools with a rich background of experiences. 

However, the lived reality in the school life of many of them can be significantly different 
from their home life experiences. As a result researchers (e.g., Anae, Coxon, Mara, Wendt-
Samu, & Finau, 2001; Barton, 1995; Hunter & Anthony, 2011) argue that this is a 
contributing factor in their underachievement and disengagement with their New Zealand 
schooling. As Bartolomé (1996) explains, unless educational methods are situated in 
students’ cultural world they will continue to show difficulty in mastering content area. 
This is because the learning is not only alien to their reality, but may also be antagonistic to 
their culture and lived experiences – that is their cultural capital. The term cultural capital 
used by Bourdieu and Passeron (1973) is defined by McLaren (1994) as being the general 
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cultural background, knowledge, disposition, and skills that are passed on from one 
generation to another. Cultural capital represents “ways of talking, acting, and socialising, 
as well as language practices, values, and types of dress and behaviour” (McLaren, 1994, 
p. 219).  

The cultural capital valued in many New Zealand mathematics classrooms reflects the 
cultural capital of the dominant New Zealand cultural groups. For example in recent 
professional development reforms (Ministry of Education, 2004), the grouping system 
promoted and used in most mathematics classrooms drew on the dominant group of 
Western origins beliefs and values. The use of streamed groups encouraged 
competitiveness and placed importance on individual success. An emphasis on the 
individual in the NZ Numeracy project contrasts directly with Pāsifika notions of the value 
of collectivism. Within a Pāsifika view the success of group members is measured by the 
success of the collective as a whole. This may well suggest a reason for why Pāsifika 
students were not as successful in this project as the Asian and European cohort. However, 
recent New Zealand studies (Hunter, 2013; Hunter & Anthony, 2011) illustrate that when 
teachers draw on the cultural background of their Pāsifika students and use them to shape 
the interactions in the mathematics classroom both their mathematical achievement results 
and engagement in communicating their mathematical reasoning increase. These studies 
provide persuasive evidence that when teachers draw on the cultural context and values of 
their Pāsifika students and use them to engage and connect them to mathematics their 
mathematical learning is accelerated and their mathematical disposition enhanced.  

To engage and connect Pāsifika students to mathematics not only do teachers need to 
consider the cultural context and values of the students they also need to take into account 
Pāsifika languages, culture and identity. This is in line with the seminal work of Paulo 
Freire (2000). He argues the need for education to transform oppressive structures by 
engaging people who have been marginalized and dehumanized and drawing on what they 
already know. Other researchers (e.g., Frankenstein, 2010; Stinson, Bidwell, & Powell, 
2012) building on this epistemology through ethnomathematics argue the need for 
educators to learn about how cultural practices – daily practice, language, power, and 
ideology constitute people’s views of mathematics and their ways of thinking 
mathematically. Moreover, Freire (2000) emphasises the importance of dialogical 
education built on respect with people working together in reciprocal relationships. Freire 
(2000) argues the importance of egalitarian dialogue, based on the validity of the argument 
and not on power imbalances in the teacher and student relationship. He also contends that 
praxis or informed action embedded in values is also important as is situating the 
educational activity in the lived experience of the learners. This is illustrated in Boaler’s 
(2002) study which showed that in classrooms where teachers hold the balance of control 
over which methods and procedures are used students have less opportunity to interact 
with the mathematics. They also perceived that they were secondary to the teacher and 
became passive recipients of knowledge. In contrast in classrooms where power was more 
evenly distributed students developed positive dispositions which led to deeper 
mathematical understandings. 

In a recent MERGA paper, Jorgensen (2014) presented a challenge to mathematics 
researchers. She argued that a new paradigm in mathematics education was needed 
because despite the many social theories of learning there remains a “significant problem 
with the outcomes in indigenous education in particular and equity target groups in 
general” (p. 311). She questions whether the inequitable outcomes may be structural and 
not something random. She suggests that schools and education are structured in ways that 

110



reproduce inequality. In response, this paper draws on a critical pedagogical lens in order 
to understand what the relationship is between learning and social change (Giroux, 1983).  
Giroux (1983) explains that within this frame, students are listened to and provided with a 
voice and role in their own learning. In turn, teachers not only educate students but also 
learn from them in a reciprocal relationship. As such critical pedagogy is a humanizing 
pedagogy that values students’ (and teachers’) background knowledge, culture, and lived 
experiences (Bartolomé, 1996). 

Methodology 
This research is part of a large project which involves 240 teachers in twenty New 

Zealand urban full primary schools. The students come from very low socio-economic 
home environments and are of predominantly Pācific Nations groupings. Many of them 
speak English as a second language and some are new immigrants with little English. The 
project looks at changing the cultural capital of the mathematics classroom so that it better 
matches that of Pāsifika students. Complex and challenging mathematics problems are 
devised around aspects of Pāsifika culture and the students’ daily lives.   

Core Pāsifika values are explicitly used to underpin the social and sociomathematical 
norms constructed within the mathematical inquiry community. These values include 
reciprocity, respect, service, inclusion, family, relationships, spirituality, leadership, 
collectivism, love, and belonging. The students are placed in mixed ability groups which 
runs counter to common New Zealand practices and the Pāsifika concept of collectivism is 
used to structure small group activity. This builds on the notion of success of the group as a 
collective, rather than as individual members in the group. Another example of the use of 
Pāsifika values is the use of reciprocity and service. The students are structured to be 
responsible to ask and respond to questions and use mathematical argumentation in ways 
considered respectful as a Pāsifika person.  

In this project students were also encouraged and supported in using their first 
language when discussing, explaining and justifying their mathematical understandings. 
This recognised that Pāsifika students often have to deal with various language difficulties 
when learning mathematics including at times their first language not having an equivalent 
word for the concept that they are learning about. In addition, in order to achieve success in 
mathematics the students need to be able to read and understand the mathematical 
problems set for them. This can prove difficult for Pāsifika students who do not have 
English as their first language. During the course of the research these issues were 
minimised by encouraging the students to switch between their first language and English 
in order to develop deeper understandings. One of the Samoan teachers also regularly 
switched from English to Samoan to help individual students clarify the problems and to 
get them to explain their reasoning.   

In contrast, prior to involvement in the larger project the teachers taught according to 
the New Zealand Numeracy Project (Ministry of Education, 2004). The students 
experienced mathematical activity within ability groups and tasks were drawn from the 
Numeracy Project which was English language based and tends to better match the beliefs 
and values within the frame of the more dominant Western participants. This paper reports 
on three teachers (2 Pāsifika and 1 Māori) and their students who ranged in age from 10 – 
12 years. Pseudonyms are used for the three teachers. In their previous mathematics 
teaching all three teachers described themselves as the disseminator of knowledge and the 
main power holder in the classroom.  

111



For this paper only one section of the data was used. This involved a set of open ended 
questions which allowed for multiple responses. Analysis of the data consisted of 
comparing and contrasting responses from the different teachers and students.  Emerging 
themes and patterns were determined and analysed.  

Results and Discussion 
The initial interview question explored how addressing the cultural identity and the 

core Pāsifika value of reciprocity changed how the students considered agency and power 
in the mathematical activity. In response Hone one of the classroom teachers explains: 

Hone:  What I’ve noticed over the time I have been part of the programme is the importance of 
having the student voice as opposed to being teacher directed. When it’s all teacher 
directed you can share till the cows come home but if it doesn’t make sense to them it’s 
not going to. If you give them a problem and say go away and have a look at that, come 
back to me, what do you think is happening? They start sharing their ideas and they feel 
valued because they are being listened to. 

Student ownership of the mathematics had become shared within an expectation of mutual 
responsibility. In the changed roles students could be teachers while the teachers could 
learn from the students as Eti another teacher explains:  

Eti:  There has been a shift in the percentage of student voice. The locus of control is not so 
much us, but what the students are discussing and sharing and that’s really powerful 
seeing that shift from us having all the power to a shared power…and it’s a shared 
responsibility and we become the facilitator and the students become teachers to each 
other and that’s really good to see. Because there is more student voice and they have 
more control you can also see what the students know and how they think, they can 
explain their reasoning more. We can also learn more about them, like they come out with 
strategies to solve some of the problems that I haven’t thought of and it’s like…. yeah that 
works.  

The students also described the way in which they now shared the responsibility for 
their own learning and the learning of others. They described how the power was shared 
between the teacher and students and how this changed the classroom mathematical talk. 
As the students explained:  

Sione:  Yeah, It’s not just one person answering the question; we get others’ opinions so everyone 
understands. It’s our responsibility as a team to work together. And it’s good because you 
can talk to people. Before you just had your book and you got a growl if you talked or 
asked someone a question but now you can.  

Luana:  In this maths we have more power. He (teacher) gives us the problem but the problem is 
about us ….  our reality and we have to figure it out, we are responsible for our own 
learning and others’ learning too, we have control. 

A number of students also described how the teachers through listening to them learnt 
new ways of thinking mathematically. They also identified how the teachers were able to 
respond and progress their reasoning ‘in the moment’. For example Siale stated:    

Siale:  He can learn what we think and how to help us improve. 

Clearly, within the more balanced power relationships what Freire (2000) described as 
dialogical education was evident. In these classrooms the mutual respect of all classroom 
members supported the development of reciprocal relationships.  

The second interview question examined how integration of core Pāsifika values into 
the social and sociomathematical norms in the mathematical activity assisted the students 
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with their learning and identity. The teachers described metaphorically how they were a 
Pāsifika family and how this frame shaped the interactions:  

Hone:  Family is big, it’s everything. The way our classes are set up now everyone has a chance to 
share ideas, and like a family everyone helps out, and nobody is left out because everybody 
has a job to do and that’s the Pāsifika way and the Māori way. We talk about that a lot as a 
class, like if you are doing the housework everybody helps or if you are making an umu or 
hangi (earth oven) everybody has a job to do. It might be dig the hole or peel the spuds but 
you have a job… and like with a vaka (canoe) everybody has got to paddle in the same 
direction, in time if you are going to move and the kids can relate to that because that’s their 
world. 

They described how respect shaped the way the students engaged in mathematical 
argumentation:  

Eti:  Respect is a big part of being a family as well. Everyone shows respect because we are a 
family and they know they all have a say and have a chance to listen to what other people 
say and if things are not clear to them they can generate friendly arguments and say… hey 
where did you get that from because my understanding is this and everyone comes away 
with a broader understanding. 

Taking risks with mathematical reasoning and making mistakes were presented as learning 
contexts within the context of the Pāsifika values:   

Sina:  We talk about the value of respect and about accepting others, and that’s really strong. We 
encourage them to participate and take a risk but it’s safe because there is respect and 
inclusion and love so nobody is going to put you down if you get it wrong because we learn 
from our mistakes.  We are all learners and we have the right to learn and the responsibility 
to listen to others because we are family.  

The students also described how the different Pāsifika values shaped the way they 
engaged in mathematics. They described how respect for each other shaped how they 
engaged in mathematical argumentation: 

Sione:  Respect is real important. When you have respect you can have friendly arguments and you 
argue about the maths so it’s not nah you’re wrong or you’re dumb eh, it’s like I don’t agree 
with your maths and this is what I think or you have to convince me. 

Grace:  You can have friendly debates about maths……and then you have to justify your answer. 
And then if you made a mistake you learn from your mistake. 

Reciprocity and collectivism also shaped their interactions as they took responsibility 
for their own mathematical reasoning and the reasoning of others’:  

Luana:  It is not fair if you have the answer and nobody else knows what you are talking about. So 
you have to explain step by step to help them get to their answer so they understand and not 
just go I got an answer so…….You have to help each other figure it out. Everyone has to be 
included and contribute to the work. You have to encourage them to get their own answer 
though, not just give them the answer. 

Josef:  Respect is important because they may have an answer that’s wrong, but don’t judge them. 
If you don’t show respect then how are we a team? How can we work together and take our 
ideas and put them together. 

With the Pāsifika values incorporated into the ethos of the classroom there was no longer 
disconnect between the home life of the students and the school. Family, sharing and 
collectivism had become the cultural capital promoted in the classrooms rather than 
individualism and competition. Mutuality and respect were integral to the development of 
the mathematical inquiry community.  
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The next question explored how the use of problems which drew on the context of the 
students’ every-day lives and were culturally relevant affected their learning. The teachers 
recognised how the different contexts lent themselves to learning across the mathematical 
strands. They also described how the students became more deeply engaged when the 
problems connected to their own reality:  

Eti:  Things around family…even if you were talking about food….how many corned beef 
cans… you can also link the strands in…measurement, volume, capacity, how many plates 
will you need…and the students can relate to it. Cultural contexts might be looking at tapa 
patterns and the types of maths in the patterns and they get to share back their experience 
and they can compare what they call it; because in Samoa it’s Siapo and Tonga it’s Ngatu 
and Fiji it’s called Masi because if you just said tapa lots of the kids wouldn’t know what 
you were talking about but they have these discussions and they all have a concept of the 
patterns but they hadn’t seen the maths in that. You can then pose a problem and if they 
have a grasp you have a foundation for the discussion and we can then expand the 
maths….it’s not until they make those connections they realise the real life situations they 
are involved in like a hair cutting ceremony or making ula lole (lolly necklaces) that maths 
links in so when we highlight that they are like WOW, there is maths here. Until we started 
to bring these types of problems they didn’t make those links and they saw maths as 
something they did at school that was not relevant. This has been one of the most powerful 
parts of the maths project. The biggest concept for our kids to know is maths is 
everywhere……it is not just for maths time. That’s the hook in…. we practise that with our 
family… we practise this in our church and in our community so when they make those 
links and can tie it into…. well maths is everywhere. Maths is part of my culture… the value 
of maths changes and the idea that maths is hard or alien or random changes as well.  

The teachers recognised how the problems connected the students’ home and school 
mathematical lives. The students also affirmed the importance of the use of relevant 
contexts and seeing themselves in the mathematics problems: 

Josef:  The maths is about us, about the community. The problems relate to our cultures and 
celebrations which makes it more understandable. 

Luana: It makes it easier for us to learn…like the ula lole (lolly necklace) problem because most of 
us have made it before and we can see it and have a picture in our minds so we can see how 
it’s proportions and ratios like one chocolate to three fruit burst or minties.  

Grace:  When the problems are about us you can see that maths is real and it’s useful…...not just 
something random you do at school. 

Importantly, not only did the problems connect their home and school mathematical life 
but it also normalised them as citizens within their own culture.  

Sione:  When the maths is about us and our culture it makes me feel normal, and my culture is 
normal.    

Luana: Yeah like it is normal to be Samoan or Tongan. 

The students were provided with opportunities to see mathematics in their ‘lived life’ while 
at the same time their ‘lived life’ was affirmed through ensuring that their cultural capital 
was reflected in both mathematics problems and activity.  

The final question explored how the use of the first language of the different students 
supported them in engaging and learning mathematics. The teachers described how all 
class members supported each other:  

Sina:  My ESOL girl had only been in the country for a week so some of my Samoan girls helped 
her by speaking Samoan to her. They would read the question to her in Samoan so she could 
understand and she is able to talk back to them and explain what she is doing. I am Samoan 
so I understand what they are saying as well but if they were Cook Island I would just get 
some of the Cook Islanders to talk in their language and translate for me or represent in a 
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different way so I would get them to draw it and I would understand what they are drawing 
so it doesn’t matter what nationality they are. So it’s just using different ways because she 
wasn’t getting it but when they were able to switch and talk to her in her own language she 
was able to make connections and go okay now I know what they are talking about. 

The teachers also described the use of different Pāsifika languages to deepen 
understanding and ensure that all members of the community could interact: 

John:  It’s really powerful if they can use their own language because sometimes it might just be 
that they don’t understand the question or even the ones that speak English there might not 
be a word in English that represents what they are talking about or they might be more 
confident speaking Samoan or Tongan and then others can translate. Without that, like in the 
past those kids didn’t have a voice and you would just think they couldn’t do it. It really 
helps transfer the power as well, as I don’t always understand and they have to translate for 
me and their understanding really improves when they do this. 

The students also realised the value of using different languages: 
Sione:  Sometimes it helps to explain things in Tongan because some of the Tongans in our class 

are new and their English isn’t that good but they can understand the maths in Tongan 
which is cool because before you didn’t really speak Tongan in class.  

The encouragement of the use of students’ first language in mathematical activity not 
only helped with deepening the conceptual understanding it also improved their self-
esteem and disposition towards mathematics as language was no longer a barrier to 
success.  

Conclusion and Implications 
Jorgenson (2014) challenged the mathematics community to find other ways to address 

the inequitable outcomes which are evident when we look at who achieves in mathematics. 
This paper suggests some ways of beginning to address her challenge. The findings 
illustrate that when teachers do seriously consider the cultural capital of the students they 
carefully consider its influence in their teaching and so they begin to balance more 
equitable outcomes for their learners in mathematics. The lived reality of their students 
became what guided the ethos of the classroom. This supports Bartolomé’s (1996) 
contention that when educational activity does not match the world of the learner they are 
precluded from achieving. 

The responses from teachers and students reinforced what Hunter and Anthony (2011) 
had suggested regarding the importance of culturally relevant values when working with 
Pāsifika students. In this study evidence is provided of how students learnt how to interact 
with each other in respectful ways and appreciate the cultural differences. Issues of cultural 
differences and perceived abilities also lessened as the students began to perceive what 
their roles were as users and doers of mathematics. Boaler (2006) viewed this as gaining 
relational equity. Illustrated here in these findings is how she argued that students develop 
respect for different cultural groups when they are provided with opportunities to learn 
through culturally relevant examples and actions.  

In the findings in this paper we have presented data that suggests not only a shift in 
identity but also a shift in mathematical disposition. Through culturally responsive 
teaching and the teachers’ actions of drawing on the cultural capital of the students it 
allowed them access to the mathematical problems and also supported them to engage with 
each other mathematically in culturally appropriate ways. The teachers too were inducted 
into a world where they could develop a vision of culturally Pāsifika responsive actions 
which they could use in their mathematics teaching. Closely aligned was the way in which 
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the views of the students had shifted towards seeing mathematics as part of the world they 
inhabited and something they needed within that world.  

Clearly evident in the findings of this paper is the way in which culture and language 
shape the identity of students. These Pāsifika learners were empowered by the actions of 
their teachers as they explicitly drew on and used the cultural capital of the students in 
ways that supported them as mathematical learners. The results were transformative in that 
not only did the teachers bridge the gaps maintained by what is taken as normal or status 
quo – they also were able to bridge the same gaps for their students and empower them as 
learners. The implications of this research link directly to the need for more research in this 
field. The problem society is creating in allowing groups of underachieving students to 
continue needs to be addressed. This study suggests that we do have some strategies which 
directly illustrate the effect of culturally responsive teaching but we need to explore this on 
a larger scale.   
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We argue the importance of praxis in financial literacy education teaching practices that is, 

the moral and ethical nature of teaching and learning. Post the global financial crisis of 

2008, the teaching of financial literacy has become a priority for many countries. 

Indigenous communities are often the target of broad FLE strategies and/or government 

policies. We present a case for praxis in financial literacy education by drawing on 

interview data following a financial literacy ‘train the trainer’ workshop in an Indigenous 
community in Canada that failed to gain traction. 

Introduction 

Improving financial literacy is a global concern with many countries establishing 

initiatives and strategies to help citizens acquire the financial knowledge that is thought to 

be necessary to ensure effective management of personal finances over a lifetime. With 

financial well-being the ultimate aim of most financial literacy initiatives (Blue & Brimble, 

2014), financial literacy education (FLE) promotes financial skills and knowledge. 

Therefore, a plethora of FLE initiatives established by government, industry, workplaces 

and community are available, although there is concern about the effectiveness and 

appropriateness of many of these programs (Worthington, 2013).  

In Australia and Canada, FLE train-the-trainer multiple day workshops have been 

offered to Community organisations working with low-income individuals. These 

workshops are usually developed and financially supported by financial institutions and 

this approach to training and learning is an area of concern that will be addressed in this 

paper, particularly vis-à-vis the praxis of FLE. Indeed, despite the trainers best intentions 

to financially educate vulnerable individuals, there is a risk that the individuals receiving 

this training are being misguided into thinking their financial problems could be ‘fixed’ if 

only they could acquire the basic personal financial skills such as developing a budget 

(Pinto, 2009; Willis, 2008). While these tools and skills do provide financial awareness, 

they do very little to change behaviour and are unlikely to assist an individual move from 

their current financial circumstances (Lyons, Chang & Scherpf, 2006). 

In this paper we examine the trend to educate some of the most vulnerable individuals 

in society with generic FLE. The impetus for this study was the ineffectiveness of a FLE 

train-the-trainer workshop in an Indigenous community in Canada. It is important to note 

that the first named author of this paper is a member of the Indigenous community, and so 

in conjunction with fellow Community members, the approaches to learning, the relevance 

of FLE, and their felt needs regarding FLE were explored. Furthermore, understanding 

educational praxis as “the moral, ethical and caring dimension of teaching” (Grootenboer, 

2013, p. 1) appears to be lacking from current FLE practices. In this study we examined 

the possibilities of what could be achieved in the Community and it was found that site-
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based and Community developed FLE was desired, relevant and important, and some of 

these ideas are outlined in later sections. We also discuss FLE as praxis in Indigenous 

financially excluded communities and report some findings from the interviews (both 

individual and group) that took place in the Community with Community members who 

had either attended the training and/or had an interest in FLE. 

Financial literacy and financial literacy education 

Financial literacy has been defined as “a combination of financial awareness, 

knowledge, skills, attitudes and behaviours necessary to make sound financial decisions 

and ultimately achieve individual financial wellbeing” (Atkinson & Messy, 2012, p. 2). 

Financial literacy continues to be a priority area for the OECD  

… as highlighted by three sets of principles, endorsed by G20 leaders: the G20 Principles on 

Innovative Financial Inclusion; the G20 High-Level Principles on Financial Consumer Protection 

and the OECD/INFE High-level Principles on National Strategies for Financial Education. 

(Atkinson & Messy, 2013, p. 9) 

Regardless of whether an individual ever achieves financial well-being, the pedagogical 

focus of FLE is being able to equip students with the financial skills and knowledge to 

perform appropriate and efficient mathematical calculations when faced with everyday 

financial decisions. This is what Sawatzki (2013 p. 557) refers to as the ability to problem 

solve your way through real life “financial dilemmas”. In Australian primary and 

secondary mathematic classrooms students will be taught these financial literacy skills 

under the money and financial mathematics component of the mathematics curriculum 

(Mathematics Curriculum, 2015). Therefore, education that focuses on increasing an 

individual’s financial literacy through the acquisition of personal financial knowledge we 

refer to as FLE (Blue, Grootenboer & Brimble, 2014). We understand the importance of 

teaching FLE however, we do believe that the expectations of FLE are unrealistic and 

argue that they need to be reframed so that they align with the appropriate expectations and 

outcomes for each individual and their life choices (Blue & Brimble, 2014). Nevertheless, 

FLE has a role to play in reaching individuals living in financially excluded communities. 

What this role is, and the expectations and outcomes associated with the delivery of FLE to 

financially excluded communities will be explored throughout this paper. 

The role of a praxis perspective and site-based education development 
We align praxis in the FLE classroom/workshop to the dual purpose of education, that 

being for the benefit of both the individual and society (Grootenboer, 2013). Therefore, 

FLE teachers and/or practitioners may have a critical role in developing students’ financial 

identities, similar to those reported about mathematics classroom teachers, but also to 

develop financial literacies across the Community for the benefit of the Community as a 

whole. Financial literacy is in the compulsory school curriculum in many countries, and it 

is often the mathematics teachers that are given the responsibility of teaching it (Blue, 

Grootenboer & Brimble, 2014). Grootenboer (2013) argues the importance of having 

skilful and knowledgeable practitioners from a pedagogical perspective, but that good 

“…teaching is more than knowledge and technique – it is a form of praxis” (p. 1). We 

view this as an important requirement in order to prevent the inequalities and 

marginalisation that may occur when financially vulnerable individuals, whom are 

financially educated, are unable to act on the financial knowledge they receive. Moreover, 

FLE is not the solution to poverty as, “…poverty is … an issue of low wages” (Ivanova 
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and Klein, 2014, p. 2), long working hours and lack of access to social goods (Raffo, 

2011). Part of teaching financial literacy with a praxis perspective involves understanding 

what FLE can and cannot offer students. It also involves understanding who benefits in a 

capitalist economic system and who suffers; that is that some individuals will obtain great 

wealth and others will face poverty - such a system guarantees these two extremes (Arthur, 

2012). 

Also, many researchers have argued that there is no ‘one-size fits all’ approach to 

education and each site and has specific circumstances and conditions (Kemmis, 

Wilkinson, Edwards-Groves, Hardy, Grootenboer & Bristol, 2014). Therefore, the move to 

more sustainable FLE pedagogies involves responding the specific demands of the site, 

what Kemmis, et al. (2014) refer to as “site-based education development”.  This is “when 

educators think together about how best to do this, in a particular school, for particular 

students and a particular community, they are engaging in site based education 

development” (p. 212). This was an important aspect of this research project, particular as 

the generalised ‘best practice’ notions of FLE had been ineffective and even damaging in 

the past. Indeed, it was evident that the Community members interviewed wished for FLE 

resources that were collaboratively developed and connected to their existing practices and 

site conditions.  

The Study 

This study took place in a Canadian Indigenous reservation and the Community is 

located on an island. Approximately 620 residents or 250 households live on the 

reservation year round and approximately 1000 members live off reserve (First Nation 

Profiles, 2015). There is no access to a mainstream financial institution (i.e., a bank) on the 

island (it is a financially-excluded Community). Both ‘on’ and ‘off’ members of the 

Community were included in the study. The study focused on three key themes:  

1. The Community’s experiences with FLE; 

2. The Community’s interest in FLE; and 

3. The Community’s perception of what FLE can/cannot achieve and its relevance. 

We conducted interviews with individuals and with groups of Community members 

who had either attended the previous financial literacy workshops and/or had an interest in 

financial literacy education. These interviews took place approximately one year after a 

financial literacy ‘train-the-trainer’ workshop failed to gain traction. The workshop was 

run by an established organisation (funded by one of the big Canadian banks) was invited 

by some Community members to deliver a financial literacy train the trainer workshop 

after some consultations. Nineteen participants were interviewed and their audio recorded 

interviews were transcribed. During these interviews we explored the reasons for this 

workshop inability to develop new trainers and the relevance, interest and perception of 

financial literacy in Community. After the interviews were transcribed, the text was 

analysed and this involved first manually analysing the transcripts for themes and then 

using the NVivo software to further refine and organise the thematic structure.  

Findings 

After the data were analysed there were a number of themes and issues that emerged. 

Here we will report specifically on the findings related to the relevance of FLE in the 

Community; the train the trainer workshop inability to develop “new” trainers; and the 
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practice of FLE and the issues associated with a financially-excluded Community. There 

were four key findings that emerged: 

1. FLE is important and relevant for the Community; 

2. Community members are not comfortable presenting; 

3. The previous practices of FLE were unsustainable; and, 

4. Living in a financially excluded Community present several challenges. 

Together these make a case for a praxis approach for FLE in this Community, and also 

lend weight to similar considerations in other similar disadvantaged and marginalised 

communities and groups. We will now outline and discuss each of these findings in turn, 

and in doing so we will rely on the Community members own words to make each point. 

FLE is important for the Community 
We found FLE was important and relevant for the participants. Some Community 

members reported the desire to start a program for youth before they leave the Community 

to attend post-secondary school. For example, a Community member (Female, CM1) 

stated; 

It’s [FLE] relevant … You know everyone wants to learn about money and everyone wants to, I 

guess, it’s like everything revolves around it right? It brings out either positive behaviours or 
negative behaviours that everyone sees especially in a small community. 

And, another Community member similarly commented; 

…. we’ve been wanting to make a program to start it with the later years in the public school and 

then to our high school kids… before they go off to college education. So that they know how to 

manage their money right away. (Female, CM2) 

With this in mind, and was noted in the second quotation, many Community members 

wanted FLE to be an integral part of their high school education.  

… I do think that there should be more in the education system. Like you know growing up and in 
high school and stuff doing math most of the time it ends up being stuff you will never use again. 

You know I wish that more education in the education system you know focused on personal 

finances like how do you do your taxes and how to do business stuff and investment stuff and be 

smart with… I don’t know anything about taxes or how it works. Like I have student loans but I 

don’t necessarily know how it all works. I think there are a lot of things that we don’t learn that are 

really important, you know growing up. I think that is something that can be for the Community if 

you are going to leave the Community and you are going to be going to school or to get a job 

somewhere. It is stuff you need to know. So you know maybe not for everyone, that stuff is relevant 

but maybe for parents to learn. (Male, CM1) 

However, there was also a concern that the FLE that was undertaken in the high school 

was relevant and appropriate for the particular needs of the students in this site. This was 

as necessary for the individual students themselves, but also for the Community itself, thus 

highlighting the dual purposes of education noted earlier. 

Some of it went over their heads; like it was too much information and then we are looking at 

budgets for our work anyway just teaching people the basics financial things. (Female, CM2) 

… when a client comes to a realisation on actually what they are spending, like that budget sheet 

was a real eye opened for me. To see dollar for dollar were it was going and it was going to things 

that I didn’t really need like magazines, the cigarettes, pop, junk food, anything like that. So when  I 

[saw] that for myself it was a matter of making those choices on whether or not, prioritising what is 

really important. (Female, CM3) 
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These snippets of data are reflective of the larger data set, and together that show a clear 

desire for FLE in the Community. Furthermore, this FLE needs to be appropriate and 

designed for the particular needs of the individual and the Community more broadly. 

Community members are not comfortable presenting 
Although the Community members expressed a desire to be involved in the planning 

and development of FLE in the Community, they expressed a sense of discomfort about 

actually being financial educators themselves. This is somewhat ironic given the ‘train the 

trainer’ model for the previous FLE program in the Community. The goals of this previous 

program were to: 

1. Increase the financial skills and knowledge of the “trainers” that attended this 

course; 

2. Establish financial literacy trainers in the Community; and, 

3. Increase other Community members personal finance skills and knowledge by 

these ‘trained’ members teaching the content to others in the Community. 

It was reported by Community members that attended this training that their financial skills 

and knowledge did increase after attending the workshop however, it was also reported that 

no one was willing to become a financial literacy trainer after attending this workshop. 

Therefore, no financial literacy trainers were established in the Community and these 

newly acquired financial skills and knowledge were not reported to be passed onto other 

Community members in a workshop setting. 

No, the majority that were there thought it was a pretty good course and gave them some awareness 

into financial literacy and what to look at and what to expect around budgeting and all that but they 

all agreed that or the majority agreed that they wouldn’t be willing to go out and teach people. 

(Male, CM2) 

They would be uncomfortable presenting and I think presenting is another piece in itself that is not 

specific to financial literacy but with anything. You know presenting anything, they are 

uncomfortable with that. I mean which we knew that was going to be case anyway. But [name of 
the organisation delivering the workshop] was hoping to get more facilitators and instructors out in 

the Communities and that is part of their goals to educate more people out there who can educate 

their clients or Community members. And we thought that was a good idea and that’s why we 

brought the program here. So it’s not taking off that way because people are just, really just don’t 

want to present. (Male, CM2) 

Clearly there is a need in this Community to develop and implement FLE that is morally 

and culturally appropriate for this particular site – a praxis approach to FLE. To this end, a 

brief one-off workshop that attempts to ‘train the trainers’ is unlikely to be effective or 

appropriate, even if the content can be seen to be relevant. 

The previous FLE practices were unsustainable 
Not surprisingly, the previous generalised FLE practices based on the ‘train the trainer’ 

workshops delivered by external agencies were unsustainable with unrealistic expectations 

and outcomes. We argue that it is an unsustainable practice because the generic training 

material that is taught as an additional practice for individuals to adopt. By this, we mean 

that it does not connect or is not incorporated into the Community members’ existing 

practices, nor is it tailored in any way to the address the needs of the Community. 

Furthermore, the pedagogical practices seemed to disconnect with the Community. 
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It kind of stopped we’re probably the only ones that use it. Because other people don’t like to do 

workshops or conferences. (Female, CM2) 

But, I think coming back to our discussions that we’ve had and designing a program or a model that 

we can use in our community. [One] that people would be comfortable using and delivery it in our 

own style. Whether it is one on one or group sessions or even if it comes down to people deciding 

that we would like an independent person not part of any staff to be delivering this type of 

information as like an advisor that comes in once in a while. Maybe more people [would be] 

comfortable with that because they don’t have to devolve their financial information or their habits. 

(Male, CM2) 

That said, there was one participant (Female, CM4) who spoke about using a “budget 

sheet” that she had incorporated into their practices at her place of employment, thus 

indicating that some practices were taken-up in a limited way where the individual could 

see the relevance and application. 

This is another personal budget sheet for them [the clients] [it] has [been] incorporated in the 
system, we all have it, if a person comes in requesting assistance with hydro or maybe they need an 

appliance or something that is just part of TSF (transitional support funding) this is part of the 

application and it is already in our system and we just enter the numbers in. 

Living in a financially excluded Community present several challenges 
With one store in the Community individuals were faced with either using the ATM to 

withdraw money from their account (no deposit facilities), handing their cheques (from 

employment and/or social assistance) over to the store and spending the required 

percentage to have the cheque cashed, and/or traveling on the ferry and then by vehicle 

into town to deposit and/or withdraw their cheque (this could also include sending your 

cheque into town with a trusted relative/friend to do this for you). The opportunity to turn 

to predatory lenders is possible as a simple task of depositing a cheque requires two modes 

of transportation and almost an hour of your time to get to the bank (assuming direct 

deposit is not set up).  

The implementation and use of direct deposit and online banking is of such importance and makes 

so much sense today.  When you think of the current method, where members of the community are 

earning an income or social assistance, and they have to make this great journey to cash their 

cheque.  Using direct deposit and online banking methods will eliminate the need to make the trip 

with your pay cheque from the island into the town where there is a financial institution and then 

you also have to wait the 3-7 day business hold day until that cheque clears, is going to prevent 
people from wanting to go to these pay day lenders [cheque cashers] that are charging them a 

massive amount of interest upfront. So it just makes so much sense to have direct deposit where 

they will have immediate access to their money. If payday is Friday they have access to their money 

on Friday it would just completely eliminate all of this because a lot of people are thinking if I’ve 

got to get off this Island and I am relying on the fact that the boat running and the weather is good. 

Then I’ve got to get into town, and then I have to wait 3-7 business days, people are probably 

thinking I don’t have up to a week before this money clears. I need this money as soon as possible. 

Instead they side with thinking it is simpler and quicker to pay this person at the payday lender 

place $100 so I can get my money now; I am going to do it. (Female, CM5) 

Clearly, the standard FLE usually offered by a major financial institution is not going 

to be appropriate under these conditions. Furthermore, a lack of employment opportunities, 

homelessness and lack of collateral in their land were identified as issues for the 

Community that meant that quite particular FLE was required.  

… there’s not much work here so there aren’t even opportunity to get money for people that have 

low education or don’t want to leave the reserve or whatever (Male, CM3) 
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I don’t know how people get there? I guess it could be pretty easy. I am just thinking if I lost my job 

I could be on the street pretty quickly. (Female, CM6) 

FLE that focuses on specific initiatives or activities in the Community such as learning 

how to prepare the financial sections in grant applications and learning how to read the 

Band Office’s financial statements was deemed important. Also, how to navigate it 

financially without having collateral was identified as a major issue in the Community.   

 [Indigenous people] are funded by and can only be funded by grants and that’s what we have to do 

each year and even the programs at the [Indigenous] admin office they have to submit their grant 

application every single year and this is what we are getting from the Government. Now people on 

the outside don’t understand this and they think we have all this potential to have great businesses 

and stuff like that but we have no collateral. Because we can’t do that and banking institutions rely 

on collateral and we don’t have any of that so no one would ever fund us and if we wanted to go 

into a [type of] business. We won’t be able to do it because financially no institution would finance 

us. So it’s a matter of okay where do we go now? (Female, CM7) 

Throughout the four findings outlined above it is clear that FLE was wanted and needed in 

the Community, but they needed different content and teaching practices than they had 

experienced in the past. 

Conclusions, Implications and Recommendations 

The inappropriate one-size fits all approach to FLE that is often is delivered across a 

wide range of contexts and communities reaches only a small few who fit the generic or 

textbook model (Pinto, 2012). However, the example of this Community shows that this 

can be almost completely useless and inappropriate. These quick fix approaches seem 

particularly problematic in sites of poverty and disadvantage, particularly where it is not 

easy to change your circumstances (e.g., take on a higher paying job). Importantly, we 

recognise that FLE is not the solution to poverty. The real issue of poverty which involves 

low wages, working long hours and lack of employment opportunities are not going to be 

solved by FLE. Understanding what FLE can and cannot achieve is what we view as the 

moral and ethical aspect of teaching and learning FLE. Specifically, within a high school 

mathematics classroom connecting FLE to real life “financial dilemmas” is an approach 

that we support as some participants we interviewed wished this would have occurred in 

their classrooms. However, increased financial awareness will not ensure that the student 

can financially support themselves outside of their Community. Rather the student will be 

more aware of the “financial dilemmas” they are likely to experience. Thus FLE content 

that is relevant, age and culturally appropriate, inclusive and requires the students to 

critically explore multiple solutions is well placed in inquiry based high-school 

mathematics classrooms. Classrooms where the teachers realises that being financial 

literate does not leads to financial well-being and that ‘poverty’ will not be overcome by 

making effective financial decisions.  
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This paper explores teacher’ ‘identity’ as two teachers talk about teaching mathematics in 
classrooms situated within two different contexts of learning – mainstream and alternative. 
Employing a form of discourse analysis framed within a participation approach to learning, 
this paper describes teacher identity in terms of the norms and practices that frame the 
translation of content, pedagogy and assessment in each teacher’s classroom. Differences 
between each context of learning are highlighted and parallels drawn between similarities. 

The notion of identity is difficult to theorise. It cannot be simply reduced to elements 
such as thinking, emotion, morality, gender, agency, or practice (Roth, 2007). However, 
researchers often focus on one or two elements of a notion of ‘identity’ in order to explore, 
for example, the power of agency through working mathematically (Grootenboer & 
Jorgensen, 2009). In many ways, what each of these studies is attempting to do is provide a 
believable account of individuals ‘being’ in a world that is observable, a world that is 
constituted of many contexts of activity based on distinctive principles and practices (Roth. 
2007). 

This paper explores the nature of the ‘identities’ engaged by teachers when working in 
mathematics classrooms that may be considered to be at the margins of mathematics 
teaching. ‘Identity’ is conceptualized in this paper as a community-forming process where 
adults and students express and communicate ideas according to a set of norms and 
practices (see Lave & Wenger, 1991). 

Theoretical Framing 
According to Wertsch (1998), the tension between people and the cultural means 

(norms and practices) at their disposal results in an on-going process of transformation and 
creativity that has the potential to not only change the relationship of people to the world 
by shaping and constraining their participation in it, but also to transform the individual 
person by incorporating his/her activity into new, functionally active systems that are 
culturally and historically situated. One means of capturing the norms and practices of a 
cultural group is through the use of narrative, that is, the telling of the “rich and messy 
domain of human interaction” (Bruner, 1991, p.4). 

Narratives may be elicited as a spoken or written account of stories revealed in long 
sections of talk or in a single research interview (Liamputtong, 2013). The purpose of the 
research reported in this paper is to explore the nature of the identities constructed by 
teachers as they participate in face-to-face interviews designed to elicit their accounts of 
being a teacher. As narrative interviews are concerned with appreciating and contrasting 
differences in perspectives (Jovchelovitch & Bauer, 2000), the interviews of two teachers, 
one from a mainstream system of education and one from an alternative system of 
education were analysed for the purpose of exploring the identities constructed and their 
links with the principles and practices privileged in their context of teaching mathematics. 
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Method 

Interview Design 
In order to privilege the context of education, mainstream or alternative, interview 

questions were designed that conformed to the ‘participation framework’ employed by 
Vadeboncoeur (2006) to map young people’s learning in different contexts. This 
framework situates interview questions within broad categories relating to location, 
relationships, content, pedagogy, and assessment, allowing different questions to be asked 
according to context, thus allowing the story of the interviewees to be told, but ensuring 
that information is provided to assist in explicating the similarities and differences across 
contexts. Interviews were conducted by researchers in places where interviewees felt 
comfortable to tell their story. Each interview lasted for approximately 30 minutes, was 
audio recorded and transcribed for analysis. 

Participants 
Mainstream School Context: The teacher who is the focus of this paper, Sam, taught 

mathematics to students (ranging in age from 12 to 18years of age) at an independent co-
education P-12 school located in a middle-class suburb of a major city. Sam started his 
career, now in its 26th year, by framing his teaching of mathematics within pedagogical 
practices that reflected a transmission approach to teaching and learning. However, after a 
decade of wondering why students performed inadequately when it came to the application 
of mathematics to everyday situations, Sam began to view student learning within a 
framework that anchored his teaching to pedagogical strategies that afforded him a focus 
that privileged student understanding over teacher demonstration and student practice. It is 
well understood that the predominant pedagogical view in many mainstream mathematics 
classrooms is based on traditional approaches to teaching that privilege teacher 
demonstration and student practice (see for example, Handal & Herrington, 2003). As 
such, even though Sam teaches in a mainstream school his views about teaching 
mathematics (see Brown & Redmond, 2008, for more information) place his classroom on 
the margins of classroom mathematics teaching. 

Alternative Education Context: The teacher who is the focus here, Lisa, is an 
experienced female teacher in the middle phase of schooling (students ranging in age from 
12 to 16 years of age) and a long-term member (over ten years) of a ‘network’ of 
alternative education schools. It is for this reason that Lisa’s classroom may be considered 
to be on the margins of teaching mathematics. Lisa is responsible for planning and 
delivering the Numeracy program in the school. The alternative education school in 
question is a co-educational Catholic school where teaching and learning is characterised 
by small class sizes, a flexible curriculum that draws on individual student interest for 
curriculum focus, and a democratic pedagogical approach that encourages learner 
empowerment and autonomy. Multi-disciplinary teams of professionals work with young 
people who are vulnerable and experience a complexity of inter-related needs. The 
learning experiences also build self-confidence and esteem in students, promote an 
optimistic view of their potentialities and future, and assist them to develop the knowledge, 
skills and attitudes necessary to enjoy a healthy and fulfilling life. Teaching and learning is 
grounded in principles that guide practice such as: respect, for self, others; participation; 
safe and legal; and, being honest (see Vadeboncoeur, 2009 for more information). 
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Analytic Process 
To systematically analyse the interview transcripts, a framework was developed based 

on Vadeboncoeur’s (2006) participation framework that centred on the following broad 
categories: location, relationships, content, pedagogy, and assessment. This framework was 
chosen because it allows researchers to see links between learning contexts, thus allowing 
for an explication of the similarities and differences in the dilemmas encountered by the 
interviewees across teaching contexts (Vadeboncoeur, 2006). 

Analysis and Discussion 
The dilemmas that we aim to highlight and discuss in this paper focus on the categories 

of content, pedagogy and assessment. This focus was chosen for this paper due to the 
emphasis given to these categories in national school curricula documents. Only those 
segments of text pertinent to the analysis have been tabularised. 

Content: Knowledge Versus General Development  
Teaching curriculum emerges from the interview transcript as being of secondary 

importance for Lisa; her aim is not to teach young people mathematics knowledge and 
skills, partly because she thinks it is too ‘unsafe’ of these ‘kids’ to learn (see Excerpt 1). 

Excerpt 1: Safe to take risks 
Question: Can you tell me something that explains how you work with young people? 

Lisa: Um (...) it’s a hard question to answer in that it changes a lot of the time. You know it’s a 
dynamic place and I think that I have always come to the place with the understanding 
that I teach kids not curriculum. So the content of what I teach is not of great importance 
to me, it’s um, it’s certainly not my priority, neither sometimes is actually teaching them 
skills. Initially, my priority is to make them feel like they are learning. So there’s a lot of 
work, I think I put most of my energy into that, how to re-engage, how to help a young 
person experience success in some way. And that may be through addition or a piece of 
writing, or it may be through something curriculum type, but until they feel safe to take 
that risk, the rest is nothing. 

For Lisa, teaching curriculum and skills emerges in opposition to re-engaging ‘kids’ to 
learning, offering them opportunities where they can feel safe to try and make mistakes, 
where they can experience success and see opportunities (see Excerpt 2). 

Excerpt 2: Experiencing success 
Question: Are you preparing them (the young people) for anything? 

Lisa: We open windows, we open the curtains for them that’s what we do. And I think that’s 
what you’d find here, it’s not always about building up skills, but it’s about seeing 
yourself as a learner again. It’s about believing in yourself, it’s about being willing to 
take risks. It’s about experiencing success in something. 

For Sam, teaching Mathematics emerges from the interview transcript as being of 
primary importance. His aim is not to teach young people mathematics knowledge and 
skills out of context, but to find topics of interest that will assist the students to develop an 
‘holistic view’ of Mathematics where the knowledge and skills that are developed are seen 
as useful (see Excerpt 3). 

Excerpt 3: Building a holistic view of Mathematics 
Question: How have your learning experiences that you provide your students with changed? 
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Sam: We try things, I mean we try things that are interesting, that we find interesting, that 
hopefully the kids will find interesting and so we try to build things around that. To 
allow kids to build things around mathematics but also see the use in the mathematics. 
So it’s a case that we are sort of doing that. So we try and build a holistic view of 
mathematics so that kids don’t see mathematics as a bunch of functions, things that don’t 
relate to one another and I think that is probably really important. 

For Sam, teaching curriculum and skills emerges in tandem with engaging students in 
the learning of Mathematics, offering them opportunities where they can ‘stretch 
themselves’ and be guided and helped by a teacher who has a particular plan in mind to 
‘get to a particular place’ in the curriculum (see Excerpt 4). 

Excerpt 4: Moving understanding forward 
Question: What roles do you adopt in the teaching and learning process? 

Sam: I control it a fair bit because I want the kids to get to a particular place. There’s only a 
finite time that we have to get to it. We need to move the kids thinking forward. But if 
you give them something where they have to stretch themselves and that sort of stuff and 
I think that is pretty useful when the teacher helps and guides them and gets them to 
move their understanding forward. I don’t know how that is all going to go in the future 
though. 

Pedagogy: Teaching Versus Socialisation 
Teaching emerges for Lisa as having something to do with academic content, teaching 

the young people tables, to read and to spell and teaching them to solve tasks like planning 
a trip with a specific budget. However this is not the aim of teaching for Lisa and for those 
young people she teaches; she has a different benchmark for success for these young 
people; she would like the ‘kids’ to leave the school being socialised into ways of being 
that allow them to function in the world (see Excerpt 5). 

Excerpt 5: Saying sorry and meaning it 
Question: How does teaching and learning relate to what you do with young people? 

Lisa: I probably have a much lower benchmark for success, than mainstream teachers. The kid that 
says sorry and means it is a huge success for me. Um, when you see the lights go on, “Oh 
that’s why the zero goes there”, you know those little things, or when they speak nicely to 
each other, those are the things that actually show me success and certainly give me a lot of 
joy. 

Socialisation emerges for Lisa as the main goal; socialising these young people into 
‘proper’ ways of behaving and talking; their own ways of being are not acceptable for the 
wider society; school is a place that teaches them how to leave these ways of being behind, 
how to switch them off, gain ‘self-control’, and instead become like others (see Excerpt 6). 

Excerpt 6: Becoming like others 
Question: How does teaching and learning relate to what you do with young people? 

Lisa:  I also think that um, we probably, most of us I would say, have a broader view of what, 
ah, what needs to be taught and what is teaching. I mean sitting on that chair for longer 
than five minutes is teaching. Not swearing in public is teaching, so our view of what 
teaching is, I think is, yeah, and I think that those things are as important as the academic 
teaching we do, socialising. 

Teaching for Sam is about learning, it is about playing with the form of teaching to ‘get 
the kids to do the learning’. It is about facilitating students’ construction of understanding 
through engagement in meaningful and interesting tasks. Interest is the key to teaching for 
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Sam; he has a high benchmark for success for his students and their engagement with 
mathematics and he is willing to spend time, effort and resources in the pursuit of 
meaningful academic learning (see Excerpt 7). 

Excerpt 7: Finding interesting things in different places 
Question:  How has your approach to teaching and learning changed? 

Sam:  To my mind the learning is the thing that is important and that comes first and the 
teaching is there to facilitate that sort of learning. I try to get the kids to build their 
understanding and find ways of doing it, but also get things that are meaningful and are 
interesting. So I guess in terms of my teaching, that’s sort of where I am at. If I am not 
particularly interested in it then I probably won’t play with it too much. But if it interests 
me or if I think there is something that I can drag out of it, I am happy to spend time on 
it, and if I am happy to spend time on it then maybe the kids will find something 
interesting in it, and you will find interesting things in different places. 

Socialisation for Sam emerges in the context of linking mathematics to the ‘outside 
world’. Socialising in Sam’s classroom is about providing tasks that the students can relate 
to and ‘get engaged in’. School is a place that teaches students to see relevance in and to 
draw out meaning in the mathematics that they learn (see Excerpt 8). 

Excerpt 8: Seeing relevance in Mathematics 
Question:  So what do you perceive to be authentic activity in the classroom? 

Sam: I think that authentic, we try to find contexts that link to the outside world that the kids 
can see relevance to it. But sometimes something that’s authentic is something that the 
kids can relate to and can get engaged in. So it might not necessarily be a life related 
type thing, but if the kids can relate to it and can engage in it and can draw some sort of 
meaning from it then I probably think that can probably be considered as an authentic 
task. 

Assessment: Scientific Versus the Everyday 
For Lisa, academic knowledge appears to be of secondary importance; she seems to be 

very rational about what these kids can and cannot achieve – she seems to know exactly 
where they are and even more that they cannot go or be anywhere else in terms of their 
skills and knowledge (see Excerpt 9). 

Excerpt 9: What you need to learn 
Question: So how do you gauge your successes in teaching? 

Lisa: There’s a story I have that I think is a real example of that and I think this young man is 
quite a bright kid, um academically, and older, I think he was almost fifteen and I get a 
phone call in the office one day and I answered the phone, and this um, it didn’t sound 
like a young person actually, he had quite a deep voice and he said, “is John there?” John 
was a teacher at the time and he was in class and I said, “can I take a message?” and he 
said, “when does he come out of class?” and I said such and such a time, and he said, 
“can you just tell him that 3000 is nowhere near enough, I have to have at least 5, I can’t 
possibly do it on 3000”, and I said, “who is this?” he said it’s Pete, this kid, “oh right, 
what are we talking about Pete?” and then he went on to explain to me. He was doing 
this assignment where he had to plan for a trip with a budget of $3000, it really struck 
me. It was actually one of those things that I took away and reflected upon, and I thought 
he is going to pass that assignment and he is going to get a good mark for that 
assignment, and yet he couldn’t use the phone properly, he couldn’t say to me, “It’s Pete 
here can I speak to John?”, you know have we succeeded? You know I just had a 
different view of the grade he’ll get for that assignment, really doesn’t reflect what he 
has learnt or needed. 
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While Lisa does not see much relevance of academic knowledge for these kids, she 
does value some of their interpersonal skills, such as leadership and initiative; she is 
willing to legitimise and celebrate these over and above the academic (see Excerpt 10). 

Excerpt 10: Privileging interpersonal skills 
Question: Are you preparing them (the young people) for anything? 

Lisa: There’s one young man in my class, I have had him for five years now, and he hadn’t 
been to school for three years before he got to us um, a chronic school refuser, extreme 
behaviours et cetera. This last term he got 100% attendance so I got him a little wall 
plaque for it. Now he comes from a family of nine and I have actually taught six of the 
kids. And they all have this really specific learning problem in terms of reading. So in 
five years with me, his reading has not improved a great deal, and basically now we are 
in survival reading. Can you fill in forms, what do you need to survive beyond here? 
But, he won the leadership award from the ADF, Australian Defence Force, just last 
week, the grade eleven leadership award, he ran the footy team. 

For Sam, academic knowledge appears to be of primary importance. Instead of being 
concerned only with what students should achieve he seems to be very rational about what 
his students could achieve if provided the opportunity. He doesn’t seem to be concerned 
with simply knowing where his students are in terms of learning mathematics but also with 
knowing what might provide them with ‘a lot of usefulness’ (see Excerpt 11). 

Excerpt 11: Getting usefulness out of what you do 
Question: So what do you perceive to be authentic activity in the classroom? 

Sam: You know you try and find things that, like I had a kid that, in my year, he’s in my year 
11 and he’s going into year twelve. Now we set up a task for them to do but he, on the 
way through, he collected some data of a ball bouncing and he spent so much time trying 
to build an equation for that and do something with it. Rather than making him do this 
assignment over here, I just structured the assignment so that he could do what he 
wanted to do. He went away and he has built some really sophisticated mathematics to 
be able to model a ball that’s bouncing along the ground. But he wouldn’t have 
necessarily done that if I said, “No you can’t do that you have got to do this over here”. 
But he spent a huge amount of time doing that thing. Now that’s not necessarily what 
you do for all of the kids because maybe they can, maybe they can’t, and maybe they 
don’t necessarily show the interest, but this kid did and we were able to, at that particular 
point of time, provide him with the opportunity to do that and I think he probably got a 
lot of usefulness out of doing that. 

While Sam focuses on the relevance of academic knowledge, he does value some of 
the interpersonal skills that his students have, such as peer interaction and communication; 
he is willing to legitimise these as being ‘useful’ aspects of the academic (see Excerpt 12). 

Excerpt 12: Getting an idea of the sorts of understandings 
Question: So how do you allow students to express their social selves in the classroom? 

Sam: Oh that’s alright, I mean I think that peer tutoring and that sort of stuff is useful. But they 
have to have that time at the beginning to think about whatever it is that they are doing. 
Think about what they know and what they can bring to the discussion table. Then that 
interaction between the students and teacher is really, useful. In terms of getting kids to 
be able to verbalise their understanding because the number of kids who say, “Oh I know 
what to do”, but can’t communicate it, um, tells me that they really don’t know what 
they are doing, it’s just the procedure that they are following and they really can’t put it 
together. So when they actually verbalise it to somebody else or to the teacher, and they 
can do a good job of it, that’s when you start to get an idea of the sorts of understandings 
that they are building and how strong their understanding is. 
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Conclusion 
What emerges from these interviews are teachers who on the one hand have positive 

ideas about teaching in non-traditional learning contexts, as evidenced by their emphasis 
on interpersonal skills and re-engagement in general development alongside or above 
academic content knowledge. On the other hand this positive basis is lost by Lisa in her 
positioning of these young people as coming from dysfunctional families and rough world 
conditions and seeing them as not capable of making any real progress or re-engagement 
with education. In this way her goals of re-engaging these young people with education 
become translated into practices of socialisation; that is, teaching them how to talk nicely, 
how to sit still and follow the routine, how to learn to control themselves and hide their 
rough backgrounds. Instead of legitimising the knowledge and experiences that these 
young people bring to the learning context, and trying to re-engage them through those, 
Lisa aims to suppress these different ways of being and to teach them ways of overcoming 
these ways of talking and behaving. She does not seem to work on ‘what could be’, but on 
‘what is’ and ‘what should be’, aiming to create what is appropriate and acceptable for the 
world of opportunities. 

However this positive basis for learning and teaching is used by Sam to position his 
students as partners in the learning process and to see them as capable and as having 
potential to make real progress in their education. His goals of engaging students in 
authentic tasks privilege meaning making and transference of learning to their own worlds, 
that is, his teaching focuses on teaching students how to talk about mathematics, how to 
see the mathematics in real world tasks, how to work with others (teacher and students) to 
progress learning, and how to see difficulty and challenge as being important aspects of 
knowing and doing mathematics. In this way, he legitimises the knowledge and 
experiences that students bring to the classroom, teaching them that mathematics is an 
important aspect of ‘who they are’ and ‘what they do. In many ways, Sam not only works 
on ‘what should be’ done to teach the mathematics curriculum, but also works on ‘what 
could be’ done in order to well position students for the world of opportunities. 

Even though Lisa and Sam have different foci in their teaching of 
Numeracy/Mathematics, both Lisa and Sam are highly regarded in their respective schools. 
For Lisa the teaching of numeracy is about present and future health and well-being, for 
Sam the teaching of Mathematics is about present and future learning opportunity. Both 
teachers provided efficacious learning contexts. Common across both learning contexts is 
an engagement with epistemic, ontological, and axiological positions for young people. 
These contexts, albeit in different ways, mediated knowing and doing, identity and 
difference, through relational norms and pedagogical practices. 

It is clear from reading the interview transcripts that both Lisa and Sam are teaching in 
the margins. Lisa works with young people who are vulnerable and experience a 
complexity of inter-related needs. Participation and retention are key elements in her 
philosophy of teaching. Sam ‘battles’ to teach students in a mainstream schooling system, 
participation and meaning making are key elements in his philosophy of teaching. Both 
teachers have elements to their identities that teachers of mathematics across all contexts 
may lay claim to. It could even be stated that, without knowing the context, either teacher 
could be assumed to be teaching in a mainstream or alternative context. As such, both 
Lisa’s and Sam’s approach to teaching have important contributions to make not only to 
developing the identities of teachers and the young people that they teach, but also to 
bridging the divide between mainstream and alternative contexts of learning. 
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This paper reports on a research project that examined the beliefs and attitudes of reluctant 

16 to 18-year-old learners when using apps in their numeracy and literacy programmes. In 

particular, it considers the students’ change of attitude towards numeracy learning. The data 

were consistent that the use of apps in the numeracy programme was instrumental in 

transforming student attitudes towards numeracy. 

Introduction 

The use of mobile devices such as tablets in educative settings has grown markedly in 

recent years. While research is emerging, the uptake has been so rapid as to limit the 

ongoing related research that might inform and critique this transition. Linked to the 

increase in mobile technology is the growth in apps that can be utilised for learning. 

Some researchers contend that digital technologies offer the opportunity to re-envisage 

aspects of mathematical education, opening up alternative ways to facilitate understanding 

(e.g., Borba & Villareal, 2005; Calder, 2011). For instance, the visual and dynamic 

elements of engaging mathematical thinking through digital technologies repositions the 

ways that content and processes are engaged. Likewise, the exploration and transformation 

of data with digital technology affords alternative approaches to analysing statistics (e.g., 

Forbes & Pfannkuch, 2009). Meanwhile, the availability of apps and their inclusion in 

classroom programmes continues, often without critical examination.  

The affordances of digital technologies for mathematics education are well 

documented (Beatty & Geiger, 2010). Learning through apps offers similar potential 

affordances for learning (Calder, 2015). Apps offer the opportunity to engage with 

mathematical ideas in visual and dynamic ways, with learners receiving instantaneous 

feedback to input. They can link various forms of information or data (e.g., numeric, 

symbolic and visual) and transform them simultaneously. The use of digital games in 

mathematics learning has been reported to facilitate engagement with spatial elements and 

3-dimensional visualisation (Lowrie, 2005).  

Apps predominantly present the mathematical ideas and processes in a game context, 

often with extrinsic motivators, which use points as rewards. Care must be taken to ensure 

that the apps match the teacher’s intended purpose. An analysis of mathematics apps 

indicated that they are variable in quality and often labelled inaccurately in terms of the 

cognitive aspects that they are claiming to address (Larkin, 2013). This implies a need for 

ongoing teacher professional learning so that they can best select apps that support and 

enhance the mathematical learning. 

Meanwhile, research has also reported that iPad usage in primary-school mathematics’ 

programmes has led to enhanced engagement, greater reflective practice, and higher order 

thinking (Attard & Curry, 2012). They found that it led to increased enthusiasm, while also 

affording opportunities for the teacher to broaden the range of tasks they could integrate 

into the learning. Carr (2012) in a study with fifth grade students learning mathematics 

with iPads and apps, found that the apps enhanced student engagement and the 
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reinforcement of concepts. If the students were not working completely individually, then 

they also promoted active discussion (Van de Walle, Karp, & Bay-Williams, 2010).  

iPad apps offer the potential for transforming student beliefs and attitudes to learning. 

They can foster positive attitudes to numeracy learning and be highly motivational (Attard 

& Curry, 2012). In a six-month trial that integrated iPads into classroom practice, Attard 

(2013) reported that all of the students were positive about the experience, and that the 

teacher indicated that this had led to improved engagement. Carr (2012) also reported that 

the students were more motivated and engaged compared to a control group not using the 

mobile technology in their programme.  

Much of the discussion regarding how the use of iPads and apps influences the 

affective elements of the learning experience, centres on the notion of student engagement; 

of students being actively enthralled and motivated, often by the visual and interactive 

characteristics of the pedagogical medium (Carr, 2012; Li & Pow, 2011). An increased 

motivation to learn and an indication of students being more attentive in class have also 

been reported (Li & Pow, 2011). The inclusion of game-based apps in programmes has 

likewise enhanced engagement and is reported to have increased enthusiasm and 

participation (Attard & Curry, 2012).  

In a study with pre-service teachers, Grootenboer (2008) reported that student beliefs 

and attitudes are often the accumulation of significant episodic events. Positive classroom 

episodes that included apps might be influential in changing student beliefs and attitudes 

towards mathematics. Enhancement of learning was seen to be conditional on the apps 

selected, the purpose intended, and, in particular, the pedagogical processes in which they 

were used (Calder, 2015). However, at present there is a lack of research into this 

relationship within the context of apps and mobile devices in the mathematics classroom.  

This research project was undertaken at Te Wananga o Aotearoa (TWoA) a tertiary 

institute conceived and developed under the cloak of New Zealand Maori kaupapa – a set 

of values, principles and plans that underpin its philosophy. TWoA has Youth Guarantee 

programmes that deliver introductory Sport and Leisure and Contemporary Māori Arts 

programmes with embedded literacy and numeracy. These Youth Guarantee programmes 

are for 16 to 18-year-olds who leave school without any formal qualifications, and 

frequently have negative attitudes to school. The research question was: In what ways did 

the use of iPad apps influence the beliefs and attitudes of Youth Guarantee students 

towards numeracy and literacy? However, this paper is concerned with changes in attitude 

towards numeracy learning. 

Methodology 

A qualitative interpretive research methodology was used for this project. This 

involved case studies with three different Youth Guarantee classes. An interpretive lens 

was applied to the data that reflects the sociocultural discourses that influenced learners as 

they moved through cycles of interpretation, action and reflection in the learning process. 

A Vygotskian sociocultural perspective also theoretically informed the project. The project 

considered that learning is mediated by language and the use of tools. Hence, not only does 

the dialogue of the teacher and the learners in the classroom act as a mediator, but also the 

app itself acts as a mediating tool. The learner’s preconceptions of the pedagogical media, 

in conjunction with the opportunities and constraints offered by the media itself, promote 

distinct pathways in the learning process. That is, mathematical activity is inseparable from 

the pedagogical device, derived as it is from a particular understanding of social 
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organisation. This pedagogical device is more than an environment. It is imbued with a 

complexity of relationships evoked by the users and the influence of underlying discourses.  

Participants 
There were 41 student and eight teacher participants altogether in the original interview 

groups. A number of students had left by the time of the second interviews, due to shifting, 

finding work or other training, or not being present on the days of the interviews at their 

campus. They were all aged 16 to 18 and came from a variety of settings. By the nature of 

Youth Guarantee, they had no formal literacy and numeracy qualifications and a large 

proportion had left school without any qualifications. There was a mixture of ethnicities, 

but the great majority were Māori and Pasifika. The teachers (kaiako) were responsible for 

selecting the apps, in conjunction with a contracted external facilitator. 

Methods 
Methods used to generate the data included: Student group semi-structured interviews 

(two groups in each class, pre-iPad intervention); student attitudinal surveys, (post-iPad 

intervention); student group semi-structured interviews (two groups in each class, post-

iPad intervention); teacher group semi-structured interviews; class observational data; and 

before and after assessments using the Tertiary Education Commission (TEC) online 

diagnostic tool. The survey contained both quantitative and qualitative data with 19 

questions using a 5-point point-scale and three open-ended questions. The TEC online 

adult assessment is designed to identify learner’s strengths and weaknesses in numeracy. It 

draws from a database of problems set in adult contexts. Typically, students do about 30 

questions, but this varies due to the adaptive online nature of the Assessment Tool. The 

researchers only had access to the individual students’ level scores, not the component 

parts. Level one indicated the lowest conceptual understanding. 

The research was conducted in accordance with Kaupapa Wānanga: Koha (provided 

valued research); Āhurutanga (ensured the wellbeing and dignity of participants); 

Kaitiakitanga (acknowledgement of the contributions of all people associated with the 

research); and Mauri Ora (the potential to improve student outcomes). 

Results and Discussion 

Interestingly, all the students agreed that numeracy was part of everyday life. They 

articulated a connection between being functional in a range of everyday tasks and using 

numeracy. Typical responses to the question “Where do you use numeracy?” were: 

Jed: If you can’t add or subtract, you’re going to get ripped off by the shopkeepers, it’s very 

important, you use it every day … Yeah, bills and power bills and stuff like that. 

Charlie: Yeah, it pretty much revolves round everything … you’ve got to know maths. 

In the questionnaire data, 95% agreed or strongly agreed that maths was useful, while 

90% agreed that people use maths every day. As well, 70% agreed or strongly agreed that 

they needed maths to get a good job, while 90% agreed or strongly agreed that maths is 

important. Most of the students thought that it was important for employment, that it would 

make them more employable and better employees. Typical responses were: 

All of one interview group: Yes, need it to find a job. 

Mike: I just like maths cos it helps me in the future, going to have to need it in the work force… 
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While they were consistent in the acceptance of mathematics as a valuable aspect of 

being an informed citizen, their self-efficacy and attitude towards mathematics was often 

negative. They attributed some of their negative attitude to their teachers. The students’ 

perceptions of their teachers were accessed through a question asking them ‘Is there a 

maths teacher you can remember? Tell me a bit about them’. In general, this group retained 

negative perceptions of their relationship with their teachers, particularly in mathematics. 

Some felt they were treated inequitably, for instance: 

Nel & Jenni: The teachers didn’t support the dumber students … 

Mike: I always ... I never actually had a problem with literacy and numeracy, it was just all the 

teachers that spoiled it for me ... many students that have dropped out, it is all ... 90% is because of 

the teachers ... the way they teach ... yeah, some teachers mix it up and get you confused. 

Charlie: At school it was just hard and fast…they didn’t really explain things. That’s why I hated it 

at school. 

This perception, coupled with the lingering negativity towards mathematics, gestures 

towards the need to reshape the mathematics learning experience for these particular 

students. Another interesting aspect from the questionnaire data was that 80% agreed that 

they would avoid maths if they could. However, 45% agreed or strongly agreed that maths 

is interesting.  

TEC Online Assessment 
The initial pre-app intervention assessment results for this group were low, with step 2 

the most common level, and most students at steps 2 and 3. In the post-app intervention 

assessment, steps 3 and 5 were the most common levels, with most students at steps 4 and 

5. Overall, there was greater than expected improvement between the initial and final 

online numeracy assessments although this cannot be attributed solely to the iPad app 

intervention. The mean of the initial online numeracy assessment steps was 3.3 and the 

mean of the final one was 3.8. In a hypothesis test for the difference in the two means, z = 

1.65, which is significant at the 90% level. So at this level, we can conclude that there was 

a difference between the two means. There was a complex array of interconnected 

contributing aspects that would have been influential in this improvement, including those 

outside of the learning environment.  

The following graph compares the initial and final online assessment. 

 

 
Figure 1. Student step in numeracy online assessment 

Influence of using the iPad apps 
The use of iPads apps within the teaching and learning process led to some changes in 
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enjoyed learning in the visual interactive manner that the apps evoked. They enjoyed the 

change in pedagogical medium and found the learning fun and engaging. Typical 

comments were: 

Paora: It’s visual. It’s cool, good for each and all of us. We all had our own one to use.  

Hine: They’re fun, easy, makes it easier. Better than plain writing. 

John: You play on them. They’re active. 

Whetu: … and visual. Felt like it was more easy. 

Ollie: Liked the maths games. We played it as a whole class. That maths thing with the facts helps 
me with my learning. It makes me brainy. It’s interactive.  

Tom: Yeah, it helped to focus, and with concentration.  

John: Made me more confident. 

Some students found it a bit repetitive as a learning approach. 

Nel: Sometimes it gets boring. 

In general though, the changes in student attitudes and engagement were positive, 

especially when the apps were integrated into the learning programme in an interactive 

way or as a class or group game or challenge. Teachers were positive about the learning 

experience for students, while also seeing potential learning opportunities. A prevalent 

teacher observation was that students were more engaged. They indicated that students 

enjoyed using the apps as part of the learning. 

Anthony: Super interactive, like when it came to maths, the maths games, everyone was so 
enthusiastic about it. And then the different games that we came up with. They are really good if 

you want to get team interaction games. Also, getting them into groups and working as a team. 

Everyone’s just thoroughly enthusiastic. 

They also indicated that these aspects led to greater student confidence. 

Ben: They (the students) value themselves more when they are confident. These have helped. 

Another teacher commented on the use of apps for games and competitions. 

Ash: Very positive. It’s good because it’s more interactive so we are able to utilise it as tutors to 

challenge them off against each other. You see who knows what. It’s more ‘hands on’, more 

practical so they are able to see the calculations and add it up on the spot as opposed to writing.  

The apps games were viewed positively as a context for engaging with the 

mathematics. Students generally enjoyed them and the ensuing social interaction, 

identifying learning through games as a positive experience. For example, 

Manu: Now maths is fun, our teacher explains more. It helps learning when it’s fun … games, times 

tables, it’s a fun way to learn. 

The data indicated that the use of iPad apps in the numeracy learning programme 

transformed student attitudes in a positive way. For some, their integration into 

programmes coupled with accompanying social interaction, led to students who had been 

very negative towards mathematics feeling confident and willing to try new approaches. 

While their cognition also developed over this period, this was not necessarily related to 

the use of iPad apps, hence the research was directed towards their beliefs and attitudes. 

With reluctant learners, it would be difficult to change mathematical ability significantly 

over a short period of time, but if attitudes towards mathematics became positive, this in 

time will influence conceptual understanding.  
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Conclusions 

The data were consistent that the use of the iPad apps in Youth Guarantee numeracy 

programmes was received very positively by students and had been influential in 

transforming their attitudes towards numeracy. Consistent with other studies (e.g., Attard 

& Curry, 2012), they contributed to the development of positive attitudes towards 

numeracy. The initial interviews indicated a high proportion of negative attitudes, while 

the questionnaire likewise contained a relatively high proportion of responses that echoed 

those sentiments. The data indicated that student experiences in numeracy had been 

negative over a sustained period. Beliefs and attitudes are episodic in their development, 

and emerge through experiences that individual’s respond to in varying ways. For these 

students, both relationships with their schoolteachers and the nature of the curriculum were 

influential in this disjuncture between perceiving something is important and eventually 

not wanting to engage with it. Comments that indicated frustration, disengagement, 

negativity and at times hostility were articulated. To get even a small transition in attitudes 

would have been significant, but there was a high proportion of attitudinal change across 

the pre and post data.  

The reasons articulated for this change were primarily because of the repackaging of 

the content and processes. The iPad work was only one aspect of this, along with teacher 

pedagogical approaches and transformational practice. The students’ learning was 

mediated by the use of the pedagogical device (the iPad) and the language associated with 

this usage. Most of the students and teachers responded that the iPad component of the 

programme was instrumental in the transition. The reasons for this were based around the 

fun and engagement aspects when engaging with the maths apps, but also through the 

affordances of the digital pedagogical medium. Comments such as the learning being 

visual, interactive and dynamic were recorded, and resonate with other reports of the 

learning experiences of primary-aged students who engaged mathematics through an apps 

pedagogical medium (Carr, 2012; Pelton & Pelton, 2012). Many found the iPad apps less 

threatening and easier to learn from.  

The inclusion of the game-based apps in their numeracy programme made the learning 

more engaging for the students and in much of the data, they facilitated increased 

enthusiasm and participation. This is consistent with Attard’s (2013) study. Some tasks 

which had previously been considered repetitive and boring, such as learning basic 

numeracy facts, were engaging for students within an apps game context. This needs to be 

tempered by comments that playing the same game repeatedly in time caused students to 

lose some motivation to play, and that several students commented that some of the games 

were too easy or too babyish. Nevertheless, the vast majority of the data clearly indicated 

that in terms of the affective dimension of learning, the use of iPad apps in the numeracy 

programme led to more positive dispositions towards learning, increased engagement, and 

enjoyment of the learning experiences in these areas. In general, this is in contrast with 

their attitudes towards numeracy prior to being enrolled in a Youth Guarantee programme. 

While increased engagement and a more positive disposition towards learning generally 

transform and enhance cognitive understanding, this does not always manifest 

simultaneously and has to be considered within a tapestry of inter-related influences.  

A successful and motivational way of using the apps was when they were introduced or 

played as a whole class competition. There was also informal social interaction associated 

with this as students verbalised their feelings and mutual encouragement. Students 

collaborated on strategies with this approach. Hutchison, Beschorner and Schmidt-

Crawford (2012) also identified that apps facilitated collaboration between students by 
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allowing the simultaneous sharing of responses or screens. This was also observed with 

students in this study. The apps and iPads were used in a variety of ways that enriched the 

diversity of learning approaches that were possible, and facilitated both focused and 

incidental social interaction. Hence, the mathematical activity was inseparable from the 

pedagogical device and the social interaction that was facilitated through the use of the 

apps. 

The research was relatively cohesive regarding the appeal of game-based apps for 

learners. Students found them engaging and motivational, and advocated their inclusion in 

programmes. As well, teachers reported perceptions of their positive influence on students’ 

attitude to learning that echoed the students. Perhaps there is an element of novelty and a 

potential for being engaged without learning, but generally if students are motivated, more 

engaged, and enjoying an element of learning, they will come to understanding more 

readily. Central to them enhancing the learning in an engaging manner, is keeping the apps 

as part of a varied programme, to ensure that they are relevant and appropriate for the 

students, and for the development of apps to be ongoing and responsive to critical review. 

Case studies give insights into particular situations but are limited in terms of generalising 

behaviour or learning. Nevertheless, they do enhance an accumulating body of research. 

Another limitation of the research was that the researchers interpreted the data through 

their prevailing discourses and preconceptions. While awareness of this meant that 

consideration was given to alternative perspectives, with an interpretive approach, the 

researchers were unlikely to completely escape the influence of personal perspectives. 

Today’s learners can use digital media effectively to communicate, investigate and 

process ideas and personal questions. In general, they are comfortable with and interested 

in their use. However, just allowing these learners access to mobile technology is not 

sufficient to enhance learning, nor educationally ethical. It has to be resourced equitably, 

and have both the learners and the teachers engaged in processes that enable effective use. 

Effective utilisation also requires having both teachers and students involved in their 

ongoing evaluation and dynamic development. Teachers and students need to be influential 

in the development of apps and the ways they are used in the learning process. If the 

interrelated pedagogical processes and conceptual thinking are given primacy, then apps 

can enhance the learning experience and understanding of students. They certainly offer 

affordances that might transform the attitudes of reluctant teenage students towards 

learning mathematics. 
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This paper reports on a study of choices about the use of a computer algebra system (CAS) 
or pen-and-paper (p&p) by a class of seven Year 11 Mathematical Methods (CAS) students 
as they completed a calculus worksheet. Factors that influenced students’ choices are 
highlighted by comparing and contrasting the use of CAS and p&p between students. 
Teacher expectation of students’ use of CAS and p&p reveals that, even in a small class, 
the students’ use of CAS and p&p sometimes differed from what was expected. The 
analysis here indicates that there are a variety of factors that influence students’ decisions, 
including speed of calculation and accuracy of p&p work.  

Background 
In Victoria, Australia, a Year 11 functions and calculus course, called Mathematical 

Methods (CAS) (VCAA, 2010) has integrated CAS for more than a decade. Teachers and 
students working in classrooms with a computer algebra system (CAS) available face 
choices about the use of CAS or pen-and-paper (p&p) for teaching, and learning, 
mathematics and for solving problems. Teachers’ choices about use of CAS may influence 
students’ opinions about CAS (Artigue & Lagrange, 1997), which is not surprising given 
that a teacher will institutionalise acceptable techniques in their classroom. A CAS may 
“gobble up” (Flynn & Asp, 2002) intermediate steps that might normally be part of a p&p 
solution and when students are solving problems there is a choice to be made about p&p or 
CAS.  

In a study of senior secondary students, Geiger (2008) found that access to CAS 
enabled students to solve problems beyond their p&p capability. Geiger, Galbraith, Goos, 
and Renshaw (2002) noted that students would use CAS when symbolic features were seen 
to expedite processes. Ball and Stacey (2005) found that in a group of five students there 
were differences in preferences for CAS use; the main use was for speed. One student used 
CAS to compensate for weak pen-and-paper skills and CAS was also used for checking 
answers. This study investigated the choices that seven Year 11 students made regarding 
CAS or p&p use when working on a calculus worksheet. Students’ use of CAS for the 
problems is compared with their teacher’s expectation of CAS or p&p use. 

Methodology 
Participants in this study were a teacher, Peter (all names are pseudonyms), with four 

years’ experience teaching Mathematical Methods (CAS), referred to as MMCAS here, 
and his Year 11 class in a co-educational school in Victoria, Australia. Peter was invited to 
be involved in the study as he was known to the first-named researcher, and had previously 
expressed interest in participating in the study. His class of seven students had been 
studying MMCAS for 8 months at the time of data collection. Peter supported the use of 
CAS, and all students (excluding one student, Emily) owned their own CAS.  

Data reported here was collected within a wider study examining influence of attitude 
on use of CAS in a class activity (see Cameron & Ball, 2014). Three research instruments 
were used to collect data: a worksheet, semi-structured individual interviews (teacher and 
students), and lesson observation notes. In consultation with Peter, it was decided that the 
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focus for the worksheet would be calculus, the topic studied at that time. Students 
completed the worksheet after they had studied differentiation and anti-differentiation in 
class. Peter was consulted to ensure that the worksheet was an appropriate length for a 50-
minute lesson. Six problems were discussed with Peter: three written by the first-named 
researcher and three from other sources. Peter requested minor modifications to the 
wording of original problems, resulting in the final six problems shown in Table 1. Two 
problems required the use of CAS to solve (problems 4 and 6); the other four problems 
could be solved using CAS or p&p.  
Table 1 
Worksheet Problems 

Problem Statement of problem 
1 Find  if f(x) = 95 + 2.7x + 4x2 − 0.1x3 
2 Use first principles to find the derivative of the function  
3 An art collector purchased a painting for $500 from an artist. After being 

purchased the value of this artist’s paintings increase, with respect to time, 
according to the formula , where P is the anticipated 
value of the painting t years after it is purchased. Find an equation that will give 
the price of the painting at a given time. Consequently, find the price of the 
painting 4 years after it was purchased. 

4 Determine the anti-derivative of the function  
5 If  what is the simplified form of the 

derivative ? 
6 What are the coordinates of the stationary points for the function  

?? 
Note – Problem 1 Flynn, Berenson and Stacey (2002); Problems 2, 4, & 6 First-named researcher; Problem 3 
adapted from Flynn (2001); Problem 5 adapted from Flynn et al. (2002). 

A semi-structured interview was conducted with Peter prior to students completing the 
worksheet. Interview prompts focussed upon his own use of CAS when teaching calculus, 
expectations of CAS use for these six problems, features of the problems that would 
contribute to CAS or p&p use, and difficulties that students may encounter. 

Students had one 50-minute lesson to complete the worksheet. They worked 
individually or in groups and Peter interacted with students as they worked. While 
completing the worksheet, students self-reported (refer to Figure 1) both the process used 
(e.g. anti-differentiation) and the use of CAS or p&p. If students did not record any steps, 
but indicated use of CAS or p&p, the solutions were analysed to determine the steps used. 
The first-named researcher wrote lesson observation notes, without interacting with the 
participants. The focus of these notes was student/teacher and student/student interactions. 
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Figure 1. Self-reported CAS or p&p use – Jessica problem 3. 

One week after completing the worksheet, individual semi-structured interviews were 
conducted with six students (Amy was absent). Interview prompts were based upon student 
responses to the worksheet and survey (not reported in this study). Interview transcripts 
were examined for comments to provide insight into students’ choices of CAS or p&p.  

Results and Discussion 
Table 2 
Methods Expected by Teacher and used by Students (adapted from Cameron & Ball, 2014) 

Table 2 provides a summary of the key steps for each problem (identified by the 
researcher prior to the lesson), the anticipated method (either CAS or p&p) identified by 
Peter and the methods used by students. Student responses for each step were coded using 
four categories: C (CAS was used to complete the step); P (p&p was used complete the 
step); N (No evidence that this step was completed); and R (CAS removed the need for the 
student to complete the step). Information is provided on correctness; a tick indicated that a 
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step was completed correctly, whilst a cross indicated an incorrect response. A blank 
indicated that CAS removed the need to complete the step.  

Problem 1 
Peter expected his students to use p&p methods for problem 1, stating that “it would 

just be quicker to do it with p&p than type it into the calculator”. He elaborated: “if they 
[the students] recognise the function and the task looks easy to do, they will do it with 
p&p”. This may indicate that Peter expected his students to perform routine procedures, in 
this case differentiation of a function, with p&p. It is not unreasonable to expect Year 11 
students to mentally calculate the derivative of a polynomial function and write the result, 
so it was not surprising that p&p methods were viewed as faster than CAS.  

Emily, Simon and Kate used p&p (refer to Table 2) to solve problem 1, whilst Sam, 
James, Jessica and Amy used CAS; in interviews they gave a range of reasons for their 
choices. Kate, who solved the problem using p&p, made her choice based on speed, 
reporting that p&p was quicker than CAS. She stated, “I find myself a faster writer than 
pressing it into the calculator”, so syntax entry was viewed as time consuming. This 
concurred with Peter’s notion that students would use p&p methods for problem 1 for 
speed. Emily (who doesn't own a CAS, but borrowed Peter’s during the lesson) stated that 
she wouldn’t use CAS to differentiate, due to her lack of familiarity with syntax, as “I 
don’t really know what the buttons do and how to use [CAS features]”. It was not 
surprising that a student unfamiliar with CAS chose to use a p&p method for this problem 
and in this case, the problem was within the expected p&p range of students. 

Some students chose CAS for speed, rather than p&p. Sam used CAS for speed and 
accuracy because “I knew that I’d probably get a more precise answer if I used my 
calculator and it’s quicker”.  James, who also used CAS, valued its speed, stating that his 
CAS use is “… more as a time saver than anything”. Interestingly, James stated that “if 
you can solve it [a problem] by p&p then there’s not really a place for it [CAS]”. It seemed 
that James first considered whether or not he could solve a problem using p&p and only 
considered CAS if p&p wasn’t viable, citing speed as the determining factor. Even for this 
one step problem perceptions about speed of CAS and p&p varied between students.  

Problem 2 
Peter expected students to use p&p methods as this was how he taught differentiation 

from first principles in class and he anticipated his students would replicate his approach. 
Perhaps an overriding factor for students using p&p or calculator would be the initial way in class 
that they had been taught. If we started looking at the concept using p&p, this tends to be the way 
they [the students] respond to a questions and the same goes if we started off looking at a concept 
on the calculator. 

Peter noted that “expanding can be done using the calculator” so for this problem, 
where calculus was the core mathematical focus, he supported use of CAS for expansion (a 
lengthy p&p process here).  

Sam, James, Emily, Simon and Amy used p&p for problem 2 (see Table 2), so five out 
of seven students used the approach demonstrated (and expected) by Peter. Although Sam 
noted the speed of CAS for problem 1, she chose p&p for problem 2 as: “we would always 
do it [i.e., differentiation from first principles] with p&p”. Jessica and Kate used a 
combination of CAS and p&p to solve problem 2, while Amy (who worked with them) 
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chose p&p only. The use of CAS and p&p seemed to be a personal choice, even for the 
students who worked in groups.  

Students commented that they wouldn’t always replicate what the teacher 
demonstrated and that speed of calculation played a factor in their decisions. Even though 
James solved this problem using p&p, he commented that if a problem “was going to take 
forever to do by p&p then it’s going to really help if you can do it by the calculator”. 
Whilst students appreciated the use of CAS to quickly complete problems, it is possible 
that because Peter had taught them to perform differentiation from first principles using 
p&p that they didn’t realise, or perhaps thought it was unacceptable, to use CAS in this 
problem.  

Jessica used p&p for substitution and CAS to find a limit commenting that p&p was 
needed to show working expected by her teacher. 

You can’t just put it in [to the calculator] and go well there’s your answer, because then they’ll [the 
teacher] go, “well where’s your working out?”  

Jessica determined what was acceptable in mathematics classes by analysing Peter’s 
teaching “I think the whole point of it [Peter’s teaching], is to learn how to do it by hand 
[i.e., p&p] so then you understand where it’s coming from”. This insightful comment 
showed that students do determine what practices are institutionalised from their teacher.  

From Table 2 we can see that Peter and Kate had the same preference for use of p&p 
for problems 1 and 2, except for expansion where Kate used CAS. In the interview, Peter 
identified expansion as a potential area for CAS use, despite expecting p&p, so their 
choices aligned here. Again we note the variety of choices, but in this problem student 
choices aligned well with Peter’s expectation. This could be due to the nature of the 
problem, where Peter favoured p&p use to “show the process of first principles”. 

Problem 3 
Peter expected use of p&p for problem 3. He noted: “CAS could be used just as easily 

to find the integral, particularly for working out the fraction part, which is where the 
students are likely to make the mistake”. This suggested that CAS use may minimise the 
potential for errors that might appear in p&p working for this problem.  

Emily, Sam and James asked Peter for assistance with problem 3, but neither they, nor 
Simon, gave a solution. Amy and Kate used CAS, whilst Jessica used a combination of 
CAS and p&p (refer to Table 2). Although problem 3 was not addressed specifically in the 
interview, Jessica stated that she completed “the easy stuff [on the worksheet] by hand” 
and used CAS for “the more complex things”. The anti-differentiation required for 
problem 3 may have been viewed as complex by Jessica, whereas calculating the 
coefficient of integration and substitution could be perceived as easy tasks. It is possible 
that a belief that p&p was required to show working (discussed in problem 2) for multistep 
problems influenced Jessica’s decision to use both CAS and p&p. Kate and Amy, who 
worked together, used CAS to solve problem 3 so in this case collaboration may have 
resulted in similar CAS use. 

Problem 4 
Peter stated, “Students would not know how to find the anti-derivative of this function 

[i.e.,  so I’d expect them to use the calculator”. Students 
were anticipated to encounter difficulty here as “they’ve never seen those functions [in 
problems 4 and 6]” however he noted that “students that generally persevere at questions 
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are more likely to use their calculators than those that are less confident, or give up easily”. 
This suggested that confident students would persevere with solving problem 4 if they had 
CAS available. Although problem 4 was designed to lie outside the range of students’ p&p 
skills (see Cameron & Ball, 2014), Peter believed that where “the problem involves 
functions they [i.e., the students] are uncertain about, they may use the calculator ” to 
perform the anti-differentiation. In this case a CAS extends the range of problems that 
students can solve. 

Sam, Simon, Jessica, Amy and Kate attempted problem 4 using CAS and four of them 
were correct. James and Emily did not provide working for problem 4, with James stating 
that he did not solve the problem as “the whole sine and cosine … confuses me”. 
Conversely, Emily felt that she could have completed the problem “if I knew more about 
the CAS ”; so one student viewed the mathematics as problematic, while the other had 
technical concerns. Both students sought assistance from Peter, but did not end up 
providing a solution. Although Peter believed that access to CAS would enable students to 
solve this problem, this was not the case for these two students. This highlights that the 
mere presence of CAS does not guarantee that students can use it to solve problems.  

Jessica used CAS to solve problem 4 as the unfamiliar function perturbed her, stating, 
“It [the function] threw me off. I didn’t think I’d be able to do it by hand, so I thought I’ll 
just do it on the calculator and see what it says”. Simon also chose to use CAS and 
suggested to the researcher that this problem was outside his p&p range stating “I don’t 
think I’d done these problems before so I’d just use the calculator”. Students can use CAS 
to solve problems outside their p&p skills when they have an understanding about what is 
required to solve problems of a particular type, which in this case involved anti-
differentiation. Kate used her knowledge of inbuilt features of CAS, “you can do it for any 
problem with that part of CAS”. It is possible that perseverance was a key requirement to 
solve this problem, as all students stated they were unfamiliar with the function, but as 
Peter expected, they applied their knowledge of CAS to solve the problem. 

Problem 5 
Peter expected students to use p&p to solve problem 5. However, he recognised “CAS 

would expand it [i.e., the function] for you and then find the derivative too” suggesting that 
a CAS based approach was possible. Peter did not identify that CAS could “gobble up” 
(Flynn & Asp, 2002) the step of expansion here to enable differentiation to be performed in 
one step. Peter believed that students might experience difficulty “because it [i.e., the 
original function] is factorised ”, an unfamiliar problem format for his students.  

Simon, Jessica, Amy and Kate were the only students who attempted problem 5. Simon 
expanded the function using p&p, but did not solve the problem. Simon explained that 
when he encounters a difficult problem he would most likely skip the problem, rather than 
persevere. This was illustrated on the worksheet where Simon started solving problem 5, 
(expanding the expression correctly) but struck difficulties in continuing to solve the 
problem, writing on his worksheet “I have no idea what I am doing”. This provides an 
example to support Peter’s contention that those who use p&p are less likely to persevere 
with difficult problems than CAS users. In this case a student using CAS could avoid the 
complexities encountered by Simon by finding a derivative in one step. 

Sam, James and Emily did not complete problem 5, with James asking, “Have we ever 
seen questions like that?” Although some students may not attempt problems with 
unfamiliar functions, they do not necessarily form a barrier when students have CAS and 
know the mathematics, as evidenced above in problem 4. 
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Jessica, Kate and Amy used CAS for differentiation; CAS “gobbled up” (Flynn & Asp, 
2001) the step of expansion here. In the interview Kate discussed her use of CAS to 
explore unfamiliar problems, “I just write it down … if it looks a bit weird then I’ll stick it 
on the calculator and see what happens”. This, along with Jessica’s explanation of her 
approach to problem 4, suggested that unfamiliar functions can be less problematic for 
students when they understand what is required and can use CAS for calculation and 
exploration. 

Problem 6 
Peter expected students to use CAS for problem 6. CAS use was required here as the 

problem was outside students’ range of p&p skills, with Peter noting that this problem 
would be within the range of p&p skills of Year 12 students, rather than Year 11: “I 
suppose in Year 12 you could use the rule to find the derivative; some p&p work could be 
used to find when the derivative is equal to zero”. 

Three students (Jessica, Amy and Kate) attempted problem 6 using CAS and Emily 
used p&p. Emily completed the problem up to the step where the use of CAS was required. 
Emily was not a CAS user, so it is not surprising that she did not use CAS. Kate used CAS 
to expand the brackets, as she stated that she does not like brackets. She then used the 
expanded form and “stuck it into the calculator because it knows how to do it for me”. This 
contrasts with her use of CAS in problem 5 where she did not expand the brackets before 
using CAS to differentiate; students can make decisions problem-by-problem and also 
step-by-step. Jessica was able to correctly solve this problem using CAS, but required the 
support of Peter and her peers with syntax. Her first inclination when solving was to 
consider whether or not p&p was a viable option, “I thought I could do it by hand, but I 
didn’t really know … I have no idea how to do it by hand”. She then used CAS, stating “I 
threw in the original function to find the derivative on it and once I did that, I’m pretty sure 
I did all the steps on CAS”. The CAS use by Kate and Jessica was quite different even 
though they were working together. As Jessica chose to differentiate the function using the 
format of the function provided on the worksheet, this removed the need to expand the 
function (a step where Kate used CAS, prior to differentiating). 

Conclusion 
It might be expected that in a class of seven students there would be some consistency 

of CAS use as there is the opportunity for the teacher to spend considerable time with 
individuals discussing use of CAS and p&p. In this study, we found that even with a small 
class of seven Year 11 students there were considerable differences in the choices that 
students made about CAS or p&p for solving common problems. Students’ choices 
sometimes aligned with the expectations of the teacher, but this was not always the case, 
with students using CAS more than the teacher anticipated. This highlights the complexity 
of a CAS-active classroom, where students are solving problems in a variety of ways, not 
just the way that has been demonstrated by their teacher. Artigue (2002) commented on an 
“explosion of possible techniques” (p. 260) in a CAS-active classroom. 

Students’ made problem-by-problem and also step-by-step decisions about the use of 
CAS or p&p. This suggested that students evaluated problems based on the perceived 
personal benefits of CAS or p&p throughout a problem. Speed and accuracy appeared to 
be two key factors influential in students’ choices. Different students cited either CAS or 
p&p as being faster for specific tasks, so this shows that speed is very dependent on facility 
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with p&p skills as well as technical ability for using CAS. Although students based choice 
of CAS or p&p on speed and accuracy, these were not the only factors influencing their 
choices. Some students noted a preference to use the approach demonstrated by their 
teacher. Where Peter identified that his students could use CAS, the students tended to use 
CAS. This showed that Peter had insight into range of the students’ p&p skills and also 
that CAS enables students to solve problems outside the range of their p&p skills; some 
students were willing to tackle unfamiliar problems with CAS. Where students have the 
conceptual understanding of the key mathematical principle in a problem (e.g., 
differentiation) they are able to use CAS to correctly answer the problem. This may have 
implications for teaching, as teachers can introduce more difficult problems using CAS; 
scaffolding students’ conceptual understanding. 

The findings reported in this paper highlight a diverse use of CAS and p&p in a small 
class and the complex way in which students make decisions regarding the use of CAS 
and/or p&p. The students in this study are undertaking a subject with CAS-assumed 
examinations at Year 12 level, so decisions about the use of CAS or p&p for speed, 
accuracy or to supplement their p&p skills are important ones to consider at Year 11. 
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Mathematical knowledge in classrooms is mediated through the use of both technical and 
informal language. This paper is a report of a study of the language use of teachers as they 
examine students’ work and discuss teaching for the topic of fraction operations. This 
provides a window on their pedagogical content knowledge and also on the way in which 
language is used to make sense of mathematical knowledge, either personally or for 
students. It was found that some mathematical knowledge appeared to be taken as 
understood, perhaps because the expected words were used.  

Introduction and Background Literature 
Recently the author was reading some material that reported on teachers’ solutions to a 

particular class of proportion problems. What was striking about these solutions, which 
came from a country different from her own, was the consistency of the terminology and 
representations used by the teachers as they presented their mathematical reasoning. In 
addition, this consistency of language seemed to give the teachers a greater capacity to 
articulate the mathematics: they were fluent in the way they used the terminology in 
support of their solutions. Their content knowledge of mathematics appeared to be 
enhanced by this precision of language, and the language was used effectively in support 
of their further discussions about how they might help students with similar problems. This 
suggests that the terminology and representations used by teachers might give insights into 
their pedagogical content knowledge (PCK). 

There are a number of frameworks associated with the knowledge for teaching 
mathematics, and they categorise that knowledge in slightly different ways. The 
knowledge quartet of Rowland, Huckstep, and Thwaites (2005) is a little different from 
some of the other frameworks, in that it views certain aspects of knowledge dynamically. 
The more static component—foundation—includes “the meanings and descriptions of 
relevant mathematical concepts” (p. 265), which includes relevant terminology. One of the 
more dynamic knowledge-in-action aspects—transformation—also makes reference to 
language, and considers how “the teacher’s own meanings and descriptions are 
transformed and presented in ways designed to enable students to learn it” (p. 265), with 
the acquisition of essential vocabulary explicitly mentioned as part of the teacher’s work. 
The Hill, Ball, and Schilling framework (2008, p. 377) for mathematical knowledge for 
teaching highlights common content knowledge, which includes terminology, although it 
might be argued that some terminology (e.g., the use of the word whole with respect to 
fractions) is really only used by teachers, rather than being in general mathematical use. 
Finally, the PCK framework of Chick, Baker, Pham, and Cheng (2006) identifies at least 
two components that allude to language use: knowledge of representations (which might be 
construed to include language, since language is used to signify and represent ideas), and 
knowledge of explanations, which requires use of appropriate language.  

Boero, Douek, and Ferrari (2002) wrote about the role of natural and symbolic 
languages in mathematics, and assert that “only if students reach a sufficient level of 
familiarity with the use of natural language in the proposed mathematical activities can 
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they perform in a satisfactory way” (p. 242). They also highlighted the teachers’ role in 
increasing students’ linguistic competencies, including in discussing solutions. Boero et al. 
discussed language as a mediator between mathematical objects, properties, and concepts 
and the development of theoretical systems, by which they seem to mean a connected 
conceptualisation of bigger mathematical ideas (such as rational numbers and operations 
in the case of this paper). In addition, they highlighted the role of language as a tool for the 
validation of statements.  

The area of fractions is one of the first mathematical topics that moves beyond the 
concrete arena of natural numbers, where operations are readily visualised and described, 
often with words that are part of everyday language. With fractions come new technical 
words, such as numerator. The conceptualisations of part-whole relationships and 
operations such as addition and division must be mediated through language use. In their 
seminal chapter on rational numbers Behr, Harel, Post, and Lesh (1992) explore the 
complexity of the domain, and highlight the idea of a unit”. When a fraction is defined in 
relation to a whole, it requires the conceptualisation of new units, namely the individual 
parts of the whole determined by the denominator. Thus, in the fraction 4/5, we must think 
of 1/5 as the unit (determined by creating 5 equal pieces from the whole), and consider 4 of 
these units. Simultaneously interpreting the information supplied by the denominator and 
the numerator is required in order to see a fraction as a single quantity. A complete 
understanding of the domain of rational numbers requires, among other things, 
understanding of how fractional quantities operate on other quantities and how we compute 
efficiently with such quantities (including finding valid algorithms).  

Ma (1999) found that primary teachers from the United States (US) and China varied 
in their capacity to make sense of, for example, fraction division. In giving explanations of 
their reasoning, the Chinese teachers seemed to have consistent terminology with which to 
refer to the components, operations, and procedures (e.g., referring to quotient and dividing 
by a number is equivalent to multiplying by the reciprocal), whereas the US teachers were 
less consistent and, indeed, unsure about the language (e.g., change them into sync, flip 
over and multiply). In addition, the Chinese teachers could more often provide 
mathematical reasons to justify the processes used. 

With this in mind the present research examines the language use and mathematical 
reasoning made evident in teachers’ discussions of students’ work with fractions. 
Specifically, it looks at the consistency of language and the way in which the mathematical 
ideas inherent in the terms and operations were discussed and justified. 

Method 
Data were gathered during focus group discussions involving some invited experienced 

teachers and the researchers (including the author, and colleagues from the Powerful 
Knowledge project of which this study was a part). There were primary and secondary 
focus groups sessions with around four to five teachers each in both Tasmania (Tas) and 
New Zealand (NZ), and a session with four primary teachers in Victoria (Vic). The 
teachers were purposely selected, and were known to the researchers as having an interest 
in mathematics teaching. The focus groups were intended to explore the knowledge that is 
brought to bear in teaching mathematics, and to provide an opportunity to access the tacit 
and explicit knowledge on which teachers draw in the act of teaching. 

The stimuli for the focus group discussions were items covering a range of school level 
topics and pedagogical content knowledge issues. The researchers presented items in turn, 
and discussion ensued about the nature of and responses to the situation. The intent was to 
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explore the kind of knowledge that is needed for these situations, rather than to gauge any 
or all of the teachers’ capacities to respond. Because the nature of knowledge for teaching 
mathematics was the focus of the data gathering, the researchers themselves were not 
independent of the discussion and contributed to the conversations and, thus, to the data. 
Discussions were audio-recorded and later transcribed.  

Two of the items used with the focus groups have been selected for analysis for this 
study, both coming from the domain of fraction operations. The task shown in Figure 1 
was presented to the New Zealand and Tasmanian primary teachers only, and concerned a 
misconception that is reinforced by the child’s choice of representation. To determine an 
appropriate response to the student’s ideas, the teacher might choose to draw on other 
alternative representations (as suggested by some of the options in the question in Figure 
1), or may choose to work with the child’s self-selected representation. There are 
advantages and disadvantages associated with each of these approaches (see Chick, 2011).  

 
A	  student	  says	  that	  1/4	  +	  1/4	  is	  2/8.	  She	  uses	  counters	  to	  show	  this	  as	  follows:	  

	  

Given what the student has just shown you, which of the following representations of 1/4 + 
1/4 is most likely to help her to see that 1/4 + 1/4 = 1/2? 
	  
 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Figure 1. The modelling fraction addition item. 

The second item, shown in Figure 2, was presented to the secondary and Victorian 
primary groups, and involved a student’s computation of the quotient of two fractions, 
obtained by using an alternative to the standard invert-and-multiply algorithm.  
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When	  asked	  to	  describe	  how	  they	  determined	  !
!
÷ !

!
	  

	  
	  

a	  student	  wrote	  the	  following	  on	  the	  classroom	  whiteboard:	  
	  
	  
	  
	  
	  
	  

Figure 2. The division of fractions item. 

The transcripts of the focus group interactions were examined to investigate the 
mathematical language used when discussing the issues associated with these teaching 
situations. In particular, the key foci for the analysis were: 

• commonalities and differences in language across individuals; 

• strengths and inadequacies in language use;  

• the extent to which language aligned well with the content under discussion; and 

• the extent to which language was used to address mathematical issues implicitly 
and explicitly. 

Results 

Modelling Fraction Addition 
One of the key issues underpinning the fraction addition situation is the identification 

of the whole. This terminology came up regularly in conversation, almost always as whole 
but once as unit of analysis.  

… if we've already talked about our understanding of fractions is, “How many equal parts make that 
whole, so how many do you need to make that whole? And what part of our fraction tells us how 
many equal parts make the whole?” [NZ, Primary] 

I like that we have to move away from counters because in some ways the counters are talking … 
what’s the unit of analysis. [Tas, Primary] 

In the situation illustrated in Figure 1, the student does not appear to have 
misconceptions associated with a specific fraction of a given whole, although there was 
some initial doubt about this in one focus group, after one teacher had suggested that the 
student needed more experience with the idea of a “quarter of a group”. Another teacher 
counter-argued that the student’s basic conception of a quarter was sound, saying “she has 
actually represented … one counter out of four … she sees that one out of four is … it’s 
working with four counters as a whole, and here’s the one”. The specific issue associated 
with the misconception illustrated in Figure 1 is that, in order to be added, the two quarters 
and their sum must be represented and conceptualised in reference to the same whole. This 
was not always clearly articulated among the teachers who considered the situation, and 
the first extract below actually preceded the push to focus on the basic conceptualisations, 
with the concluding comment about there being two groups not followed up at first.   
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She’s got two wholes here … but I think I’d have to go right back to the beginning of fractions with 
her … yeah, forget about the adding, go back to a quarter of that, of one, and then a quarter of 
another group and so that you can transfer the quarter of the group to here, and realise it’s a quarter 
of another group of what she’s done. [Tas, Primary] 

She doesn’t catch on that four in one quarter and eight in one-eighth is [in reference to] the same 
one whole. [Tas, Primary] 

The second quote above, which arose later in the conversation among the Tasmanian 
teachers, gets to the heart of the matter but without specifying that the problem of the 
identification of the whole even applies with the original two quarters which were not 
shown with respect to a common whole.  

Although it was intended that the focus group discussion should address Figure 1 
(while also allowing this to be a springboard for other discussion), the New Zealand focus 
group spent some time discussing teachers’ experiences with their own students’ work. In 
so doing, they discussed aspects of the role of the whole. For example, one teacher told of 
the way students discussed the equivalence of mixed and improper fractions, and another 
described a student’s approach to showing that one-third cannot be the same as three-
eighths. In these accounts, the discussion of the whole and fractions was fluent and correct. 
The problematic nature of the whole in Figure 1 was hinted at only once, however, in the 
following.  

If a child said to me, “Well, here’s my whole” … you know, but then you’d be saying, “Well, what 
fraction is that? If that’s your whole, what’s your fraction?” You know, “What’s the fraction?” so, 
“Really is it a quarter plus a quarter?” … So it’s making sure that they really understand, that you’re 
on the same wavelength in what you each consider the whole to be. [NZ, Primary] 

In this case, if the words are referring to the need for a consistent whole—and it is not 
entirely clear that they are—then here the language has not been explicit about the 
mathematical details of the problem. However, two of the other teachers concurred with 
the statement, suggesting that some aspect of this contribution was understood and 
received agreement. This hints at some taken as understood common understanding held 
by the teachers, but the lack of clarity in the language begs the question of whether or not 
the same understandings were actually held.  

Division of Fractions 
In the division of fractions scenario shown in Figure 2, the student’s computation 

resembles aspects of the addition algorithm, in that a common denominator and resulting 
equivalent fractions are found for the two fractions prior to continuing with the division 
process. The final answer is correct; the issue is whether or not the student’s method is 
valid, and, if so, on what grounds.  

On seeing the student’s solution, one of the Victorian primary teachers seemed to be 
distracted by the seemingly incorrect use of common denominators.  

Very common, see it all the time, a mixture of algorithms that they’ve learnt, looks like the 
algorithm of changing the denominators, and then [indiscernible] algorithms, numerator to the 
numerator, denominator to the denominator, so it’s just a mix up of things that they’ve got in their 
head going on, and they’re just applying them … randomly. [Vic, Primary] 

Here the familiar aspects of one algorithm in a context different from its usual 
application appeared to lead to an assumption that the student’s work is incorrect. The 
phrase “the algorithm” may suggest the teacher believed in an authorised way of doing 
things (this is speculative, but it is known that some people view the standard algorithm as 
the correct way of solving a problem). There was no explicit use of language associated 
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with equivalent fractions although this idea is, perhaps, implicit in the phrase “changing 
the denominators”. The use of the words “numerator” and “denominator” in the latter part 
of the quote seemed to be in reference to actions/changes that are not clearly specified; the 
use of the word “randomly” at the end suggests that the teacher thought that the student’s 
actions are muddled rather than purposeful. There was no disagreement with this 
interpretation from the other teachers in the group, and the next phase of discussion turned 
to whether or not fraction division was part of the primary school curriculum.  

The use of a common denominator was also disconcerting for the Tasmanian 
secondary teachers, with one saying “It looks like to be they're confusing it with the 
addition algorithm,” but some at least recognised that the answer was correct. As the 
following extracts show, the teachers wanted to have the student explain the thinking 
behind the solution in order to discern the student’s rationale. It is, however, ambiguous as 
to whether or not any of the teachers thought the approach was valid and applicable more 
generally. Although the words numerator, denominator, common denominator, and 
algorithm, were used correctly in general, they seemed to be used superficially and the 
deeper meanings were not considered in any attempt to explain and justify the student’s 
valid approach.  

Well, firstly, I would ask them why they did what they did. You know, I think that’s really 
important that kids understand how to do something, why it works and when you use it. And in this 
case I am intrigued that they've got the right solution by not the standard algorithm so I would ask 
them why they did it like that … and then engage them in a conversation about, "Let’s weigh up 
some of the advantages and disadvantages of the different strategies you’re looking at now." And 
see if they would actually change their mind about what they’ve done there. [Tas, Secondary] 

Later in the discussion this teacher was able to articulate more about what was going 
on mathematically, but there was still much that was implicit in the explanation.  

If this kid knew why they were doing that and they explained it in a way that makes sense to me, I 
want to add that to my library because in many ways it makes more sense than what we teach them 
because it is linked and connected to the addition and the subtraction one quite well because if you 
actually do the eight divided by nine and the twelve divided by twelve … so you’re nearly there. 
[Tas, Secondary] 

The first of the following teachers suggested that the student thinks you can “lose the 
twelves”, but did not examine if there are mathematical reasons that make this a valid step. 
The vanishing twelves, from the second line of the student’s solution to the third, was a 
point of concern for the other teachers, too, expressed in different ways. 

You’d still have to ask why because maybe that’s not … there's something else is going on, that you 
can go about, you know, maybe they just noticed that you lose the twelves or something when 
they've been doing it elsewhere. But you really have to ask them first what's happening. … If they 
continued on the 'correct' algorithm, putting over the common denominator wouldn’t have mattered. 
… I mean that’s the thing. I mean it wasn’t needed, but wasn’t incorrect, but there’s some reason 
they seem to think somehow you, once you put them over the common denominators you can forget 
the denominator. [Tas, Secondary] 

When I got through to here, I thought, “Oh! Clever kid!” like, you know how when we’re teaching, 
we’re teaching the algorithms and they’ve got to remember, “Okay, when I divide fractions, what 
do I do again?” and the recall of that. I find that in adding fractions they get under control putting 
over common denominators fairly well and I think they do that a lot in primary school too before 
they come into grade 7. I think this is really clever in that again, we’re using the same sort of 
thought pattern of putting it over a common denominator again. Where I would be asking questions, 
even though I’d still ask … why did you do that, like how did you get from at the second line to the 
third line? What happens there? [Tas, Secondary] 
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Yeah, assuming like that's over one, or we're having it over the same denominator means that they 
magically disappear or- that there is a lack of reasoning between those two steps. [Tas, Secondary] 

The disappearing twelves can, in fact, be explained intuitively by realising that twelfths 
are the units for each fraction. Since each fraction is expressed in terms of the same unit (as 
shown by the same denominators), then the quotient is obtained from the quotient of the 
number of units in each of the dividend and divisor (i.e., 8 and 9, respectively).  

The New Zealand secondary group also discussed asking the student to explain why 
he/she changed the fractions to equivalent fractions with a common denominator, with at 
least one misled by this out-of-place application of part of the addition algorithm. A few 
minutes later one of the teachers claimed that the solution was “Absolutely right. It’s a 
perfectly valid way to do it.” One of the teachers had had a student take a similar approach 
in class, and there was some extended discussion about the applicability of the method. 

T1:  I can't remember whether the student actually had the understanding or whether they 
just … but they were definitely using their prior knowledge of adding fractions. … I 
did a little bit more work on it myself, and um, I do use it sometimes, but it's a bit 
limited in its use, because the numbers have to work, but it is a valid method that's 
come out. … So using equivalent fractions, and then, … I think the student was 
saying, I think, … [they] were going eight divided by nine is, is, yeah, to get the eight 
divide, and twelve divided by twelve is one … However, it works, and I think when I 
did some more work on it myself, it does work, but you can get into a bit of a tangle. 

T2:  So it works for every whole [sic] number. 

T1:  Um, I don’t know. I think … 

T2:  I can’t see why it wouldn’t. … It’s just an algorithm. … 

Note that the word algorithm seems to have been endowed with an authority that 
implies that it makes things work, rather than as something that requires validation. Later 
the researcher interviewer tried to probe the deeper mathematical reasoning (“If we think 
of the multiplication algorithm for fractions, we multiply numerators, we multiply 
denominators  … So, if we’re dividing two fractions, why not … divide the numerators, 
divide the denominators?”) which was followed by some general discussion about setting 
up class explorations of the phenomenon, but again the discussion seemed to tacitly 
assume or agree with the method without confirming its validity. 

Discussion and Conclusions 
The teachers, for the most part, appeared to have a shared vocabulary with respect to 

basic fraction numeration and operations. There was some informality associated with the 
vocabulary on occasions (e.g., the phrase “numerator to the numerator, denominator to the 
denominator” used by one of the primary teachers, and “putting over a common 
denominator” by the secondary teachers), although there were no egregious errors of 
terminology. At times, however, some of the usage seemed to be taken as understood, in 
that teachers used some expressions that had the potential to be ambiguous in meaning, but 
there was an apparent assumption that they all understood what was meant by the terms 
(e.g., exactly which whole was meant by whole in the addition problem, and no one felt the 
need to question whether or not there was a reason behind the loss or forgetting of the 
denominator in the division problem).  

There was very little detailed articulation of the fundamental principles underpinning 
the students’ thinking. It may be that this assumption of shared meanings inhibits explicit 
examination of the underlying definitional mathematical meanings and implications. This 
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is not to say that single words that capture complex ideas are not powerful, but our 
familiarity with them might make it difficult to get back to and express the component 
foundational principles, and it is these that may be necessary in order to make sense of 
students’ work and help them develop better understanding. For example, it was striking 
that there was little talk about the way that the numerator and denominator quantify the 
value of the fraction, by defining the size of the unit components (as determined by the 
denominator) and the number of such units being considered (as given by the 
denominator). The teachers seemed to understand fractions and the meaning of the 
numerator and denominator, but did not ever articulate that meaning explicitly. 

In the discussion of the division problem, the meaning of division was completely 
taken as understood; the focus of the discussion was on computational operations and what 
could and could not be done with the fraction components and the operations, rather than 
on what it might mean for one fraction to be divided by another. It also seemed to be taken 
as understood—perhaps because the student had obtained the correct answer—that 
(a ÷ b) ÷ (c ÷ d) is equivalent to (a ÷ c) ÷ (b ÷ d).  

The mixed results seem to suggest that perhaps it is time to talk about the way we talk, 
and the language we use in teaching mathematics. When working with pre-service 
teachers, it may be that we assume some things are taken as understood. Maybe, as a 
consequence, we are not as precise about defining and being consistent with the language 
we model, nor give enough emphasis to how that language allows us to discuss 
mathematical meanings, nor appreciate that these meanings allow us to justify 
mathematical procedures.  
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That the quality of teachers’ knowledge has direct impact on students’ engagement and 
learning outcomes in mathematics is now well established. But questions about the nature 
of this knowledge and how to characterise that knowledge are important for mathematics 
educators. In the present study, we examine a strand of Specialised Content Knowledge, 
SCK (Ball, Thames and Phelps, 2008) of a group of pre-service teachers in the domain of 
proportional reasoning. In particular, we were concerned with teachers’ knowledge of 
evaluation of the plausibility of students’ claims and errors. Our preliminary results indicate 
that the participants, as a group, had developed a sense of student error but experienced 
difficulty in explaining the source of these errors. 

Introduction 
High school students’ engagement with mathematics and their learning outcomes have 

come under increasing scrutiny from teachers and curriculum policy makers. This issue has 
received increasing attention against the backdrop of a declining enrolment trend in senior 
mathematics subjects. While students seem to be showing interest in studying general 
mathematics subjects, there is an appreciable decline in enrolment in mathematically 
demanding subjects. In order to arrest and reverse this pattern, it is critical that teachers 
and teacher educators understand the multitude of factors that could afford or hinder a 
higher level of student participation than is evidenced hitherto.  

The quality of instruction that students receive in their mathematics classroom must 
surely feature as a significant factor that could impact on students’ learning and 
development of mathematics proficiency. While the quality of mathematics instruction 
could be analysed from a number of angles, the kind of knowledge that teachers bring to 
and activate prior to and during teaching can be expected to have a significant influence on 
students’ engagements with mathematics concepts and problem solving skills. In this 
regard, we argue that, the development of a nuanced understanding of processes and 
content of mathematics that is taught in our secondary classrooms is a necessary first step 
in characterising quality of mathematics instruction. As teachers are at the forefront of 
subject delivery and assessment of student performance, it is imperative that researchers 
focus on teacher knowledge and how that knowledge impacts on their decisions. 

Conceptions of Student Learning of Mathematics- Framework of Schema  

 

In discussions about teaching it is imperative that we unpack notions of student 
learning and understanding of mathematics. Our conception of student learning is built 
around the construct of mathematical schemas. Mathematical schemas are organised 
knowledge clusters or chunks of knowledge that are built on and around core mathematics 
concepts, principles and procedures. Schemas provide an important theoretical tool to 
facilitate discussions about deep and surface understanding in mathematics. Schemas that 
are sophisticated can be expected to have more concepts and links between concepts, thus 
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reflecting deep understandings. Students who have large and extensive mathematical 
schemas are expected to also show fluency in the use of procedures and the use of multiple 
strategies for problem solving. Drawing on the work of Mayer (1975), Chinnappan, 
Lawson, & Nason (1998) analysed understanding of mathematics concepts in terms of 
schemas that have internal and external connectedness. Thus, in our study of quality of 
teaching and its relationship to teacher knowledge, we work on the assumption that 
teachers need to build extensive, deep and well-connected mathematics schemas 
themselves in the first instance in order to support their students to construct similar 
schemas. The question is what are the constituents of such schemas for effective 
mathematics teaching? In order to answer this question, we need to consider the broad 
categories of knowledge that teachers need to access prior to and during their teaching.  

Teacher Knowledge and Teaching Mathematics 
In his seminal work on analysing teacher knowledge, Shulman (1986), hypothesised 

the role of two key components of knowledge that teachers need for effective practice: 
Content Knowledge (CK) and Pedagogical Content Knowledge (PCK). The identification 
of CK and PCK strands provided the initial prompt for educators to explore how these two 
core knowledge bases could support mathematics teaching. Following several lines of 
inquiry (Ball, Hill, & Bass, 2005; Chinnappan & Lawson, 2005; Walshaw, 2012), there is 
an emerging consensus that effective mathematics classroom practices are driven by a 
robust body of teachers’ mathematics content and pedagogical content knowledge. 

Research interest in knowledge that teachers bring to support learning has gained 
momentum by recent empirical evidence that teachers’ mathematics content knowledge 
contributes significantly to their students’ achievement (Bobis, Higgins, Cavanagh, & 
Roche, 2012; Senk, Tatto, Reckase, Rowley, Peck, & Bankov, 2012). In broad terms, 
mathematics content knowledge refers to knowledge of the concepts, principles, 
procedures and conventions of mathematics, while pedagogical content knowledge 
involves teachers’ understanding of students’ mathematical thinking (including 
conceptions and misconceptions) and representing mathematics content knowledge in a 
learner-friendly manner.  

The pioneering work of Shulman led Ball and her associates (Hill, Rowan, & Ball, 
2005; Ball & Hill, 2008) to focus on mathematics teachers and fine tune the knowledge 
strands that are necessary for teaching mathematics effectively. The outcome of their work 
was the development of a number of new strands of knowledge clusters for mathematics 
practice that was collectively referred to as Mathematics Knowledge for Teaching, MKT 
(Hill, Blunk, Charalambous, Lewis, Phelps, Sleep, & Ball, 2008).). We regard MKT as 
providing a macro schema for understanding and describing teacher knowledge that is 
critical to their work. Within MKT, there are two main categories of knowledge: Content 
(Subject-matter) Knowledge and Pedagogical Content Knowledge. The Content 
Knowledge category was decomposed into Common Content Knowledge (knowledge of 
mathematics common to most educated adults), Specialised Content Knowledge (specific 
and detailed knowledge of mathematics required to teach it), and Knowledge at the 
Mathematics Horizon. In our attempts to better understand teacher knowledge that is 
necessary for supporting school mathematics, we have been inspired by the above 
dimensions of teacher knowledge for teaching mathematics that was proposed by Ball and 
colleagues.  

Ball et al.’s (2008) conceptualisation of MKT led researchers to develop tasks in order 
to measure the various components. However, most of this effort has been invested in 
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conceptualising and measuring MKT in the context of primary mathematics. Ball (personal 
communication) has suggested that there is a need to analyse the character of MKT for 
junior and senior secondary mathematics. In the present study, we attempt to fill this void 
by focussing on investigating one strand, namely, Specialised Content Knowledge (SCK) 
of prospective junior secondary mathematics teachers. SCK is an important strand for two 
reasons. Firstly, this strand has been shown to correlate with high levels of student learning 
outcomes, particularly at the primary levels (Ball & Hill, 2008). Secondly, it has been 
shown that SCK tends to be underdeveloped in most teachers including future teachers of 
mathematics (Hill, Rowan, & Ball, 2005; Hill et al., 2008; Chinnappan & White, 2013). 

SCK in Number and Algebra 
In discussions about SCK, the mathematics community is concerned with mathematical 

content that is unique to teaching. This knowledge base includes structuring and 
representing mathematics concepts, identification of the mathematics that underpins an 
instructional task and anticipation of different ways students might think about concepts 
including their misconceptions (Steele, 2013). SCK of a teacher also includes their ability 
to appraise and analyse unconventional solution methods of their students. In this regard, 
Ball et al. (2008:400) suggested ‘looking for patterns in student errors or in sizing up 
whether a nonstandard approach would work in general’ as an important component of 
teachers’ SCK. In the present research, we take up this particular aspect of SCK in the 
context of a problem that involved proportional reasoning. Our research was guided by the 
following question: What is the nature of SCK of prospective teachers in the domain of 
proportional reasoning that involved evaluation of plausibility of student errors? 

Methodology 

Design 
We have adopted a case study design for this study involving groups of pre-service 

teachers (PSTs) engaging in discussions about a given proportional problem. This design 
was considered to be appropriate as we aimed to gain an in-depth understanding of a 
phenomenon - evolving teacher knowledge within groups, as suggested by Yin (2009) and 
Zevenbergen (2004). The groups of PSTs constituted the units of analysis for the study. 

Participants 
A cohort of 8 PSTs participated in the study. The participants were enrolled in a Master 

of Teaching which is a professional Masters leading to a teaching qualification and were 
then employed in Government schools across South Australia. The participants came from 
a variety of backgrounds, many had industry experience, some were recent graduates and a 
number had PhDs. The PSTs had completed two core mathematics methods courses and 
twelve weeks of professional experiences before the commencement of the study. In this 
report we provide data generated within one group (4) of the PSTs. 

Task 
We were conscious that the task that we provided for our PSTs to interact with will 

engender multiple opportunities to activate their SCK. In a study about teacher preparation, 
Beswick and Goos (2012) developed a set of mathematical problems that were used to 
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assess content knowledge. From this set, we selected a proportion problem, namely, the 
Cordial Mixture Problem (CMP) for the present study (Figure 1).  

 

 
Figure1. Cordial Mixture Problem 

The CMP is regarded as a rich context for the externalization of teachers SCK for the 
following reasons. Firstly, in examining the solution to the problem, teachers could 
activate a range of intuitive knowledge about the solution to the given problem as well as 
examine the mathematics underlying the solution, both of which were regarded as core 
elements of SCK by Sullivan (2011).  

The conclusion by the Year 8 student (Figure 1) that the cordial mixes have the same 
sweetness suggest that the student have added 2 to both the number of cups of sweet and 
cups of water respectively. This indicated the use of additive thinking by the student. In 
contrast, the activation of multiplicative reasoning, in context, would involve comparing 
the ratio between cups of sweet to cups of water between Sally and Myles respectively 
(4:13 to 6:15). Such a comparison of relationships would have led the student to the correct 
conclusion that the ratios are not equal, and therefore, the two cordial mixes are not of 
same concentration.  

In analysing CMP and its solution offered in terms of concepts such as ratio, 
proportion, additive and multiplicative thinking, we suggest, constitute PSTs’ SCK. At the 
core of this knowledge is reasoning about the multiplicative relationship that exists 
between base ratios within the given proportional context. That the student had used 
additive thinking suggests PSTs’ awareness of how the student could have reached the 
erroneous conclusion, a component of their SCK. 

Procedure 
Participating PSTs were organised into groups of four, they were given a number of 

questions to complete individually and then asked to discuss their solutions to these 
problems including the CMP. In sharing their responses, each member of the group was 
also invited to comment on the problem, identify potential solutions from their students’ 
perspective and issues related to teaching and learning about the given problem. In 
prompting the participants along the above lines of analysis, our expectation was our PSTs 
will focus on the key concepts that underpin the different representations and solution 
paths all of which constitute SCK underpinning the CMP. Each group was allowed a 
maximum of 30 minutes to complete this activity. 
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Results and Analysis 
We provide transcripts of PSTs’ discussions in two excerpts below. 

Excerpt 1 
PST1: Me to because it was up to us to see the pattern as to see the other pattern, because I’ve been 

telling the kids that maths is all about patterns and things,  
PST2: Would you see misconception patterns?  
PST1: so interesting for us to have to work out where the misconception pattern was. 
PST3: So I ended up with 10 cups and 19 cups  
PST1: Yes. 
PST3: Yeah. 
PST4: I interpreted this in a different way I think because... 
PST2: I did too. 
PST4: ... because the children interpreted two, two groups of concentrated water in the top I think, and 

down the bottom there I presumed  that we had to choose between two of those, because on the 
top they use the difference of 2 in both sides. 

PST2: Two, two on both sides. 
PST4: So down the bottom I used the difference of 2 and 2 so I said Aisha the top one and Erin in the 

bottom one. 
PST2: I saw that pattern to, that’s the pattern that I saw. 
PST3: OK, I think I see what you mean 
PST2: I think it’s the one where 10 and 19 come from. 
PST1: That was my answer. 
PST3: Because when you’ve got a difference of 4 cups of sweet water, you’ve got 4 and 13, and then it 

goes 6 15, so then I went 8 17 and 10 19.  
PST2: Sorry, I don’t understand, you got 4 and 13. 
PST4: I just said the... 
PST3: 6 and 15 which is the next one. 
PST1: You add 2 again. 
PST3: Yep, and then the next one up would be 8 17, so you’d have 8 cups which is 17 cups of water. 
PST2: 8 to 17. 
PST2: And then you’d go to 10 and 19, so I could see that both, both ways could be  
PST1: What was your way? 
PST4: I just said OK, there was a difference of 2 in both those 2 and 4 to 6, 13 to 15, so then I looked 

down the bottom and I said, Right, we have to choose two of those, so 8 and 10, 26 and 28. 
PST2: So you guys looked at it, what one out of this lot would be the same as those two? 
PST3: Yeah. 
PST4: That’s not how I interpreted that. 
PST2: Which two would be the same 
PST1: We picked two others. 
PST1: Yeah. 
PST1: Oh! 
PST1: See I thought that was a separate thing. 
PST2: So I think they’re both right. 
PST3: Yeah, I think they both are right it depends how you read it  
PST1: Good old English. 
PST4: Mm, it’s a bit ambiguous isn’t it, not crystal? 
PST1: So what would we talk to about that student? 
PST2: We’d have to find out why. 
PST3: Yeah. 
PST4: Why that student thinks  
PST1: Well they’re not dividing all are they, they’re basically not. 
PST3: They’ve just picked a pattern.  
PST1: They’re not getting a ratio at all. 
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PST3: That’s right, they’ve just assumed, they’ve made an assumption that it’s going to be the same, 
maybe  you need to be set up to see  that  it’s not the same. 

PST1: They’re doing differences so you need to go back and show them that they should be doing 
division with this sort of thing, for ratios 

The discussion above highlights some interesting insights into the SCK of these PST’s. 
Initially the discussion centered on the identification and importance of pattern and their 
ability to identify not only the correct pattern but also an incorrect pattern that the students 
may have used (turns 3 and 12). However there were two interpretations of the question 
and so the discussion then focused on interpretation of the question and how easy it was to 
read the question in a different way than was intended (turns 4, 7 and 11). It also 
highlighted that it does take some time to see the problem in a different way to how you 
initially interpret it. Interestingly both were able to answer the question based on their 
interpretation (turns 16 and 25). However this was a distractor from the intended 
discussion and made us question the value in not having the researcher as part of the 
discussion. The discussion then returned to what the student had done and they identified 
that the student had not used a ratio at all and that they needed to set up a situation where it 
would not work and that the student would need to use a ratio, although no detail was give 
how they would do this (turn 46). The discussion appears to show that the students were 
able to identify the problem and had some idea of what they needed to do but did not have 
the breadth of SCK required to draw upon to give specific examples of how they would 
help the students.  

The participating PST’s were also asked to comment on the effectiveness of the 
process used – use of CMP as a prompt for externalizing SCK). Below is a short extract of 
their discussion.  

Excerpt 2 
PST1: Yep. So I think it’s easy to just focus, like just focus on just getting the right answer and like you 

said, when you’re time poor you focus on just trying to get them the basics. 
PST2: That’s right. 
PST1: Instead of stepping back for a second and throwing one of these out there and saying, OK, we’ve 

done all these ratios and stuff, let’s look at this one. 
PST2: Let’s move on because the higher-order ones, they have that  
PST1: This is how you check they understand it, right? 
PST2: Yeah, yeah. 
PST1: That they haven’t just learnt your tricks and processes. 
PST2: That’s right. 
PST1: That they’ve  
PST3: Yeah, they have to sort of figure out, you know, what they’re doing. 
PST1: Yes. 
PST3: Get an understanding. 
PST1: And equally it’s, go through this process because if you’re just marking a test, that’s the wrong 

answer and you put a cross, something wrong, then obviously you’re not going learn  anything. If 
you don’t know where they went wrong, if you can’t follow it, you can’t help them out, so  

Comments from Excerpt 2 indicate that PSTs are aware of the need to examine aspects 
of students’ thinking that goes beyond procedural knowledge (turns 47, 56 and 58). This 
could be evidence of the PST’s activation of PCK but one that is reliant on SCK about 
proportional reasoning. The exchanges also indicate that the PSTs found the process to be 
useful for them and that they were able to make the connections between the type of 
problem that they were using and the outcomes that they expect to get. We suggest that the 
process had made participants think about the SCK that is involved in analyzing CMP 
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although it was at times difficult to distinguish between exchanges involving SCK and 
PCK.  

Discussion 
This study that is reported here was motivated by our desire to better understand the 

state of SCK by a cohort of prospective teachers of numeracy who were enrolled in our 
teacher education program. We worked on the assumption that by providing opportunities 
for pre-service teachers to externalise their SCK in informal situations, as teacher 
educators, we will be in a stronger position to understand the quality of this knowledge. 
Such data were expected to generate guidelines for supporting their future learning needs 
in developing their SCK further. 

The preliminary data indicate that prospective mathematics teachers’ SCK is somewhat 
tenuous in the particular area of proportional reasoning, an area of mathematics that has 
been shown to continue to present challenges for both teachers and students (Lamon, 2011; 
Beswick & Goos, 2012). However, given that the participants are in the early stages of 
their professional development, there were important signals to suggest that our PSTs have 
formed precursors of powerful SCK. For example, there is strong evidence that our 
teachers were keen to explore the ratio schema in which the CMP was anchored. 

From a schemas perspective, the CMP acted as an effective prompt for internal and 
external schemas (Mayer, 1975) about concepts of co-variation, ratio, additive and 
multiplicative relationships. In this context, understanding of the concept of ratio is part of 
students’ internal schema, whereas deducing the equality of ratios in proportional thinking 
is a component of external schema. Both schemas are reflective of knowledge that is 
unique to the work of teachers as suggested in the framework of MKT (Ball et al., 2008). 

Our preliminary study along this line of inquiry examined SCK in the context of 
matrices (Chinnappan & White, 2013) among prospective mathematics teachers. The 
results of that study provided evidence that the quality of representations can be used as a 
key indicator in studies of SCK. In the present study, we suggest that the analysis of 
additive vs multiplicative representation of CMP or similar problems by PSTs could be a 
useful way to extend the current study. 

The data that we present here is drawn from four PSTs who were asked to study and 
comment on the given CMP. As pointed out earlier, the group discussion was conducted in 
an informal manner with limited intervention from the investigators. While this strategy for 
data collection was effective, from a methodological perspective, the above arrangement 
may not have provided an optimal environment to obtain a more complete picture as to the 
state of the participants’ SCK and information for charting its evolution. In a future large 
scale study, we intend to fine-tune this weakness by involving the researcher in engaging 
the participants by the use of semi-structured questions to probe the participants both 
during and post group discussions. 

A challenge in the present study was that the conceptualisation of SCK had to be 
grounded in one specific area of secondary mathematics in order to generate fine-grained 
data. Within the domain of numbers and algebra, there are numerous areas that are ripe for 
the exploration of teachers SCK. However, pinning down one area within these strands 
was problematic for us in order to be able to make general claims.  

Capturing the nuances of SCK is also limited by the fact the knowledge is 
developmental in nature and that any description of this knowledge is only valid at the time 
of the investigation. Thus future studies should also track the growth of SCK and map a 
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trajectory of the growth by providing different proportional reasoning problems and 
examine the connection to PCK. 
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A central premise of this project is that teachers learn from the act of teaching a lesson and 

that this learning is evident in the planning and teaching of a subsequent lesson. In this 

project, the knowledge construction of mathematics teachers was examined utilising multi-

camera research techniques during lesson planning, classroom interactions and reflection. 

Our goal is a refined understanding of classroom events that create opportunities for teacher 

learning. This paper reports what one Year 5 teacher appeared to learn from the process. 

Literature and Conceptual Framework 

Our overarching research question is: In what form and by what process do teachers 

learn from the experience of teaching mathematics lessons? This paper focuses on two sub-

questions: 

(i) When reflecting on a recently taught lesson, which lesson elements or events do 

teachers consider most salient and how do these influence subsequent lesson 

planning? 

(ii) What forms of teacher knowledge and beliefs are foregrounded in the process of 

reflection on a lesson, and how do these contribute to subsequent lesson planning? 

In recent years, a great deal of research has been conducted that provides evidence for 

what many intuitively believe to be true—that ultimately the teacher is the key to improved 

student learning (Fennema & Franke, 1992; Hattie, 2003). Artzt and Armour-Thomas 

(1999) identified “dimensions” of the lesson as “those broad aspects of instructional 

practice that define critical areas of teachers’ work during the enactment of the lesson” (p. 

214). These dimensions are Tasks, Learning Environment, and Discourse. While using the 

framework of Artzt and Armour-Thomas in creating the experimental lesson plans used in 

this study, we have also drawn upon the literature of effective teaching of mathematics 

(Anthony & Walshaw, 2009; Sullivan, 2011), as many of the insights from this research 

elaborate the categories of Artzt and Armour-Thomas. 

Despite the growing recognition of the centrality of the teacher’s role to student 

learning, teacher knowledge, and teacher learning remain under-theorised. This project 

takes as its starting point one of the most widely cited models of teacher learning (Clarke 

& Hollingsworth, 2002, see Figure 1), as this provides an orienting framework for the first 

research question. Central to this model is the mediating role played by Salient Outcomes 

(those outcomes of classroom practice to which the teacher attaches significance), which 

provide both the basis for change in beliefs and knowledge and, once changed, the 

motivation to engage in classroom experimentation in recognition of changes in those 

outcomes considered salient by the teachers. 
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Figure 1. The Interconnected model of teacher growth (Clarke & Hollingsworth, 2002). 

Shulman (1987) distinguished between Mathematical Content Knowledge (MCK) and 

Pedagogical Content Knowledge (PCK) and this distinction informed the design of the 

TEDS-M instrument used in this study (Tatto et al., 2012). Our thinking was also informed 

by the work of Van Es and Sherin (2002), who have developed a substantial body of 

research on “teacher noticing”. Related work on decision-making by Schoenfeld (2011) 

can be usefully integrated with the idea of “adaptive expertise” (Hatano & Inagaki, 1986) 

to extend the Clarke-Hollingsworth model, by providing a mechanism for both reflection 

and enaction within a model of teacher learning.  

Research Design 

Three middle school teachers with at least five years’ classroom experience were 

recruited in Melbourne to participate in the study, drawing upon available networks of 

teachers known to the researchers.  

Data Generation  
A key element in this research design is the provision of purposefully-designed 

experimental mathematics lessons, which provide the initial context for this study of 

teacher selective attention, reflection, and learning. During a preparatory (pre-active) 

interview, the teacher was asked to complete the same mathematics tasks as those 

employed in the lesson about to be taught. The teacher then annotated a provided lesson 

plan with respect to any aspects of the lesson that the teacher believed would require 

adaptation or which might represent a particular challenge for either the students or the 

teacher. A pre-lesson interview just before the lesson focused on the teacher’s thinking 

regarding the lesson to be taught. An open-ended interview protocol offered teachers the 

opportunity to discuss (unprompted) such things as: key mathematical or pedagogical 
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points, likely student difficulties, anticipated important moments in the lesson, intended 

student learning outcomes, and so on. 

The teacher taught the lesson to their usual class. The lesson was filmed using a two-

camera configuration: (a) The teacher camera recorded all teacher actions and statements 

throughout the lesson; and (b) the whole class camera recorded the entire class 

continuously throughout the lesson. 

The original lesson plan categories were used to structure the teacher’s reflection on 

the lesson. Initially, the teacher was asked to: (i) comment on each lesson component; and 

(ii) to identify salient events in the lesson (activities or actions that the teacher believed 

were important for some reason). The interviewer encouraged the teacher to explain why 

the chosen events were important. Each event was then viewed on a synchronised, split-

screen video record of the lesson and the teacher was invited to make any comments 

suggested by viewing the video supplementary to those already made. 

Teachers were then asked to develop a written plan for “a follow-up lesson” (Lesson 2) 

using a structured template provided by the researchers. It was intended that Lesson 2 offer 

the opportunity to build on the first lesson, in relation to content, student understanding, 

and student engagement. A second pre-lesson interview followed the protocol for the 

corresponding Lesson 1 interview in every respect. In addition, the teacher was asked to 

describe any way in which the teaching of Lesson 1 had influenced their thinking about 

Lesson 2. 

The teacher then delivered the second lesson to their usual class. Once again, the lesson 

was filmed using a two-camera configuration. Again, the original lesson plan categories 

were used to structure the teacher’s reflection in a post-lesson interview of which the latter 

half was video-stimulated. After this process had been completed, the teacher was asked to 

identify anything that she had learned over the course of the two lessons. 

One week after the filming was completed, teachers were given a written assessment of 

content knowledge and pedagogical content knowledge and a beliefs survey adapted from 

the test instrument developed for the 17-country TEDS-M study (Tatto et al., 2012). Given 

that the capacity of any individual to learn from a specific experience is dependent on their 

existing knowledge, it was important to establish general measures of the teachers’ 

knowledge. This information could then provide part of any explanation for the teacher’s 

subsequent capacity to learn from the experience of teaching a lesson. 

The study design attempts to maximise authenticity by investigating teacher learning 

“in situ” – that is, teachers in interaction with students with whom they are familiar and for 

whose learning they are responsible. The teachers’ subsequent learning from any lesson 

will be dependent on their existing knowledge of their students and of the mathematics 

curriculum relevant to that grade level. It was hypothesised that this existing knowledge, 

together with teacher beliefs and values, would determine those classroom events, objects 

and people to which the teacher chose to attend. This, in turn, would influence the 

teacher’s in-the-moment decision-making, shaping the way in which the teacher translated 

the lesson plan into classroom activity. Further, the teacher’s knowledge, beliefs and 

values would critically inform their evaluation of the effectiveness of any particular lesson 

activity and the significance attached to those lesson outcomes they considered salient. 

Data Analysis 
The analysis reported in this paper drew primarily on interview data with a particular 

teacher, supplemented by results from the TEDS-M instruments. All interviews were fully 

transcribed, and were coded by at least two of the authors, who worked together closely in 
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the early stages. In coding the teacher responses, our overall guiding question was: What 

do the teachers notice or pay attention to in preparing for teaching, and in reflecting on the 

lesson? This is closely tied to both research questions. Text which provided information on 

this question was coded in four broad categories: Mathematical content (what reference 

does the teacher make to mathematical content?); Students (what aspects of students’ 

knowledge, behaviour or needs do teachers refer to?); Instruction (what instructional 

actions or considerations do teachers refer to?); and Teachers (what aspects of themselves 

do teachers make reference to?). Several excerpts attracted more than one of these codes. 

Where two coders assigned different codes to the same interview excerpt, we adopted 

an inclusive approach—any text which was given a code by at least one coder was 

included in that category. All four authors were then involved in drawing out particular 

themes from within the four broad categories. Making sense of the data involved both 

direct interpretations and categorical aggregation (Stake, 1995). Examples of such themes 

include student engagement, the adoption of new lesson structures, connections to the 

everyday, and the role of measurement benchmarks. These themes could then be related to 

the data on knowledge and beliefs from the TEDS-M instruments. 

Results 

From one perspective, the Learning from Lessons project can be seen as an 

investigation into the mechanisms by which teachers develop the “wisdom of practice” 

conceptualised by Shulman (1987). The theoretical basis for the project derives, as has 

been discussed, from the Clarke-Hollingsworth (2002) model of teacher growth, in which a 

key determinant of teacher learning is the particular classroom outcomes (e.g., student 

performances or lesson efficiencies) that the teacher considers to be “salient”. Both the 

study design and the associated analytical framework take the following connective chain 

as fundamental: Teacher Change (and therefore Teacher Growth or Learning) is critically 

dependent on those classroom events to which the teacher chooses to attend while teaching 

a lesson. This selective teacher attention is a direct reflection of the classroom outcomes 

the teacher considers to be salient. Decisions of salience reflect the teacher’s system of 

values and beliefs. Teacher selective attention is also significantly determined by teacher 

knowledge. Put simply, a teacher’s attention is directed towards those things that the 

teacher knows and believes to be important. Any understanding of teacher learning in the 

classroom must start from the documentation of those things to which teachers attend. In 

terms of the Clarke-Hollingsworth model, teacher attention reflects teacher judgements of 

salience and constitutes a key mechanism providing the matter for teacher reflection. 

It became evident in our analysis of teacher interviews and the classroom videos that 

while teacher attention might be identified with some confidence, consequent learning was 

much more difficult to document empirically. In the following discussion, the findings 

with regard to the operationalisation of teacher in situ learning will be illustrated with 

examples drawn from a single teacher (“Tracey”) of a particular Year 5 class. In discussing 

this teacher’s learning, we found it useful to draw a distinction between the development of 

teacher knowledge and the on-going refinement of teacher adaptive practice. In empirical 

terms, this distinction corresponds to the difference between a declarative “claim to know” 

(the individual’s epistemic stance) and an observable (or recounted) change in the 

individual’s practice. We found evidence of both types of learning in our data. 

Our principal source of evidence for learning was the body of interview data. As has 

been outlined, five interviews were conducted with each teacher. The illustrative results 

that follow are reported as (i) those things to which the teacher chose to attend in her 
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interviews before and after each lesson; and (ii) those epistemic claims or reported changes 

in practice that can be taken to constitute teacher learning. 

The Teacher: Tracey 
Tracey has been teaching for 13 years, following the completion of a BEd in 1998. This 

study took place in her second year of teaching Year 5. Based on questionnaire and test 

data, Tracey answered approximately 80% of the TEDS-M mathematics content 

knowledge (MCK) items correctly, with 60% of the items addressing pedagogical content 

knowledge (PCK) answered correctly. She described herself as fairly confident in teaching 

mathematics (6/10) and, specifically, more confident that she could address the needs of 

low-attaining students (7/10) than high-attaining students (6/10). She described her 

instructional approach as focusing on putting ideas into a practical context very often. In 

her responses to TEDS-M beliefs items, she did not endorse “Learning mathematics 

through following teacher directions”, but strongly affirmed “Mathematics as a process of 

inquiry” and “Learning mathematics through active involvement”. From her questionnaire 

responses, Tracey can be described as having a conceptual orientation, rather than a 

calculational orientation (Philipp, 2007). These personal attributes of knowledge and belief 

help us to understand both the patterns in Tracey’s attention and the form taken by her 

consequent learning.  

Teacher Selective Attention 
The targets of teacher attention were classified as concerning: Instruction, 

Mathematics, the Student, or the Teacher. On the basis of our analysis, we were able to 

detect distinct characteristics of the teacher’s attention associated with each of these four 

categories. 

Instruction. The lesson provided by the researchers dealt with student estimation of 

mass and the subsequent lesson developed by Tracey dealt with student estimation of 

angles. In interview, Tracey made specific and repeated reference to three features of the 

lesson structure: the “hook” or story shell used to engage students and situate their activity 

at the beginning of the lesson; the three-part structure (estimation and measurement, 

discussion, and further estimation) (see Lovitt & Clarke, 1988); and the summing up phase 

of the lesson. She chose to utilise the same features in her second lesson. 

Other considerations about instruction for the planning of this lesson included the 

timing or pacing of the lesson (e.g., “when they’re all sitting and each thing is being 

measured, it might be a bit time-consuming there and the kids might get a bit bored”) and 

how she might group the students for the activity (e.g., “I did think about that because I 

was going to place them, perhaps, with someone with high ability skills but I just thought 

also the conversations that they're going to have are probably just as important and I'd like 

them to be with, perhaps, people they're comfortable with. So I'm just going to let them 

choose their pairs.”). One aspect that she felt did not go as well as she had hoped was the 

summing up phase (e.g., “I'm very aware of it in all lessons, not just this one that the 

reflection at the end is really the key. And, perhaps, I didn't leave enough time for that in 

this lesson and it quite often happens that the time for reflection is not there.”). This 

concern to provide sufficient time for an adequate reflection at the end of the lesson led her 

to reduce the number of opportunities to estimate in each round (from five to three).  
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Mathematics. In discussing her planning for both lessons, Tracey made frequent and 

quite detailed mention of mathematics content, however mathematics was much less 

frequently mentioned in her post-lesson reflections. A persistent emphasis was the role of 

referents (her term “benchmarks”) by which the students could make judgements in 

relation to estimating quantities. The other persistent emphasis was “Measurement Units” – 

which is understandable, given the focus of both lessons. 

The theme “connection to the everyday” appeared to be implicitly connected to a 

concept of embodied learning (although not articulated by Tracey in those terms). This was 

clear in Tracey’s discussion of whether or not to include a discussion of the relationship 

between a gram, a cubic centimetre, and one millilitre of water. This seemed to constitute a 

significant focus of reflection for her and also a form of learning. For example: “And then I 

thought that the idea of water and how heavy water is and relating it to the millimetre and 

the cubic centimetre might be something that interests them which is something we could 

run with” (Pre-Lesson Interview 1) and “So I had to make a decision there to, perhaps, 

we'll bring up the water thing and water being equivalent, mls and grams, bring that up 

later in another lesson” (Post-Lesson Interview 1). The prioritisation of “connection to the 

everyday” is also consistent with Tracey’s responses to the TEDS-M beliefs questionnaire. 

Compared to Lesson 1, the Lesson 2 Pre-Lesson Interview was more concerned with 

the curriculum, probably because the responsibility for choosing the topic had been handed 

to Tracey. The interview included many references to the curriculum (AusVELS was cited) 

and Tracey tried to work out how the lesson would connect with the curriculum. Tied up 

with this was her uncertainty over the students’ prior knowledge. 

The students. Except for the preparatory interview, Tracey gave consistent attention to 

student engagement/disengagement. In the first pre-lesson interview, she discussed the 

importance of the pacing of the lesson so that the students did not get bored. After teaching 

the first lesson, she noticed the disengagement of the students towards the end of the lesson 

and reported that her instructional decisions for the lesson were determined by the 

students’ performance and engagement during the lesson: “So I guess it's the kids’ 

response and how they're performing during the lesson and their engagement I think helps 

me decide mostly when I need to move on and that.” Similar comments regarding student 

engagement and interests were made in the second pre-lesson interview. 

Tracey’s concern for student engagement was consistent with the attention she gave to 

student knowledge in planning her first lesson: “I just thought I might make sure that. . . 

they understand what mass is. . . they may not have done mass for a while and they 

confuse it with volume or something” and the second lesson: “I’m not sure of previous 

knowledge about angles so we're going in blind a bit so I just did a little recap.” 

Tracey seemed to create more opportunities for students’ reflection at the end of the 

second lesson compared to the first one. “I think hearing them reflect on the lesson last 

time, I think that was important” and “I think it was the way they verbalised it and also the 

others were paying more attention this time around as well. Whereas the last time they 

weren’t and that. …” 

The teacher. There were very few statements where Tracey referred to her own 

capabilities, confidence or feelings. She did comment in relation to the topic of angles, that 

“perhaps, it’s my own lack of knowledge about angles as well. I couldn’t quite maybe 

explain it as clearly as I …” She noted that for the second lesson (which she had prepared) 

that she “got more ownership of this so I knew exactly where I wanted to go.” Apart from 

these, self-referential statements by Tracey were rare. 
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Discussion 

On the basis of our data, teacher learning could be identified in the form of developed 

knowledge or adaptive practice. Examples of each were available. 

Evidence of knowledge development included Tracey’s comments on mathematical 

content and curriculum, new instructional strategies, the prior knowledge of her students, 

and the significance of particular elements of lesson structure. We would argue that the 

distinction between declarative knowledge and adaptive practice is an important one. 

Tracey not only articulated new forms of declarative knowledge, this knowledge was 

frequently described or actually enacted in the form of adaptive practice. 

Within the category of adaptive practice, Tracey attached particular value to the three-

part structure, whereby students are given two opportunities to estimate, and to the “hook” 

which was not new to her but something she had not used often. The third aspect was the 

reflection at the end of the lesson, which she had added to the original lesson template. 

This lesson feature was clearly important to her as she worked hard to improve this stage in 

the second lesson. Each of these can be interpreted as indicative of adaptive practice. 

Her final interview emphasised the importance of drawing student attention not just to 

the measurement units as such but to the role of the “benchmarks” in helping them to make 

better estimates. It seems reasonable to suggest that this constitutes a form of learning for 

Tracey, whose interview statements suggested that she was likely to be giving the same 

emphasis to this strategy in her future teaching of any topic in measurement. 

Tracey’s interviews illustrate how her professional learning was tied to particular 

practical aspects of the lesson, but ones with instructional implications, such as 

measurement benchmarks, and connections to the real world. Further, when responsible for 

the choice of topic, Tracey paid significant attention to location in the curriculum and to 

student prior learning. In particular, after the lesson, she was more inclined to reflect on the 

mathematics her students did or did not know prior to the lesson (i.e., their preparedness) 

to a greater extent than the mathematics they actually learned during the lesson. 

Conclusions and Implications 

To a significant extent, our analysis has addressed the question: What are the dominant 

emphases in Tracey’s interviews, how do these change, and is there evidence of learning? 

This question represents the pragmatic challenge addressed by the research design 

employed in this study. 

The analysis of data pertaining to Tracey has demonstrated both the efficacy of the 

approach and also validated the intended connectedness of the data sources. For example, 

the teachers’ personal attributes of knowledge and belief, as documented through the 

TEDS-M instruments and the teacher interviews, did provide insight into the patterns in the 

teacher’s attention and the form taken by any consequent learning. These consistencies 

align well with the hypothesised connection between teacher knowledge, beliefs and 

values, teacher selective attention, and teacher learning. It is through the documentation of 

these connections that we hope to identify the mechanisms underlying Shulman’s wisdom 
of practice (Shulman, 1987) and the processes of reflection and enaction that mediate 

change in the Clarke-Hollingsworth model (Clarke & Hollingsworth, 2002). Once a 

process is understood, it may become possible to increase its effectiveness. 

In respect of practical implications of this research: teachers are busy people, and the 

opportunities for reflection, if not structured by others, are sometimes lost. We can 

envisage a teacher professional learning program where a group of teachers choose a 
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lesson from a bank of recommended lessons, adapt the lesson as necessary for their 

students and then teach it. A questionnaire, using similar prompts to those used in our post-

lesson interviews, could catalyse teacher reflection. Teachers would then construct an 

appropriate follow-up lesson to the provided lesson, and teach it, completing another 

reflective questionnaire. The teachers would meet as a group to share their experiences. 

It is our opinion that the research design of this project proved capable of generating 

the data needed to document at least two broad forms of teacher learning from the 

experience of teaching lessons: developed knowledge and adaptive practice. It does appear 

that teachers learn from the activity of teaching lessons. Our challenge is therefore to better 

understand that process in order to optimise its occurrence. The effectiveness of the 

research design in catalysing teacher reflection has significant potential for future 

adaptation to professional learning contexts. 
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The practices of effective primary school teachers including students with Down 
syndrome in their mathematics classes are largely unexplored and many teachers feel 
unprepared to teach students with intellectual disabilities. A study with cohorts in 
Victoria and the ACT is underway and here we report a subset of findings concerning 
the support teachers claim to require. There was an identified need for mathematics 
specific resources and strategies but a strong endorsement of inclusion as an 
appropriate practice in primary mathematics.  

Introduction 
As the focus of teaching has shifted toward a more child centred approach, there 

is much discussion about how to differentiate both teaching and curriculum to suit the 
needs of different learners. This is even more pronounced when considering the 
teaching of children with intellectual impairment within the context of inclusive 
classrooms. Mathematics teaching has traditionally been approached with an 
assumption of the development of sequential skills and is seen as a greater challenge 
to differentiate than other areas of the curriculum. A current research project is 
investigating practices of effective primary school teachers who were including 
children with Down syndrome in the teaching of mathematics in the primary school. 
In this paper, we report early findings from the project that identified the support 
teachers required to do their work. 

Down syndrome is one of the most commonly occurring conditions leading to 
intellectual disability (Selikowitz, 1997) affecting approximately 1 in every 660 live 
births in Australia (Centre for Development Disability Health, 2005). In Australia, the 
majority of these children attend mainstream primary schools and are taught in 
classrooms alongside their age peers (Gothard, 2010). We have been studying learners 
with Down syndrome in previous work (Faragher & Clarke, 2014) and became 
interested in the classroom experiences of these children and the teachers who worked 
with them. The project described in this paper studied the classroom practices of 
primary mathematics teachers who were experienced with teaching in inclusive 
classrooms, as they taught classes including children with Down syndrome. At the 
start of the project, none of the teachers had taught a student with Down syndrome 
before. We followed the teachers’ journey through a school year and studied a 
number of aspects of their work. Here we report on the support that these teachers 
claimed to require to successfully teach mathematics to the learner with Down 
syndrome alongside the rest of the class. 

Literature 
Including students with Down syndrome in regular mathematics classrooms has a 

relatively recent history. In Australia, the Disability Discrimination Act of 1992 and 
the companion Disability Standards for Education 2005 provided legislative 
protection to ensure learners with disabilities had the same rights as all other learners 
in Australia to education in their local school.  
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The education provider must take reasonable steps to ensure that the course or program is 
designed in such a way that the student is, or any student with a disability, is able to 
participate in the learning experiences (including the assessment and certification 
requirements) of the course or program, and any relevant supplementary course or program, 
on the same basis as a student without a disability, and without experiencing discrimination. 
[Standard 6.2 (1), p. 23, Disability Standards for Education 2005] 

With such a recent history of teaching practice, the challenge arises for teachers in 
the design and delivery of programs such that learners are able to participate and be 
assessed on classwork alongside their peers. It may be rare for these teachers to have 
experienced inclusive education in their own schooling. Australian research indicates 
that the majority of pre-service teachers feel underprepared on graduation for teaching 
students with special educational needs (Department of Education, Science and 
Training, 2006). Therefore, opportunities to develop expertise may come largely 
through experience, and appropriate professional learning will be important at that 
point. The nature of such professional learning is a focus of the current project. 

Inclusive Education 
Making adjustments and supporting learners with significant intellectual 

disabilities in mathematics can take many forms. We were particularly interested in 
inclusive education practices. We adopted the definition of inclusive education to be 
the practice of “welcoming, valuing and supporting the diverse learning needs of all 
students in shared general education environments” (Thousand & Villa, 2000, p. 73).  

Inclusive education can be seen as a philosophy, process and practice (Cologon, 
2014b, p. xviii). As a philosophy, it honours human diversity – all people, without 
exception, have value and a deserved place in an education setting. We are not doing 
some a favour; we are welcoming the contribution of all.  

As a process, inclusive education differs from other processes for educating 
learners with disability. Segregation refers to education apart, such as in special 
schools or separate classrooms within a school (e.g., a special education unit). 
Mainstreaming (not to be confused with mainstream schools such as local schools, 
which are those that are not targeted to a specific group) refers to the process of 
enrolling students in a general classroom setting, but without adjustments or support 
for the requirements of the learner. Another common approach is integration where 
the student is present and adjustments may be made, but the setting itself does not 
change. The child who cannot fit in, cannot take part. An example of this approach 
would be where the child is physically in the same room as the rest of the class but 
does different work with the assistance of an aide. D’Alessio (2011, p. 102) referred 
to this as ‘micro-exclusion’. Another commonly used model of integration is the 
practice of co-location (Slee & Allan, 2001) where students attend some lessons, such 
as art classes but are withdrawn for other lessons, often mathematics.  

As a process, inclusive education is different to segregation, mainstreaming and 
integration. It involves “both social and academic inclusion, free from discrimination 
in any form” (Cologon, 2014a, p. 12). How this is done relies on the practices of 
inclusive education. Here the concern is with approaches, strategies and activities that 
are founded on the philosophy and processes of inclusive education. In our work, we 
have been particularly concerned with the practices of teachers from the academic 
inclusion perspective. 
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Inclusive Mathematics Education 
The research literature provides little indication of what happens in inclusive 

mathematics classrooms. A recently published systematic review of observational 
research into inclusive education practices (McKenna, Shin, & Ciullo, 2015) 
identified just five studies published between 2000 and 2013 relating to mathematics 
classrooms. Observational studies are those that “seek to document how schools 
utilize instructional procedures based on policy change and research” (McKenna et 
al., 2015, p. 2).  

McKenna et al. (2015) reported a number of findings of mathematics instructional 
practices documented in the reviewed studies. Each of the five studies observed 
lessons from the Number strand with very little time devoted to other areas of 
mathematics, if at all. A second finding attended to support for understanding. 
Teachers were observed to skip over work that might be thought difficult, and when 
students required assistance, they were told to try harder or given the answer. One of 
the studies, by contrast, observed students explaining their mathematical thinking in 
journals. Overall, observed opportunities for students to verbalise and discuss their 
mathematics were limited.  

The third finding referred to types of instruction. Explicit instruction was 
observed and is a commonly recommended technique for teaching students with 
mathematics learning difficulties (Westwood, 2000). The approach was described as 
“Within a structured class, teachers systematically delivered mathematics lessons 
using specific procedures—introducing objectives, reviewing previously learned 
concepts, modeling new skills, and providing guided and independent practice. In this 
way, teachers applied procedure-based mathematics instruction to support students 
with LD [learning difficulties]” (McKenna et al., 2015, p. 8). While explicit 
instruction is considered an important approach by some mathematics education 
researchers, it is not regarded as solely effective, with researchers recommending a 
balanced approach including opportunities for strategic thinking and reasoning along 
with explicit teaching in numerical techniques (e.g., Baroody, 2006). 

Another finding of the McKenna et al. review was that only two of the five 
studies reported observed use of visual support for learning number. As students with 
Down syndrome generally find support from visual strategies (Couzens & Cuskelly, 
2014), it is concerning that visual strategies were not common place in the inclusive 
classrooms observed in these studies. 

With so few studies providing observational evidence of inclusive mathematics 
education practices, further research is clearly needed. We are unaware of any studies 
explicitly investigating mainstream classrooms including learners with Down 
syndrome. 

Mathematics Education for Learners with Down Syndrome 
In reviewing current understandings of the mathematical development of learners 

with Down syndrome there are two cautions. First, people with Down syndrome have 
diverse phenotypes – they are not all alike. In common with other characteristics, 
educational attainment in general and mathematics attainment in particular, vary 
greatly from individual to individual. Second, diagnosis-specific knowledge can be a 
barrier to inclusive practice. This may seem counter-intuitive, but as Cologon notes, 
this approach can lead teachers to “become focused on the label and not the child, 
thus they implement inappropriate strategies that do not suit the child” (Cologon, 
2014b, p. xix). All the same, there are some common traits exhibited by many 
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learners with Down syndrome that can be helpful to consider in making adjustments 
to the mathematics curriculum. 

Almost all research into the development of mathematics by learners with Down 
syndrome has studied aspects of Number. Very few studies from other areas of the 
discipline exist (Faragher & Clarke, 2014). Considerable difficulties with the 
development of number concepts have been documented by many researchers (Bird & 
Buckley, 2001). Unfortunately and incorrectly, many of these authors extrapolate 
difficulties with number concepts to difficulties with mathematics in general, leading 
to a very pessimistic view of what might be possible for students with Down 
syndrome to accomplish. Some studies have emerged (Faragher, 2014; Monari 
Martinez & Benedetti, 2011; Monari Martinez & Pellegrini, 2010) that suggest that 
other areas of mathematics, including algebra, may be within the grasp of learners 
with Down syndrome if they have access to a calculator and have been taught how to 
use it. 

From the reading of the literature, the following aspects were considered 
important for teachers beginning their work including learners with Down syndrome: 
a shared understanding of inclusive practice as defined earlier in this paper; an 
understanding of Down syndrome; effective use of resources in mathematics 
education, particularly with respect to visualisation strategies; and appropriate use of 
calculators. In the present study, this was a starting point for our work with teachers.  

This study had an overarching research question: What is the nature of inclusive 
mathematics education for learners with Down syndrome in primary classrooms? 
Here we report findings on the following sub-question: What are the teacher 
identified support needs to effectively include a child with Down syndrome in 
primary mathematics? 

Background and Design of the Project 
How does the teacher of a Year 4 student who is not able to reliably count a 

collection of 10 objects productively include the child in the teaching and learning of 
fractions? Teaching is complex but the challenges in these contexts are even greater. 
Such students are often assisted by a teacher aide and other advice and support are 
provided. What does a teacher need to know and be able to do in order to enhance the 
mathematics learning of children with Down syndrome in inclusive settings? How do 
teachers balance the needs of a range of children within the regular classroom with 
external curriculum expectations?  

A research project - Supporting the Mathematics Learning of Children with Down 
Syndrome in Inclusive Settings - was conducted in 2014 by the authors, funded by 
Gandel Philanthropy and undertaken through the Australian Council for Educational 
Research Foundation, to explore these and related questions. 

The project involved two groups of teachers, one in Melbourne and one in 
Canberra. In Melbourne, schools were identified by education officers of the Down 
Syndrome Association, were chosen based on their reputation for inclusive practice, 
and were currently including students with Down syndrome in their programs. In 
Canberra, links with parents and contacts within the local Down Syndrome 
Association were used to identify schools where inclusion was being effectively 
implemented. Parents were initially contacted and once ethics approval was obtained, 
the schools were approached.  

An initial workshop was held at the beginning of the school year in each location, 
which included both professional learning and project planning. Teaching teams were 
introduced to a task based assessment interview for students, revised from an 
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instrument used in a previous project (Faragher & Clarke, 2014). This was intended to 
be used at the beginning and the end of the year with each child. Relevant research 
findings on learners with Down syndrome and effective mathematics teaching were 
shared. We were particularly interested in capturing effective practice. For our study, 
this involved classroom observations, collection of work samples from students, 
teacher reflection journals, and interviews with teachers. There was a cycle of 
professional learning followed by school observation which was undertaken twice 
over the year of the project. Interviews with the teaching teams after the observations 
informed the content of the subsequent meetings in the middle of the year. The final 
meeting of teaching teams was an opportunity to reflect on the year and gather 
summative data on inclusive practice.  

As the study unfolded, it was apparent that teacher participants had a range of 
expertise with inclusive practice and a variety of approaches were evident. In some 
cases, not all represented inclusion as defined above. This had implications for 
support needs which we consider further in the remainder of this paper. 

Some Initial Findings 
In this paper we focus on the support needs identified by members of the teaching 

teams at the beginning and again at the end of the school year. Both classroom 
teachers and teacher aides completed a questionnaire at the first professional 
development meeting in February and in the final meeting in November. For the 
initial questionnaire, we prepared two versions – one for teachers and one for teacher 
aides. Sixteen teachers and 12 teacher aides filled out the initial questionnaire. 
However, based on the models of inclusion and the varying roles of the aides that 
were evident through our observations and conversations, we gave the same 
questionnaire to all team members at the end of year. They were asked however, to 
note any questions they did not think were applicable to their context and role. Final 
questionnaires from 22 participants have been analysed to date. A small number of 
teams or team members were unable to attend the final meeting and these are being 
followed up at the time of writing. 

In the initial questionnaire, teachers were asked the following question: What do 
you expect to be the most challenging aspect of teaching mathematics to the child 
with Down syndrome in your classroom? Please provide 3 in order of expected 
challenge. 

The previous item to this had identical wording with the word “mathematics” 
deleted to elicit general responses, including those related to syndrome specific 
concerns. It was also designed to ensure that the mathematical focus of this item was 
reinforced.  

A detailed analysis is not included here, but of the 16 teachers, syndrome specific 
perceptions (such as “stubbornness”) and management focused responses were given 
as the most challenging by 3 teachers. The remaining 13 teachers identified the major 
challenge related to mathematics and particularly to planning and teaching for 
differences. 

The teachers were then asked - What help do you think you need to support the 
mathematics learning of the child in your class with Down syndrome?  Of the 16 
responses, 12 made specific reference to their need for greater knowledge of the 
mathematics learning of children with Down syndrome, with the next most frequent 
reference (7) focused on the need for support with resources including planning. Four 
teachers expressed the need for assessment information and strategies. 
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In the final questionnaire, after the teaching teams had been working with the 
child for almost a year, the item on the most challenging aspect was repeated. Overall 
the responses were more extensive and gave specific reference to the child and their 
learning. This was to be expected as they now had greater knowledge and experience. 
For the teachers, need for specific resources (4 responses) and challenges related to 
the varying mathematical ability of the student (7 responses) were identified as the 
most challenging. There was an increased emphasis on challenges related to student 
attitude and behaviour. These clearly had an impact on their teaching. These were not 
just behavioural and syndrome specific but also related directly to engagement and 
motivation in mathematics. These were the major challenge for the four other 
teachers. The following open responses indicate some of the issues involved.  

Variations in his engagement to learning - the days where he is wanting to participate vs the 
days where he is being resistant and not wanting to do anything. 

The child's ability to sometimes be able to show their understanding of a concept and not be 
able to do it on other occasions means that you can never be sure where to start with 
individual instructions. 

The teachers had experienced close familiarity with one of the challenges faced by 
students with Down syndrome – motivation to engage with learning (Gilmore & 
Cuskelly, 2014). Teachers were clearly concerned with children engaging with 
mathematics learning and were not content to allow the learner to opt out. Early work 
by Wishart (1993) identified the predilection for avoidance of learning by even very 
young children with Down syndrome. The teachers in our study were determined to 
not accept this as a situation that was immutable and instead sought support for 
strategies to overcome this detrimental learning approach. 

By the time of the administration of the final questionnaire, the teaching teams 
had gained considerable expertise and our goal was to tap that knowledge before 
teachers moved to new classes, most often without the learner with Down syndrome. 
In the final questionnaire, all participants were asked the following open response 
question: What advice would you give others who are including a child with Down 
syndrome in mathematics classrooms? The responses are summarised in Table 1. 

The advice most referred to (by 11 out of 19 responses) involved the explicit 
encouragement to emphasise inclusion. Sample responses were: 

Include them in the grade and modify if need but never to exclude them as that can affect their 
learning and confidence. 

Children with DS should be included in all sessions. Provide opportunities for the child to 
complete small tasks independently so that they can feel success and achievement. 

Include the student in all sessions as the rest of the group. Get them to be as involved in the 
activity as much as they can. 

We were struck by the frequency of the advice concerning support for inclusion. 
Research (Cologon, 2014b; Department of Education Science and Training, 2006) 
suggested that initially teachers seek syndrome specific strategy advice. However, 
Forlin and Chambers (2011) indicated that “there is also a growing body of research 
that has identified positive attitudes as being equally important as, if not more 
important than, knowledge and skills as prerequisites for good inclusive teachers” 
(2011, p. 18).  

The comments from the members of teaching teams indicate that their 
experiences and associated support have given them a confidence that including 
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children with Down syndrome in primary mathematics classrooms is an achievable 
goal. 

Table 1 
Categories and frequency of responses to question - What advice would you give 
others who are including a child with Down syndrome in mathematics classrooms? 

Response category Frequency 
Explicit encouragement to emphasise inclusion in mathematics 11 
Providing concrete/visual and related materials generally additional 
to regular mathematics classroom needs 

7 

Importance of relationships and collaboration within the team 
including the parents 

7 

Be prepared to repeat as needed or find smaller steps to support 
mathematics learning 

4 

Sharing with others including school visits and professional 
development sessions 

2 

Ensure engagement including making mathematics fun and 
interesting 

2 

Be prepared to give extra support 1 
Don’t panic 1 
Note: More than one category was evident in some responses  

The following quote is representative of the important components of support 
identified by the participants: 

Attend PDs related to mathematics for reluctant learners; work collaboratively with the child's 
teacher aide.  Perhaps visit other schools with children with DS.  Plan effective maths lessons 
that cater for all children's needs.  Be well resourced. 

Conclusions and Implications 
Our topics for inclusion in the initial professional learning that we extracted from 

the literature were judged worthwhile by the teachers and included: a shared 
understanding of inclusive practice; an understanding of Down syndrome; and 
effective use of resources in mathematics education, including calculators. They also 
identified the need for a greater emphasis on improving their own knowledge related 
to the mathematics learning of children with Down syndrome. Advice suggested for 
teachers preparing to teach in such settings was overwhelmingly positive in relation to 
the value of inclusive mathematics teaching. 

It is important to acknowledge the complexities of teaching in this environment 
and the need for a range of support. As responses of the teachers and aides indicate it 
is difficult to predict what the behaviour of the children will be, what they know and 
how they will respond to mathematics lessons on any particular day. Indeed, 
identifying ways to circumvent behaviours that are detrimental to learning remain a 
challenge for research. Having said that, we were encouraged by the creative ways 
that teachers engaged in both the teaching and the sharing of their developing 
expertise, and as we continue analysing our data we hope to provide greater insights 
into mathematics teachers and teaching in these inclusive classrooms. 
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Fractions are a well-researched area; yet, student learning of fractions remains problematic. 
We outline a novel path to initial fraction learning and document its promise. Building on 
Freudenthal’s analysis of the fraction concept, we regard comparing, rather than fracturing, 
as the primary activity from which students are expected to make sense of fractions. 
Analysing a classroom design experiment conducted with a class of 14 fourth grade pupils, 
we identify two successive mathematical practices that emerged in the course of the 
experiment and indicate how their emergence was supported. 

In this paper, we analyse findings from a classroom design experiment aimed at 
supporting fourth grade students’ understanding of fractions as numbers that quantify 
relative size (Thompson & Saldanha, 2003). We focus on the second part of the 
experiment, in which we were successful in supporting students’ reasoning about fractions 
as numbers that quantify magnitude values that can be smaller than, as big as, or bigger 
than one. This kind of reasoning is seldom expected from novice fraction learners, as it has 
been widely documented that conceiving a fraction as a number that accounts for a 
quantity that is bigger than one (i.e., a whole) can present a major conceptual challenge 
(Steffe & Olive, 2010).  

In the experiment, we tested an instructional approach in which students were never 
oriented to relate fractions to the equal partition, division, or segmentation of a whole—as 
it is typically done. Instead, building on Freudenthal’s (1983) insights about fraction as 
comparer, we engaged students in tasks in which the entities that fractions quantify were 
always separate from the reference unit.  

Theoretical Background 
Much of the research on fractions adopts a cognitive perspective on learning (Lamon, 

2007; Post, Carmer, Behr, Lesh, & Harel, 1993; Steffe & Olive, 2010; Tzur, 1999), where 
the primary focus is on understanding (and modelling) the learning processes. For 
instructional design purposes, we found it useful to approach learning from a situated 
perspective and view it as changes in the forms of students’ participation in classroom 
mathematical practices (Cobb, 2003). We interpret learning as being shaped by means of 
support, which therefore constitute the explicit focus of our research. 

This particular perspective made us aware of another commonality among otherwise 
diverse studies on fraction learning: the instructional tasks used almost exclusively fall 
within what Freudenthal (1983) characterises as fraction as fracturer situations, where a 
whole, often a food item, is being cut or split into equal-sized parts. We elaborate 
elsewhere (Cortina, Visnovska, & Zuniga, 2015) how these types of instructional support 
result in fraction images that are counterproductive to developing mature understanding of 
fractions.  

Our instructional approach is based on a different type of situations that call for 
fractions use. In these situations, fractions are used to compare aspects (e.g., lengths) of 
“objects which are separated from each other or are experienced, imagined, thought as 
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such” (Freudenthal, 1983, p. 145). Understanding whether these fraction as comparer 
situations can effectively support student learning is the focus of our research. 

Methodological Approach  
The classroom design experiment was conducted in a fourth grade classroom in a 

public school serving low-income students in southern Mexico. The classroom consisted of 
14 students, ages 9 and 10. The experiment included 13 instructional sessions, each lasting 
about 90 minutes. A set of individual pre- and post- interviews was conducted with all the 
students to document the individual learning. The sessions and interviews were video 
recorded. In addition, all student work was collected, and a set of field notes was kept.  

The design experiment consisted of three phases: planning, classroom experimentation, 
and retrospective analysis (Gravemeijer & Cobb, 2006). During the planning phase, a 
hypothetical learning trajectory (HLT) was formulated. In it, we conjectured that it would 
be possible to support students, early on, to make sense of unit fractions as numbers that 
account for the relative size of things that are separate from a reference unit; for instance, 
the length of a rod relative to the length of a unit of measure (see Figure 1). 

 

Figure 1. A reference unit and a rod that is 1/5 of its length.  

In addition, students would reason about the relative size of unit fractions, primarily, in 
terms of how many iterations of their size would be necessary to produce the size of one. 
Hence, a 1/5 rod would have a length such that it would be necessary to iterate it five times 
to obtain a length as long as the reference unit (see Figure 2). 

 

Figure 2. A fifth as a rod of such a size that five iterations of its length are necessary to obtain the length of 
the reference unit.  

The second phase consisted of the actual experimentation in the classroom, and of 
conducting an ongoing analysis of the student learning. The ongoing analysis served to 
assess and adjust the HLT in light of ongoing classroom events.  

In the final phase of the design experiment, a retrospective analysis of the actual 
learning trajectory undertaken by the students was conducted, with the benefit of hindsight. 
We analysed the data using an adaptation of constant comparative method described by 
Cobb and Whitenack (1996) that involves testing and revising tentative conjectures while 
working through the data chronologically. As new classroom episodes were analysed, they 
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were compared with conjectured themes and categories, resulting in a set of the theoretical 
assertions that remained grounded in the data. Given the scope of this paper, we include 
representative episodes and interactions, where possible, as we build our argument. The 
viability of the ongoing analysis was revised to account for how the mathematical activity 
actually evolved in the classroom. This retrospective analysis resulted in reformulation of 
the HLT, so that the emergence of two identified mathematical practices would be 
explicitly supported in subsequent iterations of the design. 

We now summarise the first mathematical practice (Cortina, Visnovska, & Zuniga, 
2014), which involved reasoning about the relative size of unit fractions in ways consistent 
with what Tzur (2007) called the inverse order relationship among unit fractions. Hence, 
when comparing two unit fractions (e.g., 1/7 vs. 1/10) all of the students came to consider 
the one with the smaller denominator (1/7) as the one quantifying the bigger size. We then 
turn to the main focus of this paper—the second mathematical practice—where students 
could reason about fraction comparisons.  

First Mathematical Practice: The More Times it Fits, the Smaller it has to Be 
As we have elaborated elsewhere, the first mathematical practice emerged between 

days 1 and 4 of the design experiment. At the beginning of the instructional intervention, 
most of the pupils reasoned about the relative size of unit fractions following what 
Baroody (1991) called the magnitude comparison rule. They regarded unit fractions 
represented by numbers that would come later in the counting sequence as always 
accounting for larger sizes. Hence, a tenth would represent, for the students, a bigger 
quantity than a seventh.  

Central to the instructional activities with which we helped students make sense of how 
big numbers can sometimes account for small sizes, was a narrative about how ancient 
Mayan people measured. The students were presented with a measuring stick (24 cm long) 
and told that that some archaeologists believed that ancient Mayans used this stick as a tool 
for measuring lengths. Students were then each given a replica of the stick and were asked 
to use it to measure the lengths of different things. This activity served to raise a question 
of how to account for the lengths that the stick did not cover exactly. On day 3, students 
were presented with the solution that the ancient Mayans could have come up with to 
systematically and precisely account for such lengths. It involved producing smalls: rods of 
a specific size relative to that of the length of the stick. 

Each student then engaged in producing the smalls by cutting plastic straws. For the 
small of two, students were told that its length needed to be such that when used to measure 
the stick, the measure would have to be exactly two (i.e., a rod 1/2 as long as the stick). 
Pupils made their small of two, with teacher guidance, by iterating a straw along the stick 
and adjusting its length. It took about 15 minutes for all the students to produce their small 
of two. Students were then told that the small of three would have a length such that it 
would fit exactly three times along the stick. Before making it, the teacher briefly 
discussed with the students if they expected the small of three to be longer or shorter than 
the small of two. A similar process was followed to produce the smalls of four, five, and 
six. Then, students were given leeway to produce more smalls, until the session ended. 
Some made as many as ten. 

The activity of producing the smalls (unit fractions), and reasoning about their relative 
size helped the students develop imagery that was consistent with the inverse order relation 
(Cortina, et al., 2014). By day 5, pupils made sound comparisons between the sizes of 
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smalls, even if they had not physically seen them. For instance, they regarded a small of 14 
as being necessarily bigger than a small of 20. They also seemed to have a clear image of 
what the size of a small might be, so that when asked about the size of a small of a 
hundred, they responded that it would be very small, and gestured with their hands and 
fingers to show a tiny length.  

Second Mathematical Practice: Reasoning about Fraction Comparisons 
The second mathematical practice involved reasoning about fractions as representing 

lengths that could be either smaller than, as big as, or bigger than the reference unit. These 
were initially the length of paper-strips that were actually measured by the students, using 
the smalls. For instance, they could be the length of a paper-strip that was four times as 
long as the length of the small of three (i.e., 4/3 as long as the stick). Later on, they were 
presented only as written measures, expressed with conventional fraction notation:  

The following excerpt from day 11 is representative of students’ reasoning at this point 
of the design experiment. The teacher wrote the fractions 99/100 and 5/5 on the chalkboard 
using conventional notation. Several students raise their hands to answer. The teacher 
pointed at Lourdes.  

Lourdes: Five smalls of five is bigger because ninety-nine smalls of one hundred is smaller.  

Teacher: And why is that?  

Lourdes: Because the bigger the number is it has to be smaller (gesturing with her hands a tiny 
size) so it fits.  

Teacher:  But ninety-nine is a lot, no?  

Lourdes:  Yes, but it needs to be small to fit in the stick.  

Carlos: (jumping in) and there is not enough to fill it.  

Teacher: Marisol?  

Marisol:  I think that five smalls of five is bigger because ninety-nine smalls of one hundred is 
smaller because it is not enough to fill the stick.  

Teacher:  It is not enough to fill the stick. Carlos?  

Carlos:  Ninety nine smalls of one hundred is not going to be enough to fill the stick because it 
is missing one small for it to be one hundred smalls of one hundred, and five of five do 
fill the stick.  

This excerpt depicts several important aspects of students’ reasoning in the second 
mathematical practice. First, it shows how, following what pupils had done in the first 
mathematical practice, the denominator of a fraction was construed as the length of a rod, 
relative to the length of the reference unit. Lourdes’ comment about the smalls of one 
hundred being little, illustrates this point. As for the numerator, it was interpreted as a 
number that accounted for iterations of the length of the smalls, which accumulated into a 
length. Carlos’ comment about 99 smalls of one hundred not being enough to fill the stick 
is illustrative of this second point.  

In Lourdes’ responses above, it is possible that she was only taking into consideration 
the relative size of the smalls involved, and not how many times each small was iterated. 
This kind of reasoning had emerged several times in the classroom. However, each time it 
was treated as inadequate or incomplete by the class. In this instance, Carlos decided to 
jump in and add the important missing facet of the argument. Over time, instances of 
reasoning about relative size of smalls only faded out. 

a	  
b	  
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The excerpt also shows how students first came to assess the relative size of a fraction 
in terms of it representing a length that was enough, or not, to fill (cover) the length of the 
reference unit. It is hence worth highlighting that students were not comparing the fractions 
relying on numeric facts and patterns (e.g., in the first fraction, the numerator was smaller 
than the denominator). Instead, they were comparing them quantitatively.  

Importantly, the second mathematical practice was not limited to the realm of proper 
fractions. For instance, in the same session, a few minutes before the conversation above 
took place, students were asked to compare 12/13 with 6/5. All but two of the students chose 
the latter fraction as the one expressing the bigger length, and their justifications of this 
choice were mathematically sound. This is how one of the students justified his choice: 

Eduardo:  Because you need thirteen smalls of thirteen to fill the stick, and with twelve it’s not 
enough. And in the other you need five, but they are six and it even goes further. 

This contribution illustrates how, once the second mathematical practice was established, 
students easily construed both proper and improper fractions as numbers that soundly 
accounted for the size of a length. By using the comparer approach to fraction instruction 
from the outset of the design experiment, we had oriented pupils to construe the entities 
that unit fractions quantify as being separate from the reference unit and, thus, susceptible 
of being iterated unrestrictedly. For the students then, there was no natural boundary (e.g., 
the length of the unit whole) limiting the extent to which a small could be iterated. The 
iteration of a small of five (1/5) more than five times did not become, at any point of the 
design experiment, a troublesome issue for any of the students.  

Supporting the Emergence of the Second Mathematical Practice 
The second mathematical practice we just described emerged from the previous one. 

The retrospective analysis revealed that two shifts in student reasoning were critical in the 
emergence of this practice and required supporting: students first needed to come to view 
the smalls as capable-of-being-iterated measurement units in their own right. The second 
shift involved students coming to make sense of a new representation introduced by the 
teacher (see Figure 3) as actually representing the iterations of the smalls. 

In the HLT we formulated during the planning phase of the design experiment, we 
conjectured that the activity of producing the smalls would rather easily lead students to 
make sense of the equivalence of multiples of unit fractions with one. In other words, we 
conjectured that students would somewhat effortlessly recognise that two iterations of the 
small of two, 2/2, would render the same length as three iterations of the small of three, 3/3, 
four iterations of the small of four, 4/4, and so on. During the design experiment, we came 
to realise that, for the students, making sense of this basic equivalence was not trivial. The 
following excerpt illustrates how students were thinking about the smalls on day 5.  

Teacher: Carlos, how long is the small of three?  

Carlos: It has to measure three times that stick… the straw has to measure three times that 
stick. Until it gives you three.  

It is worth noticing that Carlos used the expression to measure to describe the act of 
iterating a straw along the stick. This use of the expression sounds strange in English and 
in Spanish. Nevertheless, students commonly used it in this way, at this point of the design 
experiment. Carlos seemed to construe iterating, essentially, as a means to gauge and fix 
the length of a small. This should come as no surprise, since this is how iterating was used 
in the activity of producing the smalls. What was initially surprising to us was that even 
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after the accurate smalls were produced, students did not automatically come to see them 
as units of measure in their own right. Instead, the smalls initially represented to them only 
the result of the construction process. 

Aiming to help the students reason about the equivalencies between iterating the length 
of the smalls a certain number of times, and the length of the stick, we provided the 
students with a Measurement Kit (see Figure 3), which included a stick and four smalls 
(wooden rods representing 1, 1/2, 1/3, 1/4, and 

1/6), and a printed sheet. The sheet had five 
bars the length of the stick, four of them segmented to match the sizes of the smalls. We 
conjectured that the sheet would become a useful a resource for reasoning about 
equivalence and inequalities with one (e.g., 1 = 4/4, 1 > 5/6) and with other fractions (e.g., 
5/6 < 4/4). 

 

Figure 3. The Measurement Kit included a white stick (24 cm), four rods (blue, 12 cm; green, 8 cm; yellow, 
6 cm; and red, 4 cm), and the printed sheet. Colours and sizes of rods correspond to plastic straw smalls.  

When we first engaged students in activities aimed at supporting them to reason about 
the relative lengths produced by iterating the smalls, we noticed some unanticipated 
complications. The first was that in the new type of activities, when the students started to 
use the rods as a means to measure, they seemed to approach them as if they were 
independent. They did not reason with the fact that the smalls were produced from the 
same stick. As a consequence, students would not consider that the specific number of 
iterations of each small would have to necessarily render the length of the stick. For 
instance, they would not anticipate that a paper strip that measured two smalls of two 
would necessarily also have to measure three smalls of three.  

The second complication, related to the first one, was that students did not readily 
regard the printed sheet as a useful resource for determining equivalencies between 
measures made with smalls. By and large, when it was first introduced, the pupils did not 
see the sheet as record of the iteration of the smalls, relative to the length of the stick. 

It was through engaging students in activities that involved measuring paper strips of 
different sizes, using different smalls, and by constantly referring them to the sheet, that we 
eventually succeeded in helping the students recognise the equivalent relation between the 
iteration of each small and the length of the stick. As we illustrated above, by day 11, most 
of the students could make correct comparison between the sizes of two fractions, using 
the equivalence with the stick as a benchmark, even between fractions whose denominators 
they had not physically produced.  

In the finial interviews, it was apparent that all of the students could do correct 
comparisons between fractions, using the equivalence with the stick as a benchmark. Four 
of them could do so only when encouraged by the interviewer to reason about the fractions 
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as numbers that accounted for the iterations of smalls, and to reflect whether the outcome 
of the iteration would produce a length equal to that of the stick. The remaining ten 
students could do the comparisons rather easily, and could explain their answers in ways 
similar to Marisol, Carlos, and Eduardo in the excerpts presented above.  

In the retrospective analysis we realised that the complications we faced were the result 
of shortcomings of our original instructional design. On the one hand, we should have 
provided students with activities that would have allowed them to more directly recognise 
and reason about the equivalence between iterating the smalls and the length of the stick. 
On the other hand, we should have introduced the printed sheet in a way that would have 
allowed students to construe the segmentations on the bars as marks left by the iteration of 
the smalls more easily. These realisations formed the basis for our revisions of HLT. 

Discussion and Conclusions 
Student learning documented above is not currently typical in mathematics classrooms. 

The two mathematical practices that emerged in the classroom with novice fraction 
learners, within the three weeks over which the design experiment took place, correspond 
to overcoming the two developmental hurdles in fraction learning that Norton and 
Hackenberg (2010) identified in their review of research in the field. We take the relatively 
smooth emergence of these practices as an indication of the potential of the tested 
instructional approach. 

The presented analysis of the actual learning trajectory helped us to understand how the 
emergence of the two classroom mathematical practices was supported in the classroom 
design experiment, and which forms of student reasoning were crucial to the emergence of 
these practices. The design research cycle would not be complete without the formulation 
of the new, revised, HLT that would present a starting point in the next iteration of testing 
and refinement of instruction. With the hindsight we gained through the analysis, the 
revisions would include the following:  

1. The students did not automatically come to see the reciprocal relation between the 
size of a small and the size of the stick, as a result of the process by which the 
small was produced. However, students can be supported to come to see smalls as 
units of measure in their own right, for instance by engaging in activities, in which 
they use smalls to construct strips of paper of the pre-determined length, such as 
3/5, 5/5, or 7/5.  

2. The Measurement Kit sheet did not initially have any history for students and we 
struggled in supporting them in creating meaning for it and using it effectively. 
With the hindsight, we would now have students construct this sheet in a series of 
activities, rather than providing the ready copy to them. We collected some 
informal indications that this approach is superior. 

Our understanding of the shortcomings of our initial design conjectures that led to these 
revisions constitutes the key theoretical contribution within the type of research we 
conduct (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). It is reasonable to expect that 
in the upcoming design iterations, our (and others’) improved understanding of how 
specific means of support shaped forms of student reasoning (including their confusions) 
will lead to a more effective design. This is the pathway along which we can envision that 
understanding of fractions as numbers that quantify relative size would become possible 
for all students.  
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This paper reports an aspect of a large research and development project that aimed to 
promote middle years school teachers’ understanding and awareness of the pervasiveness of 
proportional reasoning as integral to numeracy. Teacher survey data of proportional 
reasoning across the curriculum were mapped on to a rich model of numeracy. Results 
provided evidence of extensive and creative teaching of proportional reasoning in all 
learning areas. The capacity of such tasks and activities for promoting student numeracy is 
theorised. 

Background 
Numeracy is an enabling skill for life and work and means being able to apply 

mathematics in everyday situations. Many everyday life tasks require proportional 
reasoning; that is, the capacity to understand and interpret situations of comparison in 
relative terms (e.g., scaling recipes, currency conversions, calculating discounts). In fact, 
proportional reasoning has been described as one of the most commonly applied 
mathematics concepts in the real world (Lanius & Williams, 2003). Yet students’ persistent 
and continued difficulties with proportion and proportion-related tasks are well 
documented (e.g., Lamon, 2007). An explicit focus on proportional reasoning in all school 
subject areas, including mathematics, may have great potential for achieving successful 
development of this essential life skill and therefore numeracy improvement. 

Proportional reasoning is being able to make comparisons between the entities in ratio 
and proportion situations in multiplicative terms (Behr, Harel, Post & Lesh, 1992). The 
development of proportional reasoning is a gradual process, underpinned by increasingly 
more sophisticated multiplicative thinking and the ability to compare two quantities in 
relative (multiplicative) rather than absolute (additive) terms (Lamon, 2005). For example, 
a proportional reasoner can see that the relationship between the numbers 2 and 10 
additively as a difference of 8, but also multiplicatively as 10 being the result when 2 is 
multiplied by 5. The essence of proportional reasoning is understanding the multiplicative 
structures inherent in proportion situations (Behr et al., 1992). Students’ difficulties in 
developing proportional reasoning have been attributed to the teaching of mathematics 
topics in isolation (English & Halford, 1995) and an elementary school curriculum that 
does not promote multiplicative structures (Behr et al. 1992). There have been calls for 
change to the way rational number topics are taught in primary school, with greater 
attention to the active development of students’ multiplicative thinking (Behr, et al. 1992; 
Lamon, 2005; Yetkiner & Capraro, 2009). How this may occur, however, is still unclear. 

Theoretical Framework 
In Australia, numeracy has been defined as being able to “use mathematics effectively 

to meet the general demands of life at home, in paid work, and for participation in 
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community and civic life” (AAMT, 1997, p. 15). More recently, a much richer description 
of numeracy has been proposed by Goos (2007) that draws together the myriad definitions 
of numeracy and simultaneously highlights the absolute necessity of numeracy being a 
core goal in education, encapsulated into a compact readily-identified triangular figure. 
The numeracy model has been elaborated elsewhere (see Goos, Geiger & Dole, 2010). It 
highlights the fact that numeracy is situated within a context, and includes mathematical 
knowledge, tools, dispositions, and a critical orientation. The model has been found to be 
extremely useful for analysing the numeracy demands of a school mathematics curriculum 
(Goos, Geiger & Dole, 2010); to support teachers’ curriculum planning (Goos, Dole & 
Geiger, 2011), to trace changes in teachers’ understanding of numeracy (Goos, Geiger & 
Dole, 2011), in the analysis of the design of numeracy tasks to draw implications for 
pedagogy (Goos, Geiger & Dole, 2013), and for exploring the role of digital technologies 
in numeracy teaching and learning (Geiger, Goos & Dole, 2014). In this study, we use the 
numeracy model to analyse proportional reasoning tasks and activities to theorise their 
capacity for supporting students’ numeracy capabilities. 

As stated previously, the essence of proportional reasoning is multiplicative thinking, 
an awareness of how two quantities are related in a multiplicative rather than an additive 
sense. The American Association for the Advancement of Science (AAAS) (2001) Atlas of 
Scientific Literacy identified two key components of proportional reasoning: Ratios and 
Proportion (parts and wholes, descriptions and comparisons, and computation) and 
Describing Change (related changes, kinds of change, and invariance). Lamon (2007) 
outlined central core ideas for proportional reasoning as rational number interpretation, 
measurement, quantities and co-variation, relative thinking, unitising, sharing and 
comparing, and reasoning up and down. These two sources highlight the encompassing 
nature of proportional reasoning and the fact that it is more extensive than simple rules or 
calculation procedures. In the absence of knowledge of ways to promote proportional 
reasoning, teachers may revert to skill-based approaches that will hamper students’ 
proportional reasoning development and capacity to use proportional reasoning in complex 
and unfamiliar situations. Tasks requiring proportional reasoning are a continual stumbling 
block for so many students in many areas of the curriculum, which suggests the need for a 
broad-spectrum, multi-pronged strategy for action.  

This paper addresses the following research question:  
What is the nature of cross-curricular proportional reasoning tasks in relation to their 
capacity to promote students’ numeracy? 

Design and Approach 
This project involved approximately 90 teachers from five school clusters comprising 

secondary schools and their feeder primary schools in geographical proximity. Over the 
two years of the project, clusters met together eight times, once per school term (four per 
year). We drew upon the Loucks-Horsley, Stiles, Mundry, Love, & Hewson (2010) 
framework for designing professional development to guide our approach for project 
meetings. In between cluster meetings, teachers were to devise learning plans tailored to 
their own school context, as a result of input from the professional learning seminars and to 
report back to the cluster at the next meeting. In between professional learning seminars, 
the researchers visited project teachers in their classrooms, offered support and advice, and 
assisted with planning and implementing ideas. As such, a design-based research approach 
(Cobb, Confrey, diSessa, Lehrer & Schauble, 2003) was taken in this study as it aimed to 
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investigate and build theory about the enrichment of teachers’ numeracy-related subject 
matter knowledge and practice as well as the improvement of students’ numeracy levels. A 
large corpus of data was collected over this project, and included results from a researcher 
developed pen-and-paper pre- and post-test diagnostic assessment instrument specifically 
tailored for this project, to classroom observations, teacher interviews and focus groups, 
individual student interviews, and teacher feedback surveys. 

The data reported in this paper is from a teacher survey, which was administered 
during the second year of the project (second meeting in Year 2). Teachers were provided 
with a large sheet of paper containing a table of cells with each curriculum subject area 
displayed as column headings. Teachers were asked to reflect upon activities and tasks 
they had implemented in their classrooms that had either been directly focused on 
promoting their students’ proportional reasoning, or opportunities they had seized 
(teachable moments) for emphasising proportional reasoning to their students. Survey data 
were analysed three ways. First, the responses were collated into a master list of tasks and 
activities to give a direct count of the number of proportional reasoning moments described 
by teachers for each learning area. Second, similar responses in each learning area were 
collapsed to highlight the different types of proportional reasoning moments that teachers 
had identified according to each learning area. Third, the proportional reasoning moments 
were categorised as aligning with particular elements of the numeracy model to give a 
sense of how proportional reasoning activities might serve to promote numeracy. 

Results 
A total of forty survey responses were collected, comprising responses from six 

teachers of Grade 4, nine teachers of Grade 5, nine teachers of Grade 6, twelve teachers of 
Grade 7, and four teachers of Grades 8-10 (secondary school). Survey return was 
dependent upon attendees at the workshop at the time. In total, these teachers identified 
395 instances of proportional reasoning opportunities, teachable moments, tasks, and 
activities across the learning areas, including five instances in “Other” areas. In many 
cases, repetition was seen in the examples provided, so a second level analysis removed 
repetition, resulting in 284 distinct proportional reasoning moments identified in the 
learning areas. These results are presented in Table 1. 

Table 1 shows that teachers identified proportional reasoning moments in all learning 
areas, with most counts in Mathematics followed closely by Science. Without accounting 
for repetition, in the learning areas of Health and Physical Education (HPE), Studies of 
Society and Environment (SoSE), and The Arts, proportional reasoning moments were 
identified approximately half as many times as for Mathematics and Science, with the 
learning areas of English, and Design and Technology approximately one-third as many 
times as for Mathematics and Science. After repetition had been taken into account, these 
amounts were similar, except for English and Languages other than English (LOTE) where 
there was little repetition of examples given by teachers. English examples thus were 
approximately half the number of examples given for Mathematics and Science.  

Examples of proportional reasoning in Mathematics included money, fractions, angles, 
determining the better buy, using maps, and scale. In Science, proportional reasoning 
moments included comparing rates for generating electricity, comparing shadows, making 
predictions based on data, planets, energy, and ramps. Examples of proportional reasoning 
moments in HPE included balancing diets, ball games and speed, comparing heart rates at 
rest and after exercise; SoSE examples included devising timelines, latitude and longitude, 
house plans, paper usage, and percent per capita to population, needs and wants and natural 
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resources; The Arts examples included drawing and body proportions, mixing paint, 
devising dance steps, perspective drawing, and cartoon drawing; Design and Technology 
examples included computer usage per country per gender per age group, analysing 
product packaging, gear ratios, book making, and water quality analysis; English examples 
included making posters with words in proportion to importance, creating task timelines, 
analysing ballads, and spatial information in a range of texts. In LOTE, identified 
proportional reasoning moments included land mass of Japan compared to Australia, time 
zones, financial exchange rates, and place value associated with other number systems. 
Examples of proportional reasoning in the ‘Other’ category included: looking at teacher 
time on analysing national test data and the amount of time given to planning and 
developing curriculum, students creating their own study planner, seating plan for the 
classroom, and staff discussion time on student diagnostic test results. 
Table 1 
Number (and percentage) of initial identified proportional reasoning (PR) opportunities, 
teachable moments, tasks, and activities for each subject area, with second analysis 
removing instances of repetition 

Learning Area  Number of initial 
PR moments 
identified  

PR moments after 
repetition removed 

English 27 (7%) 26 (9%) 
Languages other than English (LOTE) 11 (3%) 11 (4%) 
Health and Physical Education 43 (12%) 32 (11%) 
Studies of Society and Environment 49 (12%) 34 (12%) 
Mathematics 98 (25%) 57 (20%) 
Science 89 (23%) 67(24%) 
The Arts  41 (10%) 32 (11%) 
Design and Technology 32 (8%) 20 (7%) 
Other 5 (1%) 5 (2%) 
Total 395 284 

 
For the third level of analysis, three members of the research team analysed each task 

separately and then met together to compare classification. Differences in classification 
were discussed and agreement attained through establishment of guidelines for 
classification (described below). There was high agreement between researchers with only 
five instances of differences in classification. Each proportional reasoning moment was 
considered in relation to the definitions of elements within the numeracy model: 
Mathematical Knowledge (problem solving, estimation, concepts, and skills), Tools 
(representational, physical and digital), Contexts (a real-world situation), Dispositions 
(confidence, flexibility, initiative, and risk), and Critical Orientation (questioning, 
hypothesising, interpreting results to make informed decisions). 

Although each of the proportional reasoning moments could be categorised as relating 
to several of the numeracy elements, classification was determined on the basis of 
emphasis. As such, proportional reasoning moments that were classified as Mathematical 
Knowledge included: finding unknown angles, problem solving using ratio examples, 
designing fair tests, moon phases, mixing paint, examples that predominantly link to 
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mathematics content and process knowledge. Proportional reasoning moments classified as 
Tools included tasks that predominantly required the use of tools for completion: drawing a 
pulse rate graph, layers of the earth models, enlarging and reducing images on the 
computer, and drawing a circle graph. 
Table 2 
Proportional Reasoning moments categorized according to elements of the Numeracy 
Model  

 Critical 
Orientation 

Context Mathematical 
Knowledge 

Tools Dispositions Total 

English 3 6 17 0 0 26 
LOTE 0 0 11 0 0 11 
HPE 7 9 15 1 0 32 
SoSE 12 8 14 0 0 34 
Maths 4 17 32 4 0 57 
Science 7 23 35 2 0 67 
Arts 0 7 18 7 0 32 
Tech 4 4 12 0 0 20 
Other 1 3 0 0 1 5 
Total 38 (13%) 77(27%) 154 (54%) 14(5%) 1 (0.4%) 284 

 
Proportional reasoning moments classified as Context were those that specifically 

located the task within a real context, and included: comparing the proportion of time spent 
on various themes in a movie, shortcuts to the school oval, orienteering using maps, 
cooking to create food (as opposed to determining ingredients for fictitious recipes), fuel 
use on Mr Brown’s motorbike (as opposed to calculating fuel use for any bike), and 
exploring why penguins huddle. This category was difficult to determine in some instances 
as the context provided opportunity for developing a critical orientation, for using tools, 
and developing mathematical knowledge. However, the authenticity of the context was the 
determining factor for classification. For example, the calculations for Mr Brown’s 
motorbike related directly to Mr Brown as the students’ classroom teacher. This is a real 
context for the application of mathematics. Some of the proportional reasoning moments 
listed by teachers clearly linked to the development of a critical orientation, and included: 
bullying – the victim feels small while the bully looms large; advertising – the size of 
photos and words for emphasis or persuasion; gambling debt and proportion of club profit; 
carbon production versus power use and a home audit. In the analysis, there was only one 
proportional reasoning moment that could be categorised as linking to the Dispositions 
element of the numeracy model, and this was in relation to students creating their own 
study planner as this was deemed a task where students had autonomy over the outcome, 
which was very personal to them. It could be conjectured that many of the contexts of the 
proportional reasoning moments also provided opportunities for development of students’ 
positive dispositions, and this has been found to be the case in other research (Goos, Dole 
& Geiger, 2011; Geiger, Goos & Dole, 2014), but we surmised that this was not the main 
focus of teachers’ thoughts as they completed this exercise. Table 2 provides a summary of 
classification of all proportional reasoning moments according to the elements of the 
numeracy model. 
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The data presented in Table 2 indicate the high level of potential mathematical 
knowledge students in this study would be exposed to through engaging in the proportional 
reasoning tasks identified by their teachers. Table 2 also shows the range of contexts, 
beyond mathematics in which teachers were incorporating proportional reasoning 
moments. Of all learning areas, Science appeared to be one that teachers found most 
contexts for proportional reasoning moments, as well as in mathematics. Surprisingly, 
teachers identified many proportional reasoning moments in the learning area of English, 
three of which would potentially promote a critical orientation. Of all subject areas, the 
learning area of SoSE had the most proportional reasoning moments associated with 
developing a critical orientation, suggesting that students were engaging in meaningful 
learning experiences as active and responsive citizens. 

Discussion 
Survey data suggest strong evidence of a cross-curricular approach by teachers in 

designing and implementing tasks that promote students’ proportional reasoning. Forty 
teachers nominated 395 instances of proportional reasoning tasks, activities, and learning 
opportunities across all areas in the curriculum. Whilst Mathematics was the subject area 
most nominated, this was followed by Science, but this accounted for only approximately 
50% of tasks. Tasks and activities associated with subject areas of The Arts, Health and 
Physical Education, and Studies of Society and Environment were nominated 
approximately 10% each with just fewer than 10% of tasks located in the subject area of 
English. Data collection occurred in the final year of the teacher workshops, suggesting 
that with a greater understanding of the nature of proportional reasoning, project teachers 
were more responsive to triggers for potential proportional reasoning tasks they could use 
in their classroom that extended beyond mathematics. 

Using the numeracy model to frame analysis of the nominated tasks and activities, we 
saw richness beyond simply the development of mathematical knowledge, although just 
over half of the tasks were identified as promoting this numeracy dimension. Just over one-
quarter of the tasks primarily were rated as being situated in an authentic context. This 
means that students were developing and applying proportional reasoning in real situations, 
in accordance with how numeracy should be developed (Steen, 2001). The most note-
worthy outcome of the analysis was that approximately one-eighth of tasks were 
categorised foremost as relating to the numeracy dimension of a critical orientation. This 
means that students were being provided with a critical numeracy education that included 
opportunities to critique, make critical interpretations of mathematical information, use 
mathematics in a reflective way, and use mathematics to operate powerfully in the world 
(Stoessiger, 2002). The example of describing how one feels when one is being bullied is a 
stunning proportional reasoning moment that has a strong social message that would have 
a profound impact on students. 

Clearly, through the high number of counts of tasks that targeted mathematics 
knowledge in the data, it would appear reasonable to suggest that the students in our 
project teachers’ classrooms were in a much stronger position for developing 
multiplicative thinking and engaging in processes that comprise proportional reasoning. 
From the activities listed, we surmised that students would be engaging in rational number 
interpretation, measurement, exploring quantities and co-variation, relative thinking 
unitising, sharing and comparing, and reasoning up and down; mathematical processes 
core to proportional reasoning (Lamon, 2007). Classroom observations that were omitted 
here due to space limitations provide further evidence of this. 
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In relation to our research question that guided our analysis here, it appears that cross-
curricular proportional reasoning tasks can be grounded in authentic contexts through the 
nature of the learning area in which they are located, that they have the capacity to promote 
mathematics knowledge, tools, dispositions, and a critical orientation. As such, the 
development of proportional reasoning can occur in all learning areas, and as a result, has 
the capacity to promote students’ numeracy. The long history of students’ difficulties with 
proportional reasoning tasks has led to repeated calls for change to the teaching of 
proportional reasoning in the curriculum (Lamon, 2007; Sowder, Armstrong, Lamon, 
Simon, Sowder & Thompson, 1998). Proportional reasoning is generally regarded as 
something that is located in topics of ratio and proportion, although it has long been 
identified as something that cuts across subject areas and is most frequently applied in real 
life (Ahl, Moore & Dixon, 1992; Boyer, Levine & Huttenlocher, 2008; Lanius & Williams, 
2003). Taking a cross-curricular approach to proportional reasoning in this project 
provided teachers with an alternative approach to developing students’ proportional 
reasoning capabilities. The fundamental cause of students’ difficulties with proportional 
reasoning has been levelled at a lock-step mathematics curriculum that teaches topics in 
isolation (e.g., English & Halford, 1995; Sowder et al., 1998). In this project, teachers 
circumvented the traditional pathway to rational number teaching, creating new and 
diverse learning activities that not only have the potential to promote students’ proportional 
reasoning, but also to enhance their numeracy capabilities. 

Conclusion and Implications 
The research in this paper relates to current educational issues in three ways. First, 

numeracy is an educational priority on a global scale. The academic debate around 
defining numeracy has now turned to cross-curricular teaching of numeracy. Our research 
here shows the creative ways that teachers designed authentic numeracy tasks across all 
curriculum areas. Second, a focus on proportional reasoning framed within a rich model of 
numeracy drew teachers’ attention to fundamental mathematics content for proportional 
reasoning that they incorporated into their task/lesson design. Teachers designed a myriad 
of cross-curricular tasks, showing the pervasive nature of proportional reasoning 
throughout the curriculum. Teachers’ gradual and continued awareness of proportional 
reasoning highlights its elusive nature. Third, the theoretical frame of this study, 
combining key research from the fields of proportional reasoning and numeracy, provides 
a frame for analysis to determine the richness of numeracy tasks whilst simultaneously 
illuminating essential mathematics content knowledge for proportional reasoning. 

In sum, this research has argued that numeracy, as a major goal of education, is 
essential curriculum, and that proportional reasoning is an essential component of 
numeracy. The theoretical model highlights core mathematical content knowledge for 
proportional reasoning whilst simultaneously serving to assess the richness of numeracy 
practices. Through a targeted approach to numeracy from the basis of promoting 
proportional reasoning, data presented here suggest that rich numeracy practices can be 
enacted in the classroom in all learning areas. 
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This study examines a teacher’s questioning strategies in mathematics classrooms in China 

when implementing reform-based mathematics curriculum. It explores teacher’s strategies 

to deal with the tensions involved in the creation of opportunities for students to express 

and communicate mathematics ideas while ensuring the productivity of mathematics 

communication and the accomplishment of the lesson goals in a limited period of time. By 

doing so, this study has implications for teacher education and professional development in 
terms of how to strengthen the links between intended mathematics curriculum reforms and 

teacher’s actual practices in mathematics classrooms.  

Introduction 

In current mathematics curriculum reform movement, not only the mathematics 

knowledge need to be upgraded to the most fundamental and useful in today’s world, but 

also the pedagogical principles and should be improved so as to support the 

implementation of reform-based curriculum (Sullivan et al., 2013).  

As an important pedagogical strategy in delivering mathematics curriculum, to provide 

students with sufficient opportunities in classroom interaction and communication has been 

well accepted by most nations. When implementing mathematics curriculum, teachers are 

encouraged to effectively use questioning strategies in classrooms to elicit students’ 

mathematical ideas and to scaffold students’ construction of mathematics knowledge. 

Although the use of questions in mathematics classrooms is not new for most nations, the 

effectiveness of this strategy has been challenging (Boaler & Brodie, 2004). This is not 

only because that question asking per se is a sophisticated art ((Boaler & Brodie, 2004), 

but also because that there are pedagogical tensions involved in teachers’ strategies 

regarding the creation of opportunities for students to express and communicate 

mathematics ideas while ensuring the productivity of mathematics communication and the 

accomplishment of the lesson goals in a limited period of time (Sherin, 2002). 

This study intends to investigate the ways in which a secondary school teacher 

employed questioning practices when implementing the reform-based curriculum. It 

explores the teacher’s strategies to create opportunities for students to express and 

communicate mathematics ideas while ensuring the productivity of mathematics 

communication and the accomplishment of the lesson goals. By doing so, this study has 

implications for teacher education and professional development in terms of how to 

strengthen the links between intended mathematics curriculum reforms and teachers’ actual 

practices in mathematics classrooms. Given that the challenges in employing effective 

questioning strategies are also experienced by mathematics teachers worldwide (Kosko, 

Rougee & Herbst, 2014), this case analysis of a Chinese teacher could also provide some 

implications for teachers in other countries to improve their instructional practices. 
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Methodology 

A case study design was adopted in the present study so as to undertake a detailed 

analysis of mathematics lessons delivered by the participating teacher. Since this study 

aims to reveal the detailed and in-depth features of teacher questioning practices in 

mathematics classrooms, there is a need to utilise a case study design which could provide 

tools for researchers to explore complex phenomena within their contexts (Baxter & Jack, 

2008).   

Meanwhile, the IRF (Initiation-Response–Follow up) framework was utilised to 

analyse the teacher’s discourse process of initiating questions and building up on student 

responses. Classroom lessons could be interpreted as a process of alternations between 

verbal and nonverbal behaviour that are jointly created by teachers and students and these 

alternations are characterised by interactional sequences of three interconnected parts: 

teacher initiation, student response and teacher follow up or IRF (Cazden, 2001).  While 

the IRF structure has been criticised as limiting the potential of teacher-student dialogue in 

promoting students’ conceptual learning in mathematics classrooms (i.e., Kyriacou & 

Issitt, 2007), more and more researchers have pointed out the IRF pattern includes more 

possible variations that could fulfil a diverse range of pedagogical purposes (Drageset, 

2014, Franke, et al., 2009)  

Considering the above analysis, the IRF structure in the classrooms was identified and 

then teacher questioning practices were examined within the IRF structure. It intended to 

develop a comprehensive framework with regard to teacher questioning and thereby to 

analyse what kinds of verbal questions were initiated by the teachers to elicit mathematical 

information and in what ways the teachers took students’ verbal contributions into 

consideration so as to facilitate students’ construction, acquisition and articulation of 

mathematical knowledge. 

Setting and Participants 

Data were drawn from video-recorded observations of one Chinese mathematics 

teachers’ lessons in junior secondary level. The language of instruction is Mandarin 

Chinese. The participant is from the city of Nantong, Jiangsu Province in southeastern 

China and he is recognised as competent according to local criteria. As the teacher 

intended to implement the reform-based curriculum by providing more opportunities with 

students to express and communicate mathematics in classrooms, group learning was 

introduced into the classroom and the self-learning guide was also used. It includes three 

main sections in the self-learning guide, namely the review of mathematics knowledge 

relevant to the new topic, the construction or exploration of the new mathematics 

knowledge by problem solving, and the reflection and summary. In each section, the 

students are provided with some questions or tasks.  

One day before a particular lesson, the teacher passed out the self-learning guide to 

every student, asking them to learn the new topic on their own and then to accomplish the 

tasks in the self-learning guide independently. On the next day, the students handed in the 

self-learning guide to be corrected by the teacher, who would leave written feedback in 

detail and then pass out the corrected self-learning guide to students before the lesson. It is 

worthwhile to point out that the teacher’s feedback is not just simplistic evaluation of 

students’ answers, but some detailed comments which could help students to reconsider 

their answers, encourage students to make connections with some previous mathematical 

knowledge, or challenge students to think more deeply.   

198



Dong, Seah, and Clarke 
 

For each lesson, the teacher had established a very regular structure, which consisted of 

four distinct parts. Firstly, at the beginning of the lesson, the teacher asked students to 

exchange ideas on the tasks in the self-learning guide in groups, as well as on the answers 

to the tasks. Secondly, after discussion and exchange in groups, one group was selected by 

the teacher to present in public the unanimously agreed ideas they had achieved on how to 

solve the tasks and each member of this selected group was responsible for one part of the 

whole group’s presentation. Thirdly, after each member had accomplished his/her part of 

the presentation, other students were encouraged to give comments and ask questions. The 

teacher would generally get involved in this part and direct the public discussion. Fourthly, 

when the whole group had completed the presentation, the teacher always gave a lecture to 

sum up the presentation and discussion, as well as the main mathematical points in this 

lesson. When the data were collected, the teacher had been teaching his class in this way 

for around two years. A whole unit of consecutive lessons was collected and the analysis of 

the first three lessons is presented in this study. The details of the lessons are listed in 

Table 1.  

Table 1 

Lesson Topics Delivered by the Participating Teacher 

Teacher Year level Lesson content Time 

CHN 8 

Lesson1  An introduction  to quadratic functions 45mins 

Lesson2  Investigating the graph of y=ax2 
 45mins 

Lesson3  Investigating the graph y=a(x-h)2+k  45mins 

Data Analysis 

The term “question” refers to what the teacher says to elicit students’ verbal responses 

related to mathematical content. Questions that were not mathematical were excluded 

unless they were associated with other mathematical “talk”. Questions immediately 

repeated using the same wording was counted only once.  

Three types of occasions when the teacher interacted with students by using questions 

were identified initially. When the student/s replied to the teacher’s questions and the 

teacher did not respond the interactions were categorised as Question-Answer (Q&A) 

pairs. IRF (Teacher initiation-Student response-Teacher follow up) sequences (Cazden, 

2001) were those where the teacher responded to students’ answers that were triggered by 

the teacher’s previous question. There are two types of IRF sequences:  (1) IRF (single) in 

which the teacher asks a question and then gives a closed follow-up move (such as 

evaluation) to students so as to complete the current discussion, and (2) IRF (multiple) in 

which the teacher asks a question and then gives an open follow-up move (such as 

clarification or elaboration) to students so as to continue the current discussion. The 

episodes of Q&A pairs, the sequences of IRF (single) and IRF (multiple) were transcribed 

prior to the analysis.  

When analysing the teacher’s questions, a distinction was highlighted between 

initiation questions and follow-up questions. Initiation questions are those questions asked 

by the teacher for initiating purposes, such as to start conversation or discussion. In 

contrast, follow-up questions are those questions asked for the purposes of following up, 

such as in response to students’ answers or contributions to the teacher’s previous 

questions.  In this study, the Q&A pair contains teacher initiation questions and student 

responses and the IRF sequence includes the teacher initiation question, the student 

response, and the teacher follow-up question. 
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A coding system was developed to categorise the initiation questions and follow-up 

questions. Instead of inventing the name of each category in advance, those questions 

documented in our data were analysed first and then attempts were made to provide names 

to describe these different kinds of questions. The coding systems are presented in Table 2 

and Table 3 where examples are shown in italics. Abbreviations for these categories are 

also provided.  

Table 2  

Sub-categories for Initiation Questions 
Category Description and Example 

Understanding 

check 

(UND) 

Questions used to check whether students can follow the teacher. “Is everyone 

OK with how I get from the 2nd line to the 3rd line?” 

Evaluation 

(EVA) 

Questioning requiring students’ comments.  “Now let’s look at these two 

descriptions, which one do you agree with?” 

Review 

(REV) 

Questions used to elicit the previously learnt or mentioned mathematics 

knowledge. “Now what do I know about squares and their area?” 

Information 

extraction 

(INF) 

Questions requiring students to identify and select information from text 
descriptions, graphs, tables, or diagrams. “What is (b), what’s the mathematical 

word for what (b) is asking you to find?” 

Link/ application 

(LIN) 

Questions requiring students to provide examples or application of mathematical 

knowledge.  “Could you list some examples?” 

Result/product(R

ESL) 

Questions requiring results of mathematical operations or the final answer of the 

problem solving. “What is the square root of 80?”  

Strategy/ 

procedure (STR) 

Questions used to elicit the procedures or strategies of problem solving. “How 

can we solve this problem?” 

Explanation 

(EXP) 

Questions requiring students to provide explanations. “How would it be 

interpreted from the perspective of a function?” 

Comparison 

(COM) 

Questions requiring the comparison. “Is this different from the previous 

questions?” 

Reflection 

(REC) 

Questions requiring the reflection after mathematical activities. “What 

mathematics have we already used in solving triangles?”  

Variation 

(VAR) 

Questions requiring students to consider the variations of mathematical tasks. “So 

what if I got a hundred and twenty seven in that answer?” 

The development of the coding system in this study was informed by coding systems 

proposed by some previous researchers (Boaler & Brodie, 2004; Hiebert & Wearne, 1993). 

Some categories’ names were borrowed from these studies, but because the distinction 

between initiation questions and follow-up questions was considered in this study, some 

new categories of questions were also identified and labelled. A test-retest method was 

used to check the reliability of the coding systems and the elapsed time between the first 

and second coding was two months.  

Findings 

The coding systems presented above were used to analyse the selected lessons taught 

by the participating teacher. In total, 121 initiation questions and 116 questions were asked 

by the Chinese teacher in the three lessons which cover 135 minutes altogether. On 
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average, the Chinese teacher raised approximately 1.8 (237/135) questions in every minute 

and for every initiation question, the Chinese teacher used approximately one (116/121) 

follow-up question.  

Table 3   

Sub-categories for Follow-up Questions 

Category Description & Example 

Clarification 

(CLA) 

Questions requiring a student to show more details about his/her answers or 

solutions. “How did you get this 16?”  

Justification 

(JUS) 

Questions requiring students to justify their answers 

“Why did you choose this method to solve this problem?” 

Elaboration 

(ELA) 

Questions requiring for additional information especially when the students fail to 

fully achieve the teacher’s goals. “In other words, the green line becomes the 

what?”  

Extension 

(EXT) 

Questions used to extend the topics under discussion to other situations or to 

connect the knowledge under discussion with the previous knowledge. “Would 

this work with other numbers?” 

Supplement 

(SUP) 

Questions used to request for supplement. 

“Did anyone do this problem in a different way?”  

Cueing 

(CUE) 

Questions used to direct students to focus on key elements or aspects of the 

situation in order to enable problem-solving. “What is the problem asking you to 

find?”  

Refocusing 

(REC) 

Questions used to guides students to refocus on the key points, especially when 
students are off track. “But what was the question, if this was a textbook question, 

what would it look like?” 

Repeat/ 

rephrase 

(REP) 

The teacher repeats or rephrases the question asked in the last turn.  

Agreement 

request 

(AGG) 

Questions used to check whether the rest of the class agrees with the student who 

gives the answer. “So would you agree that the height of this one is going to be a 

hundred and forty nine?” 

The detailed information in terms of the breakdown of initiation questions and follow-

up questions is shown separately in Figure 1, Figure 2 and Figure 3. For the abbreviations 

in these figures, please refer to Table 1 and Table 2. 

Figure 1 shows the proportion of each type of initiation question that was asked in the 

three lessons and this outlines the teacher’s initial purposes when asking initiation 

questions. As is shown in Figure 1, although 11 types of initiation questions were 

identified in the three lessons, several types of initiation questions are predominant in each 

lesson. For lesson 1, the teacher’s initiation questions were mainly asked for understanding 

check (UND), review (REV), and explanation request (EXP).  

For What Initiating Purposes did the Teacher Ask a Question?  
There are more variations in Lesson 2 where the teacher asked initiation questions for 

understanding check (UND), review (REV), explanation request (EXP), evaluative 

comments request (EVA), and reflection request (REF). Two types of initiation questions, 

namely review (REV) and explanation request (EXP), take up more than 60 percent of all 

the initiation questions asked in Lesson 2. Among all three lessons, questions for review 

(REV) and explanation request (EXP) were the two common types of initiation questions 
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with significant proportions. Apart from these two common types, questions were also 

asked for understanding check (UND), evaluative comments request (EVA), and reflection 

request (REF) rather frequently, even though these types did not turn up with a significant 

proportion in every lesson.  

 
Figure 1. The breakdown of the teacher’s initiation questions 

Note: Refer to Table 2 for the abbreviations. 

Theoretically, all these types have the potential of allowing students to express 

mathematics except the questions for understanding check (UND) which usually request a 

yes or no answer. In particular, explanation requests (EXP), evaluative comments requests 

(EVA), and reflection requests (REF) are more likely to elicit students’ mathematics ideas 

on the basis of which the teacher could thereby provide facilitation and request elaboration. 

In this way, mathematics communication could occur between the teacher and students. 

However, it would depend on this teacher’s strategies whether the students’ responses 

could be used to build up mathematics communication. To investigate how the teacher 

dealt with the students’ responses is examined in next part as well as the extent to which 

the teacher built on students’ responses after the asking initiation questions.  

Figure 2 presents the proportion of initiation questions asked on three types of 

occasions and it shows to what extent the teacher’s initiation questions lead to the 

sequences of teacher-student mathematics communication. Five types of initiation 

questions (EVA, EXP, COM, REF, and LIN) were asked with higher chances of leading to 

IRF (multiple) in which the teacher tended to build on students’ responses and therefore 

create more opportunities for students to communicate mathematics. In Figure 1, it was 

shown that questions for review (REV) and explanation request (EXP) are the two 

common types of initiation questions with significant proportions.  

To What Extent Did the Teacher Build on Students’ Responses?  
Figure 2 reveals almost 90 percent of the questions for review were asked by the 

teacher without giving follow-up moves that could lead to the sequences of mathematics 

communication. In other words, when the teacher asked initiation questions for review, 

instead of having opportunities to communicate mathematics in discourse sequences, the 

students normally just need to respond with answers to the questions. In contrast, the 

initiation questions for explanation requests were mostly asked by the teacher with the 

following support through which the students could communicate mathematics. As is 

shown in Figure 2, around 85 percent of questions for explanation requests were asked 
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within the IRF (multiple) structure in which the teacher tended to give open follow-up 

moves after initiation questions to students so as to continue the current discussion. The 

detailed approaches in terms of the follow-up moves used by the teacher to facilitate 

students to communicate mathematics are presented in Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. The teacher’s initiation questions on three occasions 

Note: Refer to Table 2 for the abbreviations 

In What Ways Did the Teacher Build on Students’ Responses?  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The breakdown of the teacher’s follow-up questions 

Note: Refer to Table 3 for the abbreviations 

Figure 3 shows the proportion of follow-up question types employed by the teacher in 

the three lessons. Nine types of follow-up questions were identified in the three lessons and 

once again the majority of the follow-up questions consist of several types of question. In 

Lesson 1, the follow-up questions were mainly asked for clarification (CLA), elaboration 

(ELA) and agreement requests (AGG). For Lesson 2, the teacher posed follow-up 

questions mainly for elaboration (ELA), giving cues (CUE), and supplement requests 

(SUP). And questions for clarification (CLA), elaboration (ELA), agreement requests 

(AGG) and refocusing (REC) constitute the main body of follow-up questions in Lesson 3. 

Among the three lessons, the teacher tended to choose elaboration questions as a tool to 

facilitate students’ expression and communication of mathematics ideas. 

Conclusion 

Compared with the traditional mathematics curriculum, the reform-based mathematics 

203



Dong, Seah, and Clarke 
 

curriculum requires teachers to provide students with more opportunities to communicate 

mathematics. But it brings pedagogical tensions because teachers also need to control the 

flow of the communication to ensure the productivity of mathematics communication.  

The participating teacher adopted a new way of delivering mathematics lessons by 

introducing the self-learning guide. The students had attempted to solve the tasks in the 

self-learning guide prior to the lessons, thus in the classroom the teacher and students had 

sufficient time to talk deeply about the corresponding strategies to solve these tasks. 

Meanwhile, students’ discussion on these tasks also became the springboard on which the 

participating teacher could ask further questions to elicit students’ deeper thinking and 

promote students’ construction of mathematics knowledge. All of these made contributions 

to the creation of a discourse-rich classroom.  

This study separately examined initiation questions and follow-up questions asked by 

the teacher. By exploring the proportion of these questions and the context in which these 

questions were used, it is possible to analyse the actual opportunities provided for the 

students to communicate mathematics. This helped understand more clearly the nature of 

the discourse-rich classroom. This study showed that a considerable proportion of 

elicitation and facilitation were used by the teacher to promote the communication and 

construction of mathematics. But it also reflected some suppression of learning when the 

teacher attempted to fulfil the lesson goals.  

This has implications for mathematics teacher education in terms of supporting the 

implementation of intended mathematics curriculum. For one thing, the reform in terms of 

learning materials, such as the introduction of self-learning guide, could assist the shift 

from traditional classroom into inquiry-based classroom. The design of the tasks in the 

self-learning guide could help to ensure the depth and productivity of mathematics 

discussion and communication in classroom. Also, more assistance is needed to help the 

teacher use the self-learning guide more efficiently.  
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Improving the Effectiveness of Mathematics Teaching through 
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<driscoll.kerryn.k@edumail.vic.gov.au > 

A small study of active reflection was undertaken with 21 primary students in a Prep and 

Year 1 classroom. To provide feedback from the students on their views about their 
personal learning and ways they could be better supported to learn mathematics a simple 

survey was supplemented by one-to-one interviews. Students’ perceptions of their learning 

of mathematics, their identification of the mathematics they were learning; and what they 

felt would better cater for their learning needs. Ongoing reflections by students and the 

teacher throughout the year provided further data for consideration. The findings show that 

young students are self-aware, they understand what they are learning and they have ideas 

about ways their teacher could support their learning. These findings fed into the teacher-

reflection process and professional learning, which in turn led to some changes in 

classroom practice. 

Introduction 

To improve my practice as a teacher, I became involved in a Teacher-Led Research 

project. This research was underpinned by the evidence-based professional learning cycle 
(Timperley, 2008) where teachers measured the impact of their professional learning on 

their practice. My aim was to inquire more deeply into my practice in an attempt to 

understand how to improve student learning. This paper reports the results of an aspect of 

the work that we were doing as a school community involving active reflection, based on 

feedback from our students.  

My research question was: What do I need to do differently in my teaching practice to 

address the perceived needs of my students in mathematics? In the words of Hattie (2012), 

“my role, as a teacher, is to evaluate the effect I have on my students … it is to understand 

this impact, and it is to act on this knowing and understanding” (p. 19). This requires 

gathering “defensible and dependable evidence from many sources” (p. 19). The evidence 

gathered included results of a survey, interviews and classroom observations. 

Background 

Reflective teacher practice is a topic that has long been explored by researchers 

(Shulman, 1986; Shulman, 1999). It is suggested that teachers learn “via disciplined 

critical reflections of their own practice” (Shulman & Shulman, 2004, p. 258). Shulman 

pointed out the importance of learning from our experiences and suggests that “critical 

analysis of one’s own practice and critical examination of how well students have 

responded are central elements of any teaching model” and “at the heart of that learning is 

the process of critical reflection” (Shulman & Shulman, 2004, p. 263-264). Accomplished 

teachers are capable of learning from their own and others experiences through active 

reflection according to Shulman. 

Absolum also used the term ‘active reflection’ and suggested that this applies to the 

teacher, to the student, and to both taking time together “to think, review and enhance the 

learning process” (2006, p, 23). Through a learning-focused relationship with students “the 

student focuses on what has to happen now that will best help me learn?” and “the teacher 
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focuses on what do I need to do now to best help this student learn?” (Absolum, 2006, p. 

28) Teachers are, as a profession, very reflective considering whether their students are 

learning as well as they could and what adjustments they might make to their teaching to 

support the learning even further (Absolum, 2006). Teachers constantly make decisions 

based on reflection about class management, activities and resources and their students. A 

major OECD study points out that, “individuals who are reflective also follow up such 

thought processes with practice or action” (OECD, 2005, as cited in Absolum, p. 143). 

Through reviewing and reflecting, problems can be identified and something can be 

done to resolve the situation. If teachers are to establish a firm foundation for improved 

student outcomes, they need to “integrate their knowledge about the curriculum, and about 

how to teach it effectively and how to assess whether students have learned it” (Timperley, 

2008, p. 11). Teachers can then respond constructively to what the evidence is telling them 

and make the necessary changes to their practice, and as they “take more responsibility, 

and as they discover that their new professional knowledge and practice are having a 

positive impact on their students, they begin to feel more effective as teachers” (Timperley, 

p. 9, 2008). 

 My purpose in collecting the data reported here was to consider ways in which I could 

further support students learning of mathematics, thereby becoming more effective. I was 

able to do this through my own reflection on the teaching and learning process, the 

adjustments I made, and how I taught my students “to use reflective strategies to 

strengthen their own capacity to learn” (Absolum, 2006, p. 143).  

Methodology 

Three data sources were collected and examined for this research: an initial student 

survey determined student needs, feelings and beliefs about their learning in mathematics, 

a five minute video of a semi-structured student interview with a subgroup of 7 students, 

and regular daily student reflections following mathematics lessons. The daily reflections 

were continued throughout the year. These daily comments by the students enabled me to 

reflect on the teaching and learning in my classroom and to consider what I needed to do to 

better support the learning and what adjustments I needed to make to suit individual needs. 

Survey Design 
Data collection began with a survey to gauge how students felt about learning 

mathematics. It was administered early in the school year to one class of Prep/Year 1 

students, 11 students in their first year at school (Prep) and 10 students in their second year 

at school (Year 1). There were 10 male and 11 female students. The purpose of the survey 

was to establish how students felt about their learning in mathematics; whether they could 

identify the mathematics they were learning and whether they felt I, as their teacher, could 

better cater for their learning needs. The survey was designed to be easy for younger 

students to interpret and quick to complete. I read each question aloud, students completed 

a Likert scale by colouring one of four faces ranging from smiley to sad (see Table 1). A 

scale of four options was chosen to prevent students who were unsure selecting the middle 

option as a default. 

Video Interviews 
The week following the survey, seven students were selected as a subgroup, 

representing a range of mathematical thinking and experiences across the year levels, for 
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video interview, to elaborate their written responses. Survey questions were revisited and 

additional questions were included during semi-structured interviews. Examples of 

additional questions were, ‘Do you feel like you can extend yourself’ and ‘What do you do 
when you have tried something and it doesn’t really work?’  
Table 1 

Collated survey results (n= 21) 

Table 2 

Interview group results (n = 7) 

Distribution of responses of subgroup of students. 

Colour the face that shows how you feel. 

    

1. How do you feel about learning mathematics? 4 2 0 1 

2. Do you always know what you are learning? 3 3 1 0 

3. Do you know when you are successful? 5 2 0 0 

4. Does your teacher help you to learn? 4 2 1 0 

5. How do you feel when something is difficult? 2 2 1 2 

6. How do you feel in our classroom? 4 2 0 1 

Student Reflections 
Classroom-based student observation data were videorecorded two to three times 

weekly throughout the year, during or at the conclusion of the mathematics lesson, as 

students reflected on their learning. In total 120 videos were collected. These videos were 

viewed, some were transcribed and all were analysed to determine patterns and similarities. 

This provided valuable feedback and evidence that facilitated my reflection and gave me 

direction on how I could better cater for student learning needs. Students were deliberately 

introduced to and provided with a variety of prompts to support this. Some examples of 

prompts included: 

What am I most pleased with in my learning today? 

What did I find tricky and why? What did I do about it? 

Where do I need to go next with my learning? 

How could the teacher have helped you more? 

Findings 

Survey responses and elaborated interview responses gave a sense of students’ 

perceptions about learning mathematics and insight into individual students’ feelings and 

Class Survey 

Colour the face that shows how you feel. 

1. How do you feel about learning mathematics? 15    3  0 3 

2. Do you always know what you are learning?   9    8  2 2 

3. Do you know when you are successful? 10    6  4 1 

4. Does your teacher help you to learn? 14    4  1 2 

5. How do you feel when something is difficult?   8    4    2 7 

6. How do you feel in our classroom? 17    2  0 2 
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attitudes at the beginning of the school year, while classroom observations of student 

reflections provided feedback that assisted my reflection and continued throughout the 

year. 

As evidenced in Table 1 most students surveyed enjoyed learning mathematics. The 

three students who were unhappy were often provided with extra support in the 

mathematics classroom. Seventeen (80%) students felt that they knew what they were 

learning and when they had achieved success. Eighteen students (85%) felt that the teacher 

helped them to learn. Nine (43%) students felt neutral or sad when they encountered 

difficulty. It is interesting to note that 4 (19%) students felt neutral when they encountered 

difficulties and 8 (38%) felt positive. Results from the subgroup of students are presented 

in Table 2 for comparison. The summary shows similar distribution patterns to the whole 

class results. 

Analysis of the interviews provided insights as the students elaborated their survey 

responses. It became clear that the seven students in the subgroup had a sense of where 

they saw their learning in mathematics going and how I as their teacher could help them. 

For example, Ben said, “You could help me learn higher numbers and then I could try and 

plus them.” Nina suggested, “Maybe you could just tell me what the whole thing was again 

because sometimes I forget.” All seven students agreed that they knew what they were 

learning by referring to the whiteboard or being a good listener. Literature supports 

(Clarke, Cheeseman, Gervasoni, Gronn, Horne, McDonough, & Rowley, 2002) the idea 

that if a teacher has a clear focus and if the children understand the purpose of the lesson it 

is likely to lead to a better understanding and better learning outcomes.  

All of the subgroup of students knew that it was important to learn mathematics and 

felt happy that they could extend themselves through prompts offered. For example, Zena 

said, “If we are choosing numbers, sometimes we choose an easier number, or a bigger 

number to challenge ourselves.” Four of the seven students preferred to work with a 

partner and all students expressed the need to persist when things get tough. Some of their 

comments included, “I just try again” or “I just have a go of doing it” or “I try my own 

way.” One student’s responses are highlighted below. 

The Story of Eric  
Eric (aged 6 years) was selected for interview as one of a subgroup. He began the year 

with reluctance and had difficulty settling into the school routine. The fact that he was very 

nervous and hesitant when sharing his thoughts with the class, made his story even more 

interesting. Eric had a limited understanding of number and could not count past 13. 

However, during his interview Eric expressed a liking for mathematics, particularly 

learning how to count and working with a partner. He felt that his learning was progressing 

well because he listened a lot and knew what I was saying. Eric knew that if he had “done 

a lot of work” he was successful. He knew that you need to learn mathematics because “if 

you don’t learn maths you won’t be smart” and he thought that I could help him more by 

telling him what to do when he “got the stuff mixed up.” When asked, “What do you do 

when you have tried something and it doesn’t really work?” He replied, “I look at the page 

what (sic) I’ve done and it hasn’t really like been all done. I fix it up and try and remember 

what we did.” In other words Eric would try to evaluate his thinking by interpreting what 

he had done, review it and then think back to what was expected of him, and try and 

complete the task. This reflection process demonstrates some interesting thinking for a 

young student and was one of the many pieces of evidence that I reflected on. 
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The third source of evidence were the daily reflections by the students based on how 

they saw their learning in mathematics was progressing and how they felt their learning 

could be improved. On each occasion students responded to one of the reflective question 

prompts. This daily feedback led me to act to better support my students. One question I 

used weekly is, “How could the teacher have helped you more?” This is the underpinning 

question of the project.  

As I reflected on the student’s comments some interesting patterns and similarities 

arose and seven themes emerged from the data. These elements contributed to and 

continued to inform decisions I made as to how to be a more effective teacher. Each theme 

will be discussed in the section that follows. 

Provide a Variety of Prompts, Models, Materials and Supports. Feedback suggested 

that several students were lacking in confidence and needed support, not only when writing 

numbers or words when recording their findings, but also with skills. Nathan wanted help 

working out how much his numbers made altogether and Nina wanted help counting, “not 

by ones but by a quicker number.” These types of messages informed my future planning 

and practice. A variety of support was implemented through coaching, scaffolding, guiding 

and providing a range of mathematical models and tools. 

Use a Variety of Assessment Tools. The difficulty that some students found with 

recording their mathematical thinking in writing indicated that alternate means of capturing 

evidence of mathematical growth and achievement were necessary, especially for students 

in the early years of school. As Eric expressed in his way, “If you are writing the words 

and if you can’t remember, it’s about holding it and if you are writing the number and you 

can’t really write it, it’s hard because you are doing two things at the same time.” 

Therefore in addition to students written work samples, assessment evidence was captured 

on video where students demonstrated their skills. Formal assessments such as the 

Mathematics Online Interviews were also used. Each of these provided powerful evidence 

and gave a very clear picture of mathematical knowledge and growth. 

Maintain High Expectations of Students. Some students expressed the need for more of 

a challenge and needed to be provided with further opportunities that allowed them to 

“gather, discover and create mathematical knowledge and skills” (Siemon, Beswick, 

Brady, Clark, Faragher &Warren, 2011, p. 14). Ben desperately wanted to work with 

bigger numbers and Eric wanted to learn “to count to numbers like the grade sixes count up 

to, like one thousand.” These responses reinforced the fact that high expectations for all 

students, even those who experience difficulty, are important.  

Choose Quality Tasks that Challenge and Allow for Differentiation. It was obvious that 

“for worthwhile learning in mathematics, students need mathematically appropriate, 

engaging and challenging tasks” (Roche, Clarke, Sullivan, & Cheeseman, 2013, p. 32) that 

encourage students to think deeply and problem solve. Eric suggested he would have liked 

to work with more three-digit numbers and not just two-digit numbers in subtraction. This 

comment reinforces the importance of choosing mathematical learning experiences, which 

can be differentiated, and “specifically plan to support students who need it and challenge 

those who are ready” (Sullivan, 2011, p. 27). 

Encourage Persistence. According to Roche and Clarke (2014) the term ‘persistence’ 

can be described as “actions that include concentrating, applying themselves, believing that 

they can succeed, and making an effort to learn” (p. 3). Responses from these students 

indicated they were willing to persist. They demonstrated this in several ways. When Ben 
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was faced with a struggle he commented that instead of asking for help “I tried to make the 

idea different and tried my own way.” Encouraging persistence, promoting effort and 

allowing students to persist help them to see it as valued. A further example of this was 

demonstrated when Eric admitted to continuing to work, “While you said we had to come 

to the floor,” because he desperately wanted to solve the problem.  

Provide Clear Instructions, Highlighting the Focus and Expectations. Feedback from 

Zena suggested that I “could explain the work better” and Nina thought I could “say it two 

times so we know and we don’t do the wrong thing.” Keeping in mind that I purposefully 

“hold back from telling them everything” (McDonough, 2003, p. 34) and “setting up tasks 

with a certain amount of uncertainty in how they have to go about the task is a way to 

make them engage mindfully and bring their sense making to the activity” (Askew, 2012, 

p. 108). As a result of this feedback emphasis has been placed on more specific and 

engaging whole class introductions with interactions between the teacher and the whole 

class.   
Create a Learning-Focused Relationship with Students. Fundamental to this project 

was the notion of a learning-focused relationship where “both the student and the teacher 

know that by working together the quality of student learning will be much better and the 

standard of achievement much higher” (Absolum, 2006, p. 28). I established a relationship 

with these students “based on openness, honesty and mutual respect” (Absolum, 2006, p. 

142). Reflecting and acting on student responses in an environment where students felt 

supported in their learning emphasised that learning was valued in this classroom. Jack 

pointed out, “At the start of the year I was pretty scared to do it, but the more you do it the 

better you get,” which indicates his increased confidence over the period of the project. 

Terrri summed it up by saying, “You have to co-operate and work together.” 

Discussion 

This study demonstrates how active reflection by the teacher can enhance the learning 

process of students and teachers. While there are limitations of sample size and scope in 

these data, I would argue that it is possible to learn from the findings. Another constraint of 

the study may be that student interpretation differed to an adult view. However, the 

reflective processes and the student responses provided a starting point for me to reflect 

and act. As the teacher it was my responsibility to make changes to my practice in the light 

of the students’ feedback and decide what I could do better. I was also challenged to 

discover any unproductive beliefs that I might hold in relation to effective conditions for 

learning. 

Survey results at the beginning of the year indicated that 85% of students enjoyed 

learning mathematics, however 15% felt less positive and 10% of students felt unhappy in 

the classroom. This was one aspect that I attempted to change through careful planning, 

assessment and preparation of resources to support those students who needed it. 

Interestingly 15% of students felt I needed to do more to help them learn. This then led me 

to investigate student opinions in more depth. 

Through semi-structured interviews students were encouraged to elaborate further on 

this, as well as other aspects. Several students suggested they would like their learning 

extended and could give examples of what it was they would like to be able to do, for 

example, learn how to count to 100 or learn how to count by 3s. Surprisingly when 

presented with a challenge they claimed they were not discouraged and were able to 

express several ways of over-coming this. Responses such as these provided direction and 
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increased my awareness of how and what I needed to do to adapt to provide opportunities 

for these students to feel challenged, but at the same time supported. By offering enabling 

and extending prompts and posing tasks that created a challenge I was able to support 

those experiencing difficulty and extend those that needed it. One of my students, Eric 

shared the fact that he wanted to learn to count to 100 and through support such as this he 

was able to count past 100 by the end of the year, with confidence. 

Reflecting on my practice prompted me to make small changes to practice, and observe 

resulting improvements in student outcomes. “When this happens, teachers come to expect 

more of their students—that they will learn more quickly or deeply than they had 

previously believed possible” (Timperley, p.18). Eric’s story is evidence of this. Following 

the initial interview there was a dramatic improvement in Eric’s confidence and his 

willingness to reflect and clearly articulate his feelings and achievements. He confidently 

self-assessed his work and was extremely motivated to achieve his goals. He could express 

where he needed to go next with his learning and was always eager to contribute to the 

class plenary, and frequently selected his own reflection question. His increased 

confidence and enthusiasm when he reflected on his learning was inspiring and rewarding 

to see. By the end of the year he had been assessed as operating six months above expected 

level. He could confidently count by 2s, and 5s and 1s and 10s past 100. He could read, 

record and order two and three digit numbers. As a result of attending to student feedback, 

careful consideration went into planning appropriate tasks and scaffolds such as labelled 

photos of classroom resources and displays of key words and numbers were used to 

support students like Eric to facilitate their effective learning.  

Evidence was provided on how the teacher could cater better for student needs through 

opportunities for students to reflect on this and further learning became evident. Initially 

this took time to establish in the classroom. While I acknowledge that there is a concern 

that this is my classroom and these are my students, nevertheless the feedback that I 

received is worthwhile and substantially influenced my planning and reviewing of 

mathematics lessons. Students as young as six can reflect on their own thinking when 

asked to do so with familiar material (Schraw & Moshman, 1995).  

The messages I received from my students as they reflected actively on their learning 

are important in relation to promoting effective teaching and learning. It is important that 

reflection by both the teacher and the student happen over the course of each lesson: 

whether at the beginning, throughout the lesson or at the conclusion. Some obvious 

frustrations that were experienced by some of the students in relation to recording, feeling 

suitably challenged, and obtaining clear instructions were highlighted, and as a result I 

made adjustments to my planning and teaching, responding to their feedback.  

Through active reflection I was able to consider the successfulness of the lesson in 

terms of student engagement, appropriate challenge, strategies used by the students, and 

intended learning. I examined my practice in light of listening to my students.  

While there is a need for teachers to impart information … and while teachers do and should know 

more than students, there is a major need for teachers also to listen to the students’ learning. This 

listening can come from listening to their questions, their ideas, their struggles, their strategies of 
learning, their successes, their interactions with peers, their outputs, and their views about the 

teaching. (Hattie, 2012, p. 163) 

Reflective questions can often reveal the complexity of what is happening in the 

classroom and give students the opportunity to be heard. Responses the children provided 

enabled me to see “learning through the eyes of students” (Hattie, p. 14) and make 

necessary adjustments to facilitate effective teaching in mathematics. 
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Conclusion 

 This present study sought to investigate ways in which active reflection could be used 

to create the opportunity for improved teacher practice in mathematics. Daily reflection 

enabled me to promote and sustain the conditions to further support student learning. 

Throughout this study I adapted my teaching practice taking into consideration ways in 

which I could support students who struggled with understanding what was expected of 

them, who had difficulty recording their findings, and who needed help or extension. These 

improvements resulted from feedback and reflections from students. I have incorporated 

these elements into my practice and will continue to incorporate them into my planning. 

Being actively reflective empowered students to see the value of reflecting and the impact 

it has on improving the teaching and learning in their classroom. Thinking about the 

concluding remarks for this paper made me aware that not only has my practice changed as 

a result of active reflection, and the students have seen the value of active reflection, but in 

addition I realise that the habit of mind involved in active reflection has caused a change in 

the way I think about teaching and learning. Constantly in the back of my mind every 

decision I make is now based on the question: How could I be more effective? 
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Lesson Study has captured the attention of many international educators with its promise of 

improved student learning and sustained teacher growth. Lesson Study, however, has 
cultural underpinnings that a simple transference model overlooks. A culturally embedded 

approach attends to the existing cultural orientations and values of host schools. This paper 

reports on the author’s implementation of Lesson Study in a Philippine public school and 

the growth teachers experienced as a result of their participation. 

With its long tradition, Lesson Study (LS) is the most prevalent practice-based form of 

teacher professional development in the Japanese primary schools. It is a school-based 

collaborative activity that involves a continuous cycle of planning, demonstrating, and 

improving a lesson (Fernandez & Yoshida, 2004; Lewis & Tsuchida, 1998; Stephens, 

2011). It is a good catalyst for teacher growth as it allows the teachers to interact with the 

curriculum, their own and colleagues’ content and pedagogical content knowledge. 

Over the past decade, there has been a vast interest on Lesson Study (LS) with many 

international educators implementing it in their local context. Though the author strongly 

believes that LS is a powerful tool for effecting teacher growth through understanding of 

student thinking, an uncritical transfer to a different national context may prove to be 

problematic. Teaching and learning are profoundly cultural activities (Stigler & Hiebert, 

1999) that there certainly are aspects of LS that may not be readily embraced by the 

teachers in the importing context (Ebaeguin & Stephens, 2014). 

Two Approaches of Implementation 

There seem to be two approaches to the implementation of LS outside Japan–the 

fidelity approach and the culturally embedded approach. A fidelity approach to 

implementation means bringing LS to another context by demonstrating how it is done in 

Japanese schools and faithfully executing the same procedures with the local teachers. This 

approach makes several assumptions. First is that a simple transference or ‘copy-paste’ 

model works across cultural contexts. Second is that LS is a package of procedures, that 

may be taught to and learned by the teachers in a seminar/workshop, after which, the 

teachers are expected to have acquired the skills, to be able to participate in LS, and to be 

able to integrate it in their regular practice. Third assumption is that all teachers are capable 

of and open to changing their beliefs and practices to meet the requirements of LS. Finally, 

a fidelity approach assumes that the school structure and administrative support for LS 

present in Japanese schools are easily replicable in any context. Certainly, an 

implementation that is as faithful as possible to LS is desirable as this would assure 

realisation of the benefits of LS, but this, of course, is very ideal. 

A fidelity approach fails to recognise that culture is expected to contribute to the forms 

of acceptable pedagogy, teacher-student interactions, classroom practices and teacher 

professional development programs (Ebaeguin & Stephens, 2014). Though it is possible, of 

course, to learn the procedures and to acquire the skills needed to participate in LS, the 

author believes that this would lead to something that is short-lived and without continuity 
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like most sporadic professional development training teachers would have. This increases 

the chances of developing misconceptions on LS (Yoshida, 2012; Fujii, 2014). In addition, 

considering the high demand of work LS puts on the teachers, it can be expected that not 

all teachers would be very receptive to new ideas and practices and open to modifying their 

own beliefs and practices. 

A culturally embedded approach to implementation assumes that there are aspects of 

LS that may not be transferrable to another context. It acknowledges that LS, having 

originated from Japan, has cultural underpinnings that explain its success in the Japanese 

school system and that these, however, may not necessarily be present in another context. 

It recognises that when LS moves into another culture, it is likely to change and be 

adjusted to fit the local context of the importing culture. In a study conducted by Dudley 

(2012), LS was regarded as a useful method for professional learning in England because 

of the culture of collaborative enquiry in the schools. However, the nature of research 

questions in LS, which is always based on the school’s aims and values, conflicted with 

England’s tradition of action research in which the research question varies from project to 

project. While retaining the elements of learning as a professional community, LS’s 

purpose for them became a means to creating new practice knowledge (Dudley, 2012). A 

culturally embedded approach entails identifying which aspects of LS could be supported 

by existing practices and beliefs of the importing culture, and which ones may not be easily 

embraced or may need to be modified. The goal is not to turn teachers in the importing 

culture to be a Japanese teacher but rather come up with an adaptation of LS that would be 

easily supported by the teachers and the school system. This means a continuous and 

sustainable professional growth for the teachers. One obvious weakness of this approach, 

though, is that it will not guarantee realisation of the same benefits, in terms of level or 

quality, as with LS in Japan. As each school would have their own practices and beliefs 

within the same cultural context, the adaptations and speed of realising the growth would 

also vary. Despite this weakness, however, the author believes that a culturally embedded 

approach to implementation, aside from being more critical, promotes a more systemic 

professional development for teachers. Having said this, an important question to ask now 

is how, then, can LS change if it is to work well in another country? 

Methodology 

In a prior study, Ebaeguin and Stephens (2014) provided insights on how culture may 

contribute to the success of LS implementation in Japan. That study, they described and 

used Hofstede’s dimensions of national culture—Power Distance Index (PDI), 

Individualism/Collectivism (IDV), Masculinity/Femininity (MAS), Uncertainty Avoidance 

Index (UAI) and Long-term Orientation (LTO). PDI pertains to hierarchy in the system 

which influences interaction between stakeholders and distribution of key roles, while IDV 

deals with propensity towards collaboration. MAS distinguishes between achievement and 

competitiveness or harmony and consensus. UAI relates to openness to change and 

innovation, while LTO is associated with having future-oriented or short-term perspectives 

(for a more detailed discussion on Hofstede’s dimensions of national culture, please refer 

to Hofstede, Hofstede, & Minkov, 2010). Based on these dimensions, their instrument 

Values Survey Module for Teachers 2012 (VSMT12) was administered to their sample of 

Japanese teachers to identify orientations that support LS in Japan (see Figure 1). Their 

second instrument, the Mathematics Teachers Perceptions of a Good Mathematics Lesson 

(MTPGML), asked the sampled Japanese teachers to rate nine attributes of a good 

mathematics lessons implied by JLS, as Not Important (NI), Undecided (U), Important (I), 
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Very Important (VI), or Essential (E). This showed the sampled Japanese teachers’ 

endorsements of key aspects of planning a good mathematics lesson and was used to 

identify value orientations that would be conducive for LS implementation (see Table 1).  

 

 

 

 

 

 

 

 

 
Figure 1. Cultural orientations of the sampled Japanese teachers (from Ebaeguin & Stephens, 2014) 

Table 1 

Sampled Japanese mathematics teachers’ endorsement of some key aspects of planning a 
good mathematics lesson (from MTPGML, Ebaeguin & Stephens, 2014) 

 Japan (%) n=16 

Items  NI U I VI E 

1. Using/researching on curriculum materials (national 

curriculum, textbooks, course syllabus, scope and sequence, 
etc.) in planning out your lessons. 

0 0 13 25 63 

2. Working with other teachers to plan a lesson. 0 19 38 25 19 

3. Having other teachers/colleagues in the classroom to observe 

my teaching. 
0 0 25 38 38 

4. Identifying in advance the range of expected student responses 

to the task including likely wrong responses in a problem-
solving lesson. 

0 0 0 25 75 

5. Writing a detailed lesson plan incorporating the range of 

expected student responses. 
0 6 31 31 31 

6. Talking about and sharing successful mathematics lessons with 
colleagues. 

0 0 44 44 13 

7. *Relying on my own opinion as to whether a lesson has been 

successful or not. 
0 44 50 6 0 

8. Evaluating a lesson through analysing collected samples of 
students’ solutions and attempted solutions. 

0 0 19 31 50 

9. Getting involved in school research. 0 6 6 19 69 

Notes:  Shading indicates combined percentages of Very Important (VI) and Essential (E) ≥ 50%.                              
* Lower values are important for this item (from data in Ebaeguin & Stephens, 2014) 

The moderate orientations for each of Hofstede’s dimensions (see Figure 1) can be 

expected to provide support for LS implementation. Table 1 highlights the consistency in 

the strong valuing of aspects of lesson planning across the sampled Japanese mathematics 

teachers. These cultural and value orientations provide an environment that is conducive 

for LS implementation (Ebaeguin & Stephens, 2014) in Japan. These orientations, 

however, cannot be assumed outside Japan.  

215



Ebaeguin 
 

 

 

This study replicates the methodology and instruments used in the aforementioned 

study. It focuses on a LS implementation in a public high school in the Philippines using a 

culturally embedded approach and the growth the participating mathematics teachers 

experienced. In this study, School A, a Philippine public high school was recruited. The 

school was chosen to maximise the participants in the school to meet the minimum 

requirement of fifty responses for one of the instruments to be administered. The author 

worked with eight participating mathematics teachers in the school, meeting them twice a 

month over a period of seven months; and implemented three cycles of LS. The small 

sample limited the analysis of the data to simple descriptive statistics. 

There were two phases to the study. First phase involved administration of two 

questionnaires, VSMT12 and MTPGML. VSMT12 was administered to all the teachers in 

School A. The results were used to identify the teachers’ existing cultural orientations 

which then informed the strategies employed to promote attitudes conducive for LS. For 

example, if the group appeared to be hierarchical, novice teachers may find themselves 

either unable to participate or assigned much of the work. The author needed to employ 

strategies that distribute the participation evenly amongst experienced and novice teachers. 

The MTPGML questionnaire was administered only to the mathematics teachers. The 

results from this questionnaire showed the extent of the mathematics teachers’ 

endorsements of key aspects of LS and were used to inform the focus of the training that 

was given to the teachers. For example, if most of the teachers rated working with other 

teachers to plan a lesson U or NI, more sessions that involve collaborating with colleagues 

in planning a lesson need to be provided. This questionnaire was again administered to the 

same teachers after the research intervention. Results from the pre- and post-intervention 

administration of this questionnaire were compared to identify what teacher growth 

occurred after their experience of the adapted LS. 

The second phase of the study involved execution of the intervention program. An 

intensive workshop on LS was given to the participating mathematics teachers prior to the 

regular monthly meetings. The focus in these regular monthly meetings is based on the 

results of the pre-intervention administration of MTPGML. For example, if majority of the 

teachers rated anticipating student responses to be NI or U, activities that would require 

them to think like their students will be given. At the end of these monthly meetings, the 

teachers were also asked to write short reflections about the session. At the end of the 

intervention, when the teachers would have already gone through 2-3 cycles of LS, post-

intervention administration of MTPGML and exit interviews were done. The author 

interviewed the participating teachers individually and asked them to talk about four core 

themes/tasks. First part asked the teachers to talk about how important professional 

development is for them and how their experience of LS helped them grow. In the second 

part, the teachers were shown their pre-LS and post-LS ratings in MTPGML. The teachers 

were asked to talk about the items where their endorsement changed and to give examples 

on how this affected their regular practice. The third part of the interview required the 

teacher to analyse a mathematical task and a set of student solutions. The last part of the 

interview asked the teachers to raise any issue or comments they had/have in their 

experience of LS. The next section will report on results in School A. 

Results and Discussion 

Hofstede cautioned against comparisons of replicated studies with his published scores, 

for doing so requires matched samples. This is not part of the aim of this paper. The author 
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utilised Hofstede’s dimensions to anticipate possible affordances and/or barriers that 

culture may bring to the plate when implementing LS outside Japan.  

 

 

 

 

 

 

 

 

 
Figure 2. VSMT12 scores for Japanese sample (adapted from Ebaeguin & Stephens, 2014) and School A  

From Figure 2, it can be seen that School A is very high in PDI, moderately 

collaborative, moderately feminine, low uncertainty-avoidance and moderately short-term 

oriented. Obvious barriers would be the very high PDI, very low UAI, and the moderate 

short-term orientation. Despite being quite collaborative, the very hierarchical nature of the 

teachers may affect the level of participation of the teachers. Novice teachers may tend feel 

intimidated and remain passive in discussions, whereas, the seasoned teachers may feel the 

need to assert themselves and dominate the exchanges. Also, how the teachers see the 

author, either as an outside resource person who is there to train them or a colleague/fellow 

educator who is there to work with them, may affect the teachers’ involvement. To address 

this, the author designed the trainings and meetings such that everyone’s opinions will be 

heard, tasks are distributed fairly to everyone, and that the novice teachers were given the 

chance to take on more important roles. The author was also consultative when making 

decisions. Low UAI was also an impediment because the teachers may not have seen the 

value in making detailed lesson plans, for example, or rehearsing lessons prior to actual 

teaching of the lessons. Moderate short-term orientation wais also a challenge as the 

teachers may see LS as a one-shot activity like seminars or workshops they go to because 

they did not see the long-term benefits of engaging in this activity. To avoid a low level of 

commitment from them, it was important to have immediate superiors involved such as the 

mathematics department head: to keep them in the program; to make them realise the 

learnings they get from each session so they could feel they are improving; and to 

constantly remind them of other possible benefits they can get such as prepared lessons or 

activities which they can use for the next school years. Note that the study did not aim for 

the Philippine teachers to have the same orientations with their counterparts in Japan, but 

to create an environment that would be supportive of a LS implementation. 

Figures 3—6 below show some results of MTPGML for the sampled Japanese teachers 

(Ebaeguin & Stephens, 2014) and the pre- and post-intervention of teachers in School A. 

As mentioned in the methodology section, analysis of data from this instrument has been 

limited to simple descriptive statistics due to the small sample. Furthermore, the results 

from the Japanese sample did not serve as the goal for the teachers in School A post-

intervention, but to highlight the differences between what the sampled Japanese teachers 

and School A teachers, pre-intervention, value when planning a lesson and to anticipate 

aspects of LS School A teachers may struggle with or may not readily embrace. These 

became the focus of some sessions with the teachers. 
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Figure 3. Japanese sample and School A teachers’ endorsement for ‘Working with other teachers to plan a 

lesson.’ (adapted from Ebaeguin & Stephens, 2014) 

There was one teacher in School A who thought collaborative lesson planning was not 

important. Public school teachers in the Philippines are provided with outlined lessons 

plans by the Department of Education and have the leeway to execute the lesson in their 

respective classes. This was not the case with LS which is a collaborative activity that 

provides teachers, whether novice or experienced, an opportunity to share their expertise 

when designing a lesson. Post-LS, several teachers in School A shifted towards a positive 

endorsement. In his exit interview A7, a novice teacher from School A, said: 

“It gave me an idea how important it is to collaborate with other teachers in planning a 

lesson…Majority of us plan our own lessons…but through LS, there was a realisation that I am not 

alone in the academe and you can collaborate with others teachers. Since they are the more 

experienced ones, they can advise me about the best strategies and methods to use in teaching a 

topic… [Because of this] my relationship with my fellow year 7 teachers improved…the superiority 

complex of some teachers lessened.” 

 

 

 

 

 

 

 

 

 
Figure 4. Japan sample and School A teachers’ endorsement for ‘Having other teachers/colleagues in the 

classroom observe my teaching.’ (adapted from Ebaeguin & Stephens, 2014) 

Figure 4 shows that there were two teachers in School A, both classified as experienced 

teachers, who thought having colleagues observe their teaching was NI. Notice also that 

none of them rated it as E which was very different from their Japanese counterparts who 

all rated this item as at least I. This aversion of School A teachers may be attributed to the 

fact that classroom visits are used by department heads, supervisors and principal to 

evaluate the teacher’s performance. This is very different from LS where the lesson, not 

the teacher, is the focus of the observations. Looking at the post-LS results, it may seem 

that there was not much shift in endorsement except for the two experienced teachers, A1 

and A5, who initially rated it as NI shifting to U. This may be something that School A 
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teachers needed more convincing on because of the teacher evaluation scheme employed 

by the school and required by the Department of Education. A2. A novice teacher, though, 

said in her interview “I was able to learn different teaching strategies. I was able to 
observe how other teachers teach so I was able to improve my own practice.”  

 

 

 

 

 

 

 

 

 

 
Figure 5. Japanese sample and School A teachers’ endorsement for ‘Identifying in advance the range of 

expected student responses in a problem-solving lesson.’ (adapted from Ebaeguin & Stephens, 2014) 

In Figure 5 there is a striking difference of value orientation between the Japanese 

sample and School A teachers. Every Japanese teacher rated “Identifying in advance the 

range of expected student responses in a problem-solving lesson” to be at least VI, 

whereas, three School A teachers rated U and none rated E. This could be attributed to the 

low UAI. In planning a lesson, teachers need to anticipate possible correct solutions, 

misconceptions and needed support for their students. Post-LS, there was a clearer 

endorsement of this item with the majority rating it VI. A1, an experienced teacher, said: 

“It helped me to construct a good lesson plan wherein we need to consider the students’ anticipated 

responses. It’s only now that I realised the need to consider these because you can use them to 

develop the flow of your lesson by connecting the students’ ideas from one another.” 

A5, another experienced teacher, further added: 

“Readiness in dealing with my students every day. Usually, we only expect the correct answer to be 

given. When a wrong answer is given, we assume that all the wrong responses are the same. But 

through LS, we consider all possible student responses so we’re able to prepare responses in case a 

wrong response comes up.” 

 

 

 
 

 

 
Figure 6. Japanese sample and School A teachers’ endorsement for ‘Evaluation of a lesson through analysing 

collected samples of students’ solutions and attempted solutions.’ (adapted from Ebaeguin & Stephens, 2014) 

In Figure 6, though a majority of the teachers in School A rated “Evaluation of a lesson 

through analysing collected samples of students’ solutions and attempted solutions” at least 
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I, none rated it E, compared to the Japanese sample where the majority rated E. In the 

Philippines, more often than not, lessons are evaluated based on test scores. If most 

students get passing scores, then the lesson is considered successful. In LS, collecting 

student artefacts is important because this allows the teachers to understand how students 

think. Other student responses that were not anticipated prior to teaching of the lesson are 

then integrated into a revised version of the lesson plan. Post-LS, the lone teacher who 

rated this NI shifted to at least I and two teachers who rated it as E. A4, a seasoned teacher 

shared “In LS, you get to look at the different answers from the students some of which 
may appear wrong but, on a closer look, may be correct. Even the teachers are learning.” 

Conclusion 

Culturally grounded aspects of LS contribute to how they are embraced by the teachers 

in the importing culture. A culturally embedded approach to implementation builds on the 

teachers’ cultural and value orientations in order to facilitate a locally appropriate 

implementation of LS. Knowing the disparities in the orientations with the importing 

culture allowed us to be more strategic in our implementation and focus our intervention 

where necessary. The shift in endorsement of some key aspects of LS, and reflections from 

teachers in School A, provided solid evidence of teacher professional growth. This shows 

that LS, if adapted and implemented critically is a successful and sustainable program that 

will provide teachers with opportunities for professional growth. 
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The relationship between the self-efficacy of 23 High School students with intellectual 

disability (ID) and their achievements in Mathematics was evaluated using a modified 
version of the self-efficacy instrument developed by Joet, Bressoux and Usher (2011). Four 

different number sense assessment tools were administered pre- and post- six months of 

instruction to measure their Mathematics achievement.  Relevant data analyses were carried 

out with Minitab statistical software. While the mean self-efficacy was found to be about 

65%, the correlation between self-efficacy and the mathematics achievements of students 

was weak. 

The definition of intellectual disability (ID) and its levels of severity have undergone 

many revisions over the years in response to emerging research outcomes which have 

changed how ID is perceived. There is a shift in thinking from a deficiency model which 

suggests the problem resides in the individual with ID to the environment or support/needs 

model that focuses on what adjustments needed to be made to support people with ID. The 

term ‘intellectual disability’ (ID) (previously known as mental retardation) has been used 

interchangeably in the literature for ‘intellectual developmental disorder’ (American 

Psychiatric Association - APA, 2013, p.33) and ‘intellectual impairment’ (Wen, 1997, p. 

2). One current definition describes ID as a form of disability that is “characterised by 

significant limitations in both intellectual functioning and in adaptive behaviour, which 

covers many everyday social and practical skills. This disability originates before the age 

of 18” (American Association on Intellectual and Developmental Disabilities - AAIDD, 

2010, p. 1). Similarly, the APA (2013, p. 33) defines ID as a disorder that is characterised 

by: (a) deficits in intellectual functioning; (b) deficits in adaptive functioning; and (c) 

intellectual and adaptive deficits occurring during the developmental period.  

For several decades IQ scores have been employed widely in describing the levels of 

severity of ID including borderline (IQ 84 to 71), mild (IQ 70 to 55), moderate (IQ 54 to 

35), severe (IQ 34 to 20) and profound (IQ below 20) (Wen 1997, p. 4). This IQ-based 

classification is being phased out and to be replaced by needs-based severity codes.  The 

APA (2013, pp. 33-36) has introduced needs-based severity codes that consist of mild, 

moderate, severe and profound ID. This categorisation is based on adaptive functioning 

rather than IQ scores and with functional limitations evaluated across conceptual, social 

and practical skills domains as detailed in the Diagnostic and Statistical Manual of Mental 
Disorders (Fifth Edition).  The AAIDD (2010) has also introduced its own support-based 

severity codes of ID consisting of intermittent support, limited support, extensive support 

and pervasive support which are based on the intensity of support needed by the individual 

with ID. A summary description of these codes as provided by Reynolds, Zupanick, and 

Dombeck (2015, pp. 33-34) includes: (1) Intermittent support (equivalent to mild ID under 

APA standards) – “they may only require additional supports during times of transition, 

uncertainty, or stress”; (2) Limited support (equivalent to moderate ID under APA 

standards) – “with additional training, they can increase their conceptual skills, social 

skills, and practical skills. However, they can still require additional support to navigate 

everyday situations”; (3) Extensive support (equivalent to severe ID under APA standards) 
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– “… they will usually require daily support”; and (4) Pervasive support (equivalent to 

profound ID under APA standards) – “daily interventions are necessary to help the 

individual function. Supervision is necessary to ensure their health and safety. This lifelong 

support applies to nearly every aspect of the individual’s routine”. The IQ-based 

classification was used in this study as that was the practice in place at the commencement 

of this study 3 years ago at the school where this study was conducted.  

Self-efficacy has been defined as “beliefs in one’s capabilities to mobilise the 

motivation, cognitive resources, and courses of action needed to meet given situational 

demands” (Gist & Mitchell, 1992, p. 184). This involves the “convictions that one can 

successfully carry out given academic tasks at designated levels” (Bong, 2004, p. 288). 

Embedded in this definition of self-efficacy is the affirmation of the importance of 

motivation and cognitive ability. Motivation and cognitive factors are essential ingredients 

of self-efficacy. Azar, Lavasania, Malahmadi and Amani (2010) have acknowledged that 

motivation and cognitive ability influence achievements among other factors. All around 

us today, there are everyday examples of mathematics impacting on our lives including 

shopping, using the phone, transport, money, cooking and many others (Gouba, 2008). 

Students with ID require some functional knowledge of Mathematics to achieve some 

degree of independence in their lives. For example, the ability to read time is essential to 

employees arriving at work on time and keeping their job (“if the short arm of a clock 

points to 3 and the long arm to 12, what is the time?”). Also, it is important to be able to 

identify one’s phone number (functional mathematics) and name (functional literacy) on a 

bill to avoid paying the bill of a previous tenant in a rented accommodation (“identify your 

phone number (from a given set of numbers)”. Self-efficacy has been found to be a good 

predictor of Mathematics achievements among mainstream students (Pajares, 1996).    

There is a copious amount of information in the literature on the self-efficacy beliefs of 

individuals in mainstream educational settings. The first author has searched the literature 

for studies on the effects of self-efficacy of students with ID on their Mathematics 

achievements and it appears that no study of this nature exists.       

Rationale 

This study sought to establish: (1) the relationship between mathematics self-efficacy 

and intellectual disability; and (2) the relationship between the self-efficacy of students 

with borderline, mild and moderate ID and their achievements in Mathematics.  

Method 

Participants 
Twenty-three High School students from Years 8 to 12 consisting of three, thirteen, 

and seven borderline, mild and moderate ID respectively participated in the study. The 

Mathematics self-efficacy instrument used in this study was an adaptation of the 

instrument described by Joet, Bressoux and Usher (2011). It was modified to make it 

relevant and appropriate to students with borderline, mild and moderate ID by including 

functional numeracy questions – from questions 4 to 25 (Table 1). Only questions 1 to 3 

were retained from Joet, Bressoux and Usher’s (2011) original Self-Efficacy items.   The 

modified instrument (Table 1) had 25 items and each item was rated along five response 

categories including completely true (weighted 5), very true (weighted 4), moderately true 

(weighted 3), slightly true (weighted 2) and not at all true (weighted 1) (Table 1). 
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Statistical analyses were undertaken with Minitab 17 (Minitab Statistical Software, 2010; 

Aylin, 2010). The self-efficacy instrument was administered orally and clarifications 

provided where necessary to ensure the participants understood the questions.    

Table 1 
Mathematics Self-Efficacy Items for students with ID 

No. Item 

1 I am capable of solving math problems 

2 I can solve geometry problems (e.g. identify shapes, calculate area and perimeter) 

3 I am capable of getting good grades in math 

4 I can solve addition problems involving single digit numbers 

5 I can solve double-digit addition problems 

6 I can subtract single-digit numbers 

7 I can subtract double digit numbers 

8 I can multiply single-digit numbers 

9 I can multiply double-digit numbers 

10 I can divide single-digit numbers 

11 I can divide double-digit numbers 

12 I can identify a number’s place value 

13 I know how to write numbers with their symbols up to 20 

14 I know how to calculate the area of a rectangle 

15 I am capable of measuring the sides and diagonals of a rectangle 

16 I know how to add metres and centimetres 

17 I know how many centimetres make a metre 

18 I know how many cents make a dollar 

19 I know how many minutes make 1 hour 

20 I can count from 1 to 10 

21 I can count from 1 to 20 

22 I can count from 1 to 50 

23 I can count from 1 to 100 

24 I can count from 1 to 1000 

25 I know my 12 times table 

The self-efficacy instrument was administered at the commencement of the school year 

(Self-Efficacy 1). The students went through 6 months of instruction after which a second 

round of self-efficacy assessment (Self-Efficacy 2) was carried out. To measure the 

mathematics achievements of the students, the authors administered Test 1 - IMPELS 

(Enoma & Malone – in press), Test 2 - the Delaware Universal Screening Tool for Number 

Sense Grade 2 (Delaware Department of Education, 2010), Test 3 - Streamlined Number 

Sense Screening Tool (Jordan, Glutting & Ramineni, 2008) and Test 4 - Number 

knowledge Test (Okamoto & Case, 1996; Okamoto, 2004) on each occasion that the self-

efficacy assessment was conducted.  
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Results and Discussion 

Table 2 showed that 20 students (about 86%) of participants achieved >50% in the 

Self-Efficacy 1 assessment. When the self-efficacy assessment was repeated after 6 months 

of teaching (Self-Efficacy 2 – Table 2), similar results were obtained. 

Table 2 
Comparing pre-instruction Efficacy (Self-Efficacy 1) with Tests 1, 2, 3 & 4 
Student Year 

Level 

Severity of ID Self-Efficacy 1 

(%) 

Test 1 

(%) 

Test 2 

(%) 

Test 3 

(%) 

Test 4 
(%) 

1 10 Borderline ID 56.00 84.91 75.00 96.00 64.77 

2 10 Borderline ID 84.80 99.58 75.00 98.00 65.91 

3 8 Borderline ID 62.40 70.65 75.00 99.00 56.82 

4 11 Mild ID 73.60 53.25 58.33 84.00 50.00 

5 10 Mild ID 81.60 71.07 50.00 98.00 71.59 

6 9 Mild ID 74.40 75.68 41.67 90.00 37.50 

7 8 Mild ID 77.60 98.74 58.33 99.00 60.23 

8 9 Mild ID 65.60 98.32 66.67 99.00 56.82 

9 10 Mild ID 86.40 98.95 83.33 93.00 39.77 

10 11 Mild ID 76.00 95.81 58.33 100.00 70.45 

11 11 Mild ID 73.60 85.95 75.00 100.00 54.55 

12 8 Mild ID 76.80 85.53 83.33 86.00 73.86 

13 9 Mild ID 72.00 93.71 66.67 100.00 67.05 

14 9 Mild ID 66.40 54.72 41.67 74.00 25.00 

15 9 Mild ID 55.20 48.63 75.00 93.00 29.55 

16 10 Mild ID 47.20 90.14 66.00 84.00 56.82 

17 9 Moderate ID 60.00 41.30 16.67 56.00 29.55 

18 12 Moderate ID 48.00 63.94 50.00 98.00 43.18 

19 10 Moderate ID 64.80 62.68 66.67 99.00 52.27 

20 8 Moderate ID 38.40 27.46 25.00 43.00 22.73 

21 9 Moderate ID 52.80 51.36 66.67 90.00 50.00 

22 11 Moderate ID 76.00 56.39 75.00 100.00 56.82 

23 10 Moderate ID 58.40 60.97 75.00 84.00 39.77 

Test 1 = IMPELS (Enoma & Malone, 2015 – in press), Test 2 = the Delaware Universal Screening Tool for 
Number Sense Grade 2 (Delaware Department of Education, 2010), Test 3 = Streamlined Number Sense 

Screening Tool (Jordan, Glutting & Ramineni, 2008), Test 4 = Number knowledge Test (Okamoto & Case, 

1996). 

However, it was observed that some students with relatively high self-efficacy 

achieved low marks in mathematics as indicated by a student with a self-efficacy score of 

60% achieving 41% in the mathematics Test 1 (Table 2). This suggests possible cognitive 

limitation or some degree of over-confidence or both. Similarly, some students with low 

self-efficacy achieved high marks in mathematics. An example of this case was 

demonstrated by a student who had a self-efficacy score of 23.2% and achieved 70.27% in 
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Test 1 (Table 3). An additional example of the low self-efficacy-high marks scenario was 

displayed by another student who achieved a relatively low self-efficacy score of 47.2% 

but achieved 90.14% in the mathematics Test 1 (Table 2). The situation described in the 

latter two examples has manifold implications: (1) students in this category possess some 

level of mathematics anxiety, (2) students in this group have the potential to do relatively 

well in mathematics and (3) As a result of mathematics anxiety, this cohort of students may 

not always perform to their potential in mathematics.  

 
Table 3: Comparing post-instruction Efficacy (Self-Efficacy 2) with Tests 1, 2, 3 & 4 

Name  Year 
Level 

Severity of ID Self-Efficacy 2 

(%) 

Test 1 

(%) 

Test 2 

(%) 

Test 3 

(%) 

Test 4 
(%) 

1 10 Borderline ID 78.40 95.39 83.33 98.78 73.86 

2 10 Borderline ID 64.80 99.58 100.00 100.00 77.27 

3 8 Borderline ID 76.80 77.99 75.00 98.78 80.68 

4 11 Mild ID 83.20 97.06 66.67 97.56 65.91 

5 10 Mild ID 86.40 99.79 83.33 100.00 76.14 

6 9 Mild ID 68.80 97.69 66.67 84.15 45.45 

7 8 Mild ID 65.60 93.08 75.00 100.00 67.05 

8 9 Mild ID 68.80 98.74 50.00 98.78 65.91 

9 10 Mild ID 61.60 88.68 83.33 93.90 53.41 

10 11 Mild ID 72.00 96.86 91.67 100.00 76.14 

11 11 Mild ID 73.60 91.19 91.67 100.00 59.09 

12 8 Mild ID 72.80 92.87 66.67 98.78 73.86 

13 9 Mild ID 72.00 99.16 58.33 100.00 68.18 

14 9 Mild ID 65.60 87.00 8.33 78.05 43.18 

15 9 Mild ID 23.20 70.27 25.00 84.15 34.09 

16 10 Mild ID 56.80 91.19 83.33 98.78 50.00 

17 9 Moderate ID 60.00 41.30 8.33 68.90 29.55 

18 12 Moderate ID 53.60 83.23 58.33 97.56 47.73 

19 10 Moderate ID 64.80 88.68 91.67 100.00 47.73 

20 8 Moderate ID 40.80 37.32 41.67 45.73 22.27 

21 9 Moderate ID 69.60 61.32 25.00 93.90 54.55 

22 11 Moderate ID 76.00 90.36 75.00 98.78 56.82 

23 10 Moderate ID 44.00 90.78 75.00 93.90 52.27 

Test 1 = IMPELS (Enoma & Malone, 2015 – in press), Test 2 = the Delaware Universal Screening Tool for 

Number Sense Grade 2 (Delaware Department of Education, 2010), Test 3 = Streamlined Number Sense 

Screening Tool (Jordan, Glutting & Ramineni, 008), Test 4 = Number knowledge Test (Okamoto & Case, 
1996). 
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Figure 1: Distribution of Self-Efficacy 1 scores of students (pre- instruction). 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Distribution of Self-Efficacy 2 scores of students (post-instruction). 

Students’ self-efficacy scores ranged from 38.4% to 86.4% for Self-Efficacy 1 (Figure 

1) and 23.20% to 86.40% for Self-Efficacy 2 (Figure 2). The mean self-efficacy scores 

were about the same, ie 83.04 (66.43%) for Self-Efficacy 1 (Figure 1) and 81.48 (65.18%) 

for Self-Efficacy 2 (Figure 2). Such impressive average self-efficacy scores of 66.43% 

(Self-Efficacy 1) and 65.18% (Self-Efficacy 2) demonstrate a belief in the majority of the 

students in their capabilities to do well in Mathematics. While self-efficacy has been 
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acknowledged as an important factor in academic accomplishments because of its positive 

relationship with effort and persistence (Bandura, 1993), it must borne in mind that 

individuals can only perform within the limit of their cognitive abilities. 

Linear Regression Graphs 
Considering the sample size was less than 30 (n = 23), Anderson-Darling normality 

tests were undertaken on both pre- and post-instruction data using MINITAB 17 statistical 

software (Minitab Statistical Software, 2010). The outcome was a mixed group of normally 

and non-normally distributed data. As a result, Pearson and Spearman Rho correlation 

coefficients were calculated. Pearson’s pre-instruction correlation coefficients of 0.57 (P = 

0.005), 0.33 (P = 0.122), 0.49 (P = 0.015), 0.48 (P = 0.02) and post-instruction correlation 

coefficients of 0.50 (P = 0.01), 0.37 (P = 0.07), 0.51 (P = 0.01) and 0.71 (P = 0.00) were 

obtained for Tests 1, 2, 3 and 4 respectively. Similarly, Spearman Rho pre-instruction 

correlation coefficient of 0.58 (P = 0.003), 0.24 (P = 0.26), 0.38 (P = 0.06), 0.47 (P = 0.02) 

and post-instruction correlation coefficients of 0.50 (P = 0.015), 0.27 (P = 0.20), 0.48 (P = 

0.02) and 0.708 (P = 0.00) were obtained for Tests 1, 2, 3 and 4 respectively. The 

relationship between students’ scores in Self-Efficacy 1 and their achievements in 

Mathematics showed a weak Pearson correlation coefficient (R) of 0.57, 0.33, 0.50 and 

0.48 for Tests 1, 2, 3, and 4 respectively. Similar results were obtained for Self-Efficacy 2 

with correlation coefficients of 0.50 (Test 1), 0.38 (Test 2) and 0.51 (Test 3). The only 

exception was Test 4 with a correlation coefficient of 0.71. 

Figure 3 shows the relationship between Self-Efficacies 1 and 2 and the full scale IQ 

scores of students prior to instruction. Achievements in the self-efficacy assessments 

correlated weakly with their full scale IQ scores. Pearson correlation coefficients (R) of 

0.36 and 0.30 were obtained for Self-Efficacy 1 (conducted at the beginning of the school 

year) and self-efficacy 2 (conducted 6 months after). This result shows that self-efficacy is 

an individual attribute as some students with high full scale IQ demonstrated lower self-

efficacy than those students with IQ scores below them. The reverse was also true for some 

students.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Relationship between Self-Efficacy and Full Scale IQ scores of students prior to instruction 
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Conclusion 

The study found no strong correlation between the mathematics self-efficacy of 

students with ID and their achievements in Mathematics or with the categories of ID. The 

various scenarios that emerged from the study include students with low mathematics self-

efficacy that achieved high scores in the tests, students with high mathematics self-efficacy 

that achieved low scores in the tests, students with high mathematics self-efficacy that 

achieved high scores in the tests and students with low mathematics self-efficacy that 

achieved low scores in the tests. These results further reinforced the importance of 

individualised mathematics education for students with ID. 
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Having students address mathematical inquiry problems that are ill-structured and 
ambiguous offers potential for them to develop a focus on mathematical evidence and 
reasoning. However, students may not necessarily focus on these aspects when responding 
to such problems. Argument-Based Inquiry is one way to guide students in this direction. 
This paper draws on an analysis of multiple primary classes to describe core elements in 
Argument-Based Inquiry in mathematics.  

The inclusion of inquiry-based pedagogies into classroom mathematics teaching has 
the potential to engage students in mathematics in authentic ways (Fielding-Wells & 
Makar, 2008). Students engage with inquiry as they are supported to work with ambiguous 
and ill-structured problems (Makar, 2012); ill-structured problems being considered those 
which have no correct solution, may have multiple solutions, or have unclear solution 
processes (Eraut, 1994). An advantage of working with such questions is that:  

their inherent ambiguity allows for multiple interpretations of a question, a range of pathways, and 
numerous solutions with varying degrees of efficiency, applicability and elegance. This requires 
students to focus on decision-making, analysis and justification. Rather than a ‘correct’ answer or 
strategy, there is a claim which requires evidence, explanation and defense – in short, an argument 
(Fielding-Wells & Makar, 2012, p. 149). 

Blair (2012) describes a view of argumentation that essentially sees it as a form of inquiry 
in which argumentation is utilised to explore a problem and to arrive at a solution through 
examination of the evidence and grounds that can be employed towards solving the 
problem. By implementing such a model of argument, students may be explicitly focussed 
on obtaining evidence, using evidence to make a claim, and articulating how the evidence 
leads to the claim through reasoning. Thus, argumentation offers potential to purposefully 
direct students engaged in inquiry to focus on the discipline content, and the ways in which 
the discipline content can be used, to respond to a problem or dilemma.  

Argumentation in not new in mathematics, there is a great deal that mathematicians do 
that incorporates reasoning and argument. For example, mathematical proof must stand up 
to rigorous, critical, dialectical argument by other mathematicians and be open to argument 
as attempts are made to examine, generalise, extend, and simplify the proof. Another area 
of argumentation research in mathematics has been as it applies to procedure (see, for 
example, Goos, 2004; Yackel & Cobb, 1996). Here it is “the strategies used for figuring 
out, rather than the answers, that are the site of the mathematical argument” (Lampert, 
1990, p. 40).  

There is a third type of argumentation, one that would appear to have been the focus of 
less research and that is the use of argumentation to address authentic, ill-defined 
mathematical problems in which neither the procedural pathways nor the solutions are 
limited in terms of ‘correctness’; that is, inquiry (Anderson, 2002). This is the focus of the 
research described in this paper and which differs from the existing body of literature 
somewhat in that both the solution process and the answers are considered the site of the 
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argument. Hence, the term Argument-Based Inquiry (ABI) has been adopted to describe 
this view of argumentation. 

Argumentation 
Toulmin, Rieke and Janik’s (1984) seminal work on argument structure enables an 

argument to be identified by components of claim, grounds, backing, warrants, and so 
forth. However, such a structure focuses on the components of an argument rather than 
providing a focus on evaluating the logic or strength of their claim. A simpler model than 
that proposed by Toulmin et al. would appear to be indicated for children, such as the 
Claim-Evidence-Reasoning model devised by McNeill and associates (McNeill & Martin, 
2011; Zembal-Saul, McNeill, & Hershberger, 2013). This enables a more general focus on 
the core components of classroom argument. The claim and evidence components align 
with Toulmin et al.’s claim and grounds: claim being the conclusion that addresses the 
original question and evidence being the scientific data that supports the claim. In 
explaining their model, Zembal-Saul et al. (2013) maintain that the data needs to be both 
appropriate and sufficient to support the claim. The third component, reasoning, 
encompasses the warrants and backing; that is, the logic that enables the grounds to be 
used to establish the claim (McNeill & Krajcik, 2012).  

The Nature of Argumentation 
Various theories of argumentation can be found in the literature with Toulmin et al.’s 

(1984) classical work on argumentation structure forming a basis for most. For instance, 
van Eemeren and Grootendorst (2004) extended Toulmin et al.’s structural (product) 
approach to pragma-dialectical argumentation that incorporated the process of argument 
also. Lumer (2010) and Siegel and Biro (1997) proposed a model of Epistemic 
Argumentation, which distinguished itself through a focus on the strength and validity of 
an argument, based on epistemic criteria (Nettel & Roque, 2012) rather than structure and 
use of emotive devices.  It is this theory of argumentation that was adopted throughout the 
research described here: the rationale being that science (and mathematics) value accuracy, 
logic and verifiability over persuasive devices seen in other forms of argument. 
Furthermore, the ability to challenge the argument is offered on an epistemic level, giving 
potential rise to challenge about what is acceptable evidence and reasoning within a 
discipline (Simon & Richardson, 2009).  

Traditional ways of teaching do not provide a classroom culture that is necessarily 
conducive to the introduction of ABI practices and thus there are many practical 
considerations to developing such approaches. In order to facilitate the research 
undertaken, argumentation was introduced into primary classrooms that were already 
fluent in the use of inquiry-based learning (IBL) in mathematics. What signature elements 
of Inquiry-Based Argument can serve to guide children’s mathematical argumentation? 

Methodology 
The larger research study from which this report stems was conducted using Design-

Based Research; selected because this methodology entails engineering forms of learning 
and then systematically studying the learning within its context, which was ideal for the 
research purpose (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003).  
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Participants and Data Collection 
In total, five classes of students were engaged in Inquiry-Based Argumentation units 

with some carrying out one unit and others as many as three across the course of a year. A 
total of nine units were recorded in full from classes (at the Prep, Year 1, Year 3, Year 5 
and Year 7 levels) at a metropolitan government primary school in Queensland. This 
school is a relatively large primary school with approximately four drafts of each year 
level. At the commencement of the research, the school site had been part of an IBL 
research project for seven years and involved a number of teachers at the school. The 
teachers were all experienced with teaching using IBL; however, due to changing grouping 
over years some students were quite familiar with learning through inquiry whereas others 
had little or no experience. Teachers were provided with ongoing guidance and support; 
however, beyond a need for a Question-Evidence-Conclusion focus, the teachers were 
largely responsible for implementing their approach to the inquiry question as they chose.  

Data and Data Analysis 
A selection of videotaped units (approximately 5-10 lessons each) was analysed using 

a process adapted from Powell, Francisco and Maher (2003). In line with their approach, 
the lesson videos were viewed and logged, lesson-by-lesson, along with time stamps, 
excerpts of students’ work, and still shots of teaching materials to capture the essence of 
the lessons. Critical events, such as those that demonstrate a particular struggle or 
advancement in the inquiry were noted and transcribed in more detail. Logs were coded 
using adapted grounded theory (Corbin & Strauss, 2008) and this enabled cross 
comparison between the units for particular events and patterns in the development of the 
inquiry. In particular, commonalities and differences were highlighted in order to develop 
an overarching narrative of the ABI process. Four units that were felt to demonstrate deep 
engagement with ABI pedagogy were transcribed in full. For consistency of the story, all 
classroom illustrations provided are drawn from one unit: Biased Bingo (Year 3): a 
teaching unit designed around the game of addition bingo, which addressed the question 
‘What is the best card for addition bingo?’ In the game, all possible combinations of the 
sum of two numbers (1 to 10) were each written on a slip of paper and placed in a box. 
Children had a card consisting of a 5 x 5 array of self-selected numbers (their predictions 
of what will be called). In order to address the problem, they needed to decide on the best 
numbers they could place on their card. 

The purpose of the grounded coding was to enable the development of substantial 
codes to describe, name, or classify aspects of the study (Flick, 2009). The codes assigned 
were grouped into common themes and codes that were essentially duplications were 
amalgamated. These codes were clustered where appropriate into code categories and 
substantive categories and used to map themes and relationships.  

Results and Discussion 
The analysis undertaken illustrated four key components or threads at the most basic 

level of ABI; that is, that were consistent across all classes and ages. While more advanced 
components were also able to be identified in older classes engaging in more than one ABI 
unit, the essential and consistent elements noted are the focus of this paper. At the very 
simplest level, mathematical argumentation was characterised by students addressing of a 
purposeful inquiry question, the advancing of evidence which was used to form a claim, 
the justifying of the evidenced claim through epistemically acceptable reasoning, and 
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acknowledgement of context. While the elements are presented here sequentially, in 
practice the teacher drew attention to different components and the relationships between 
different components, as required. Each of these elements will be addressed in turn. 

Addresses a Purposeful Inquiry Question 
In order to present an argument, the students first required a question they could 

address. Questions were variously provided by the teacher, by the students or, most often, 
in a vague and unrefined way by the teacher and then refined by the students with teacher 
guidance to a topic that was mathematically researchable. The excerpt below illustrates a 
teacher working to help the students unpack the question being posed. 

Mrs T:  Can you create a bingo card with the BEST chance of winning? What does 'best' 
mean? 

Jess: The best chance of winning doesn’t mean like every number that gets pulled out that 
one person will always get that number. It means that like most of the time when you 
pull out a number that that person will have that number. If they have a like a good 
bingo card they have worked out like how many of each number they need to have to 
have a really good chance of winning. 

[unidentified  
student]  The best chance of winning is the most likely chance that it is going to get called out. 

The inquiry question in this instance was posed by the teacher but in such an ill-
structured way that the students needed to engage with it determine the meaning. The 
question need not be posed by the teacher. In another unit, a student’s question was 
adopted after it was posed spontaneously in class. Students are capable of formulating their 
own inquiry questions even from a young age, although research indicates there is a need 
to teach students how to pose their own questions with a focus on what makes a good 
question (Allmond & Makar, 2010). While this may be time consuming it does more 
closely match authentic practices and teaches students an important skill – how to 
mathematise a problem so that it can be addressed. 

The word purposeful has been added to the element addresses a purposeful inquiry 
question. In this instance, a purposeful question is deemed one that seeks to address a 
genuine problem. By purposeful, it is meant that the question has a genuine reason for 
being asked. Often when students are provided a question, the teacher already has a known 
answer.  Because of this, even if the question is open-ended, students may not engage 
purposefully as they have no real need to persuade their audience (the teacher) of the 
answer or a method (Sandoval & Millwood, 2007).  

Advances Evidence to Enable the Forming of a Claim 
In scientific/mathematic argument, evidence or data is sought and then attempts are 

made to make sense of it and to make a claim based on all the evidence, both supportive 
and contradictory (Sampson & Clarke, 2006). This is distinct from the role that evidence 
may have in advocative argument, where a claim is made and then evidence is presented in 
order to support or add weight to the claim. In ABI, the teacher needs to focus students on 
the obtaining of evidence to make a claim. 

Mrs T: ...  I wanted to just come back to our question, because our question was ‘What Bingo 
card would give you the best chance of winning?’ …? Who can remember what you 
were doing yesterday and what you were hoping to achieve, or what were you trying to 
find out? 
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Gen: If other numbers other than 12 would be pulled out mostly. 

Mrs T: Yes. Some people said, ‘Wow, another 12 another 12’ and so everyone decided ‘OK 
12 comes out the most’ but we weren't really sure of that, so you guys had to find? 

Students: Evidence. 

Mrs T: So you went off to find some evidence for that [writes evidence on whiteboard]. To 
prove that. So, while you were finding evidence, what did you find? What did you 
discover along that track? 

Byron: That 18 was second most popular … 

Gen: That um if you did 12, there was eleven of them. And when we did 11 there was ten. 
And you keep taking 1 from each one and then it makes how many ... 

Mrs T: I am hearing people saying, oh well actually, 10 is the most common. And I heard 
someone say, ‘No, 11 is'’ And Bethany saying, ‘12’ … 

So now that you look at your book, can you tell me, from the evidence that you have 
got there, which number, definitely, and I mean definitely. Can you prove to me, 
which number is the most common? Or numbers. You can Jasmine, from your 
evidence there could you show me, and could you prove it to the rest of the class? 

In this instance, the teacher is focussing on the students need for evidence to support 
their claims: one commonality throughout all the units observed was the repeated and 
consistent focus of each teacher to bring students’ attention back to the need for evidence 
in order to lead them to a claim, but also the need to represent the evidence in ways that 
assisted students to see patterns in their evidence that would lead to a claim. 

It was evident throughout the units analysed that students needed to envisage the 
evidence they could use to address the problem, plan to obtain that evidence, organise or 
represent the evidence, and then interpret and analyse it in order to make and support a 
claim.  

Justifies the Claim through Epistemically Acceptable Reasoning 
Students need to use reasoning that is based on evidence to justify the making of a 

claim. There is potential for the connection between evidence and claim to be omitted, 
largely because the connection is either thought to be implicitly understood, or is left 
unaddressed unless challenged. However, this does not meet the purposes of IBA in 
mathematics, as the reasoning is the site of the actual mathematical understandings, 
connections, proofs, or concepts. In one class, the students engaged in three units over the 
year, and, by the end of that period, were explicitly stating their reasoning in terms of the 
mathematical underpinnings. However, this was not a stage typically reached by classes 
engaging in only one unit. Thus, a more typical response is 
shown from the Year 3 class:  

 
While the suggestion here is that the signature components for argumentation should 

include claim-evidence-reasoning (McNeill & Martin, 2011; Zembal-Saul et al., 2013), it 

Because [ I ?] said 12 are 
the most popular number 
because 11 has 10 chances 
10/100, 8 has 7 chances of 
winning 7/100, 12 has 9 
chances 9/100 
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is only essential that the teacher be able to recognise these components, particularly in 
younger students, and that these components may be elicited, for example verbally, 
pictorially, diagrammatically, or concretely. However, to have the students accustomed to 
providing evidence for and justifying their responses even at an earlier age would likely 
position the students for more formal learning and reasoning at a later time. 

Reflects the Context 
The final element is the necessity of the claim, evidence, and reasoning to reflect the 

question context. In a unit contextualised outside of mathematics, there should be a 
reflection of what the student’s response means in the context. While the claim would 
reflect the context and the reasoning would require a mathematical basis, the evidence may 
be constrained or guided by the context and this could potentially influence the evidence at 
several stages: envisaging (How many trials of the Bingo should we make?) and 
interpreting (What does the evidence mean in light of the context? How can anomalies be 
interpreted in light of the context?). 

Justine: I keep losing on a 10. 

Mrs T: This is an interesting comment. Laura says ‘I keep losing on a 10’. How many times 
have you lost on 10? 

Justine: Two. 

Mrs T: So if this was happening as you predicted and as you expected, do you think Laura 
could have been winning? 

Students:  Yes. 

Mrs T:  Because she’s been waiting for a 10 and it hasn’t happened although I would have 
predicted, or I would have expected that we would have had more 10’s. So would her 
choosing two 10’s have been a reasonable sort of assumption to make?  Do you think 
that would have been a good idea when she was making her card? 

Students:  Yes. 

In this instance, these students have determined that ten is one of the highest frequency 
outcomes. However, in playing the game, ten has not been drawn as often as expected. The 
students recognise that is brought about through chance and accept that Laura has still 
designed a card that has a good chance of winning. Context plays an important role in the 
interpretation of mathematical evidence. In this instance, we see that students are able to 
take the numbers as drawn (experimental data) and explain why it doesn’t behave as they 
predicted. According to Borasi (1992): 

Mathematical applications require not only good technical knowledge but also the ability to take 
into account the context in which one is operating, the purpose of the activity, the possibility of 
alternative solutions, and also personal values and opinions that can affect one’s decisions. 
Unfortunately, none of these elements is usually recognised as relevant to mathematical activity by 
people who have gone through traditional schooling. (p. 160) 

Conclusion 
The purpose of this research was to begin to identify some key components of 

Argument-Based Inquiry as it might take place in primary mathematics classes. Four 
components that appear essential are suggested: the addressing of a purposeful inquiry 
question; the advancing of mathematical evidence to enable a claim to be made (in the 
illustrated unit the students’ bingo cards formed the basis of their claim); the justification 
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of a claim through epistemically acceptable reasoning; and, the acknowledgement of 
context. It is suggested that these components are likely present, or a requirement, of all 
ABI in mathematics. However, at the level of the youngest children, there may not be an 
explicit acknowledgement of claim, evidence, reasoning, and context by the children. 
However, it is essential that the teacher can identify these components and guide students 
towards there development. 

Argumentation structures and practices offer the means to focus students on the need 
for quality evidence and thus encourage students to focus deeply on mathematical content. 
Much of the work with argumentation that has already occurred in mathematics is 
associated with justification of procedural choices to arrive at a correct answer, or on the 
defence of the answer itself. By contrast, mathematical ABI offers the opportunity for 
students to engage in ill-structured, ambiguous problems that have neither a defined 
solution path nor a single correct answer.  Thus, while this is only a small beginning, there 
appears to be potential for argumentation to be effective in deepening student focus on 
developing mathematical evidence and reasoning in inquiry-based learning environments.   
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The emphasis on science, technology, engineering, and mathematics (STEM) education in 
recent times could be perceived as business as usual or as an opportunity for innovation and 
change in mathematics classrooms. Either option presents challenges for mathematics 
educators who are expected to contribute to the foundations of a STEM literate community. 
A greater understanding of the implications of a STEM education for mathematics 
education is needed. This paper seeks to add to conversations about the implications of 
STEM education for the learning and teaching of mathematics. 

Ongoing calls for strengthening the nation’s skills in Science, Technology, 
Engineering, and Mathematics (STEM) (Australian Industry Group, 2013; Marginson, 
Tytler, Freeman, & Roberts, 2013) are fuelled by the imperative to foster national and 
global economic growth. For this to occur, it is acknowledged that it is necessary to 
generate more graduates who have the capacity to pursue science-based careers in the 
future (Office of the Chief Scientist [OCS], 2013). In Australia, however, it is considered 
that there is: 

…too little time on average spent teaching science in primary school; declining interest in the study 
of STEM disciplines in senior secondary school; limited growth, even decline in particular areas of 
the natural and physical sciences, in branches of engineering and information technology at tertiary 
level; and STEM skill shortages in the workforce. (Office of the Chief Scientist, 2013, p. 10) 

As a result, there have been efforts to promote STEM education and what it has to offer. 
For example, the publication, Australia’s Future: STEM Launches Stars into Orbit (OCS, 
2014), showcases a diverse range of young, high achieving scientists who have forged 
careers in STEM fields. The profiles presented give brief descriptions of each individual’s 
motivation, interest, experience at school, and pathway to the chosen career. Common to 
many of the profiles are participation in extension activities while at school, such as the 
Science, Mathematics, Physics, or Chemistry Olympiads. These are learning opportunities 
made available to students who are identified as exceptional or talented in those fields of 
study. This sort of publication serves to highlight the diversity of innovation and career 
pathways possible in Australia but does little to support teachers to enact a curriculum that 
will fulfil the expectations of “developing a scientifically literate and numerate society... 
[and] nurturing student interest in science and influencing their study and career choices” 
(OCS, 2013, p. 14) in regular mathematics classrooms. 

 

To take advantage of career opportunities in the future, individuals need to develop 21st 
century skills, which include critical thinking, team work, problem solving, creativity, 
analytic reasoning, and communication (Bowman, 2010). These are evident when 
individuals “can manage their own wellbeing, relate well to others, make informed 
decisions about their lives, become citizens who behave with ethical integrity, relate to and 
communicate across cultures, work for the common good and act with responsibility at 
local, regional and global levels” (Australian Curriculum, Assessment and Reporting 
Authority [ACARA], 2013, p. 3). These learning, literacy, and life skills are epitomised in 
the General Capabilities detailed in the Australian Curriculum, which are Numeracy, 
Literacy, Information and Communication Technology (ICT) Capability, Critical and 
Creative Thinking, Personal and Social Capability, Intercultural Understanding, and 
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Ethical Understanding. These capabilities align with the notions of literacy that apply to 
the STEM disciplines: scientific literacy, technological literacy, and engineering literacy, 
and mathematical literacy (Sneider & Purzer, 2014). However, schools vary in the extent to 
which they incorporate the development of those skills. Hence, it is worth exploring ways 
in which STEM education can be implemented effectively. 

 What is STEM?  
In its simplest form, STEM is an acronym for the four independent disciplines of 

science, technology, engineering, and mathematics, which often involve traditional 
disciplinary coursework. This view is reflected in the way in which the Australian 
Curriculum is structured with separate subject areas for each of the disciplines, with the 
exception of engineering, which is addressed implicitly in the Australian Curriculum: 
Technology and the Australian Curriculum: Science (ACARA, 2015). In the US, 
engineering is included in the Next Generation Science Standards (National Academy of 
Sciences, 2013). It is acknowledged explicitly along with Life science, Physical science, 
and Earth and space science.  

Implementing the school curriculum in subjects that are discreet areas of study limits 
students’ opportunities to develop the 21st century skills touted as being necessary to take 
advantage of career opportunities in the future (Rennie, Wallace, & Venville, 2012). 
Relabelling the subject areas and referring to them collectively through the use of the 
STEM acronym only maintains the “status quo educational practices that have 
monopolized the [education] landscape for a century” (p. 21) and does not result in 
changes to educational practices (Breiner, Johnson, Harkness, & Koehler, 2012; Sanders, 
2009). At the other extreme, Moore and Smith (2014) suggest there is the potential for 
STEM to be a “discipline” in its own right. This view is idealistic and is likely to draw 
much criticism but raises the question “Should STEM be a discipline in the Australian 
curriculum?” Sanders (2009) suggests this is not viable. One of the reasons given is 
because the demand on teachers to have sufficient content knowledge as well as 
pedagogical content knowledge across all of the four STEM disciplines and their 
integration is too great. Not achieving these demands may result in inadequate content 
knowledge in some areas, which has the potential to impact negatively on teachers’ ability 
to implement integrative pedagogical approaches in meaningful ways (Treacy & 
O’Donoghue, 2014).  

  Conceptually and by its very nature, STEM is interdisciplinary because it is 
comprised of other disciplines (Treacy & O’Donoghue, 2014). Smith and Karr-Kidwell 
(2000) conceptualise the interdisciplinary nature of STEM as “a holistic approach that 
links the [individual] disciplines so that learning becomes connected, focused, meaningful, 
and relevant to learners” (p. 24). A complementary but different holistic view is offered by 
Shaughnessy, who suggests “STEM education refers to solving problems that draw on 
concepts and procedures from mathematics and science while incorporating the teamwork 
and design methodology of engineering and using appropriate technology” (2013, p. 324). 
This view harnesses the characteristics of each of the disciplines in an interrelated manner. 

Another interrelated integrative approach, Authentic Integration, is suggested by 
Treacy and O’Donoghue (2014). Their model is underpinned by four main characteristics: 
knowledge development, synthesis and application; focused inquiry resulting in higher 
order learning; application to real-world scenarios; and rich tasks (Figure 1). This model is 
applicable to the individual STEM disciplines as well as the integrative notion of STEM. It 
focuses on the way in which each of the characteristics supports the other characteristics 
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and does not rely on the inquiry processes and ways of working that apply to particular 
disciplines. 

 
Figure 1. Authentic Integration model (Reproduced from Treacy & O’Donoghue, 2014, p. 710). 

Other notions of STEM do not rely on making connections across all four disciplines 
collectively. They suggest that making connections between/among any two or more 
STEM disciplines or between/among a STEM discipline and one or more other school 
subjects is taking an integrative approach (Sanders, 2009). This view gives teachers the 
freedom to enact STEM through the disciplines with which they are most familiar but does 
not assure all the disciplines will be addressed sufficiently (Shaughnessy, 2013). 
Regardless of the extent the disciplines are integrated, the main aim is to support student 
learning in the traditional content areas (Cardella, Purzer, & Strobel, 2014) and support 
students to connect content and concepts from the STEM disciplines to create new 
knowledge (Ostler, 2012).  

What Does an Integrative STEM Education Have to Offer? 
The integration of STEM subjects is advocated by many as it is seen as a way of 

engaging students in real-world problems, promoting recall, and enhancing knowledge 
transfer (e.g., Berry, Chalmers, & Chandra, 2012; Moore & Smith, 2014; Ostler, 2012). It 
provides ways of placing the learning of mathematics within meaningful contexts and 
promotes the use of hands-on activities that link to real world problems (Treacy & 
O’Donoghue, 2014). A potential product of an integrative STEM education is described by 
Sneider and Purzer (2014) as: 

…a person who has sufficient knowledge and skills in all four fields to participate and thrive in the 
modern society with confidence and the capacity to use, manage, and evaluate the technologies 
prevalent to everyday life, as well as the capacity to understand scientific principles and 
technological processes necessary to solve problems, develop arguments, and make decisions. (p. 9) 

It is very desirable for students to develop these capabilities, which are analogous with 
the expectations of the Australian Curriculum (ACARA, 2015). It is reported that 
integrative approaches improve students’ interest and learning in STEM (e.g., Bottge, 
Grant, Stephens, & Rueda, 2010; Moore & Smith, 2014; Moore, Stohlmann, Wang, 
Maruyama Tank, & Roehrig, 2014; Mulligan & English, 2014) yet little evidence is 
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available about the effectiveness of the varying integrative approaches. An exception is a 
study that reported on a meta-analysis of 98 studies that were identified as investigating the 
effects of integrative approaches among STEM subjects (Becker & Park, 2014). The meta-
analysis included a synthesis of the results reported for seven types of integration: E-M-S-
T, E-S-T, E-T, M-S-T, E-M, E-S, M-S, S-T. The results for the different types of 
integration varied considerably. Integrating the four disciplines, E-M-S-T, showed a large 
effect size (1.76), whilst the effect size for integrating engineering and mathematics (E-M) 
was small (0.03). Also low was the effect size for mathematics (0.23) when integrating 
mathematics, science, and technology (M-S-T). A study that integrated technology and 
science in high school had a very large effect size (2.80). Becker and Park suggest that “the 
types of integration may be the key factor that impact the effects of the integrative 
approaches among STEM subjects” (p. 31). 

Unsurprisingly, Becker and Park (2014) found the effect size for the primary years was 
greater than in the secondary and college years. The flexible school and classroom 
structures in the primary years facilitate the implementation of integrative approaches and 
according to Sanders (2009), teachers should take advantage of the unique opportunity 
offered to stimulate students’ interest in STEM as early in their education as possible.  
Becker and Park do not go on to elaborate on why the effect sizes for mathematics were 
low in the integrative STEM studies. This leaves the reasons for the low results open to 
speculation. Among other reasons, low results may be due to the lack of teacher content 
knowledge (Treacy & O’Donoghue, 2014) or due to a lack of focus on the mathematics 
(Schmidt & Houang, 2007). 

Becker and Park’s (2014) results are offered with a note of caution. They admit that the 
number of studies included in their study is considered low for a meta-analysis. The 
extensive search they undertook revealed that many studies did not report on the 
mathematics achievement of students. For example, a study of K-5 students conducted by 
Hefty (2015) describes a school program that implemented tasks that focused on the 
engineering design process. The author highlights the mathematics outcomes targeted in 
each activity, such as measurement of height and angles in the Laser Light Maze activity, 
but does not detail the specific curriculum outcomes addressed nor does he report on the 
students’ achievement according to those mathematics outcomes. Hefty reports learning 
gains in mathematics achievement that exceed the district and state averages but does not 
go as far as providing specific details about that achievement or how the results were 
determined. He also reports that “teachers notice carryover from engineering to 
mathematics lessons” (p. 427). This implies the students gain a lot from the activities but to 
be convincing that an engineering design integrative approach in STEM education is going 
to impact positively on the learning of mathematics outcomes, more evidence is required.  

What are the Implications for the Learning and Teaching of Mathematics? 
The implementation of an integrated STEM education raises many challenges for the 

teaching and learning of mathematics but “transforming the current educational paradigm 
toward a STEM education perspective” (Breiner et al., 2012, p. 3) has the potential to 
“foster the connectedness that reflects the way the world works outside of school and assist 
students to develop the knowledge and ability to deal with change and challenge in 
sensible ways” (Rennie, Wallace et al., 2012, p. 1). There does not, however, appear to be 
one teaching approach established for the implementation of STEM education (Berry et al., 
2012; Herschbach, 2011; Rennie, Venville, & Wallace, 2012) that will optimise the 
opportunities for students to develop the STEM skills proposed by Sneider and Purzer 
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(2014). The individual disciplines do, however, have dominant practices that complement 
the implementation of STEM education. Those practices include problem-based learning, 
project-based learning, scientific inquiry, and engineering design (Rennie, Venville et al., 
2012). Research has focused on these discipline practices (e.g., English, Dawes, & 
Hudson, 2013; Moore et al., 2014; Rennie, Venville et al., 2012) but noticeably absent 
from the literature is the conceptualisation of mathematics practices and concepts that have 
the potential to contribute to the understanding of other disciplines (Rennie, Venville et al., 
2012).  

Although the connectedness and applicability of mathematics to real-world contexts 
and across disciplines is fostered when integrative approaches are adopted (Berry et al., 
2012) the implementation of these approaches has the potential to disrupt the coherence of 
mathematics learning programs (Schmidt & Houang, 2007). Schmidt and Houang contend 
that coherence in the delivery of the mathematics curriculum is critical when seeking to 
improve the student achievement. Their view of coherence was determined from an 
analysis of the Third International Mathematics and Science Study conducted in 1997. 
Coherence is present when the content covered increases in complexity from simple 
mathematics and routine computational procedures with fractions, say, to deeper 
structures, such as understanding the rational number system and its properties. This 
development occurs both over time within a particular grade level as concepts and ideas 
are introduced for the first time, and then are built upon through the years as students 
progress across grades (Schmidt & Houang). This implies that both coverage of the content 
and depth of understanding are the focus of learning opportunities.    

What Does Mathematics Have to Offer STEM? 
According to Shaughnessy (2013), “the M will become silent if not given significant 

attention” (p. 324) when implementing integrative STEM education programs. The 
difficulty of improving outcomes in mathematics when implementing integrative 
approaches (Becker & Park, 2014) warrants particular consideration, especially in relation 
to the coherence and coverage of the mathematics curriculum (Schmidt & Houang, 2007). 

It is not uncommon to find in the literature reports that suggest STEM education 
learning opportunities provide the context for enhancing the development of mathematical 
skills (e.g., Alfieri, Higashi, Shoop, & Schunn, 2015; Hefty, 2015; Magiera, 2013; Smith et 
al., 2013). These examples, however, do not acknowledge the reciprocal nature of the 
relationship between mathematics and STEM. They provide examples of STEM education 
opportunities that support the development of mathematical ideas and concepts but do not 
exemplify the way in which mathematics can influence and contribute to the understanding 
of the ideas and concepts of other STEM disciplines.   

In some cases, the mathematics is incidental to the purpose of activities. For example, 
an activity that requires students to explore the characteristics of aluminium baseball bats 
to develop an understanding of the denting strength of the bats was designed to support 
students’ development of problem solving skills (Magiera, 2013). The mathematics of 
measures of centre was applied to determine the average size of aluminium crystals on the 
surface of baseball bats. In this example, the mathematics was not pivotal to the success of 
the activity but contributed to the outcomes identified. The activity did not extend to using 
or developing the proportional reasoning skills needed to understand the concept of density 
that is directly related to the strength of the bats. 

Alfieri et al. (2015) also describe a proportional reasoning activity suitable for middle 
school students where the mathematics is incidental to the STEM context. They use the 
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context of an animated robotics game, Expedition Atlantis, to provide situations where 
proportional reasoning calculations are made. For example, students calculate how many 
times the wheel of an underwater robotic device need to turn in order to move a particular 
distance. Although robotics is a common STEM context where mathematics is used to 
develop students’ understanding of how to manipulate and move machines (e.g., Allen, 
2013; Silk, Higashi, Shoop, & Schunn, 2010), in this case, the context of robotics is used to 
motivate students to make practice the mathematical procedures targeted.   

Another activity, Exploring Slope with Stairs and Steps (Smith et al., 2013), utilised 
mathematics in an instrumental way. This activity involved using rates of change to 
develop an understanding of the concepts of slope and steepness within an engineering 
context. In this case, the mathematics associated with rates of change was pivotal to the 
understanding of the construction of stairs, which also applies to other STEM contexts, 
such as road construction and the safe descent of vehicles down a hill. Another activity 
where the mathematics is instrumental to student understanding of the concepts involved in 
a STEM context is related to the sale of muffins (Baron, 2015). The author states, “Selling 
muffins introduced the students to quadratic functions” (p. 335) and described the way in 
which using functions in this context provided the opportunity to review the vocabulary of 
functions encountered previously, such as coefficient, variable, and exponent. Baron’s aim 
was to use relevant contexts to apply and model quadratic functions. What difference 
would it make if the teacher’s purpose were to use quadratics and functions to make 
decisions about selling muffins and what would be the role of the mathematics in that 
scenario? 

Silk et al. (2010) suggest that making subtle changes in the design and setup of lessons 
makes a substantive difference in what students learn. This is demonstrated in their activity 
that required students to synchronise the movements of robots when dancing. Originally, 
the activity was designed to get students “to make a dance routine that would incorporate a 
range of different moves (at different distances, angles, and speeds) and a range of 
different size robots (that varied on their wheel size and track width)” (p. 25). The project 
team expected students to generalise their understanding of proportional reasoning to solve 
the problem. They found that the majority of students used guess-and-check strategies to 
continually tweak the parameters in their programs until the robots looked synchronised 
with each other. It was not until Silk et al. made the role of the mathematics in the activity 
explicit to the students through the redesign of the activity that the students were able to 
use the mathematics purposefully and connect with the underlying general relationships 
associated with making the robots move synchronously. 

Conclusion  
Mathematics is often mentioned as underpinning the other disciplines of STEM 

because it serves as a language for science, engineering, and technology (Schmidt & 
Houang, 2007). Is that sufficient acknowledgement of the potential role of mathematics in 
STEM learning contexts? Stating that mathematics underpins the other disciplines sets 
mathematics up in a supporting role in integrative STEM education contexts. Ideally, 
mathematics should be given more standing and be considered an enabler or imperative for 
the advancement of understanding of concepts in other disciplines. Silk and his colleagues 
suggest, “One way to do this is to repeatedly foreground” the desired [mathematical] 
content while temporarily pushing other concepts into the background” (p. 23). A shift in 
focus from the incidental nature of mathematics in learning activities to a focus on the 
instrumental nature of the mathematics may be one way of making the mathematics more 
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explicit within STEM learning contexts and activities. Research is required to determine 
which integrative approaches put mathematics most effectively to the forefront of learning 
experiences.   

In Australia, the push for improved STEM education outcomes comes at a time when 
there is no integrative STEM curriculum to support its implementation into learning 
programs. Fortunately, the Australian Curriculum also includes the General Capabilities, 
which embody the learning, literacy, and life skills considered to be 21st century skills 
(ACARA, 2015; Bowman, 2010). Incorporating explicit teaching of the capabilities within 
integrative STEM contexts has the potential to enhance further the outcomes from learning 
activities. Although structured in disciplines, integration of the Australian Curriculum is 
possible by addressing the General Capabilities in learning activities across the curriculum 
together with additional STEM content outcomes. Such an approach is achievable within 
the school and classroom structures that are dominant in Australia. How this impacts on 
student learning of the key concepts in mathematics and the other disciplines warrants 
further research.  
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This paper is a reflective critique of practice within the field of mathematics education in 

relation to the challenges faced by non-first-language-English speaking academics when 
they attempt to publish in English language research outlets. Data for this study are drawn 

from communications between a German and an Australian academic as the Australian 

assisted the German in negotiating aspects of translation bound by syntactic, semiotic, 

cultural, and colloquial language considerations. The paper concludes by raising questions 

about the issue of the use of English as a universal language for the dissemination of new 

knowledge and offers possible solutions to the problem. 

Introduction 

There is general acknowledgement that the use of “home” languages in multilingual 

mathematics classrooms, where children are not yet fully fluent in the language utilised to 

conduct instruction, limits students’ access to, and acquisition of, mathematical concepts 

(Setati & Planas, 2012). Further, it has been argued that language policies and dominant 

language ideologies affect students’ learning of mathematics through the dynamics of 

power in bilingual classrooms, as well as the bilingual students’ views of access to 

mathematics (Civil & Planas, 2012). Despite the recognition that the use of “home” 

languages limits non-multilingual students access to mathematical ideas and their 

participation in learning  communities defined by mathematics classrooms, there appears to 

be no similar recognition that the access to new knowledge in mathematics education and 

participation in forums in which the acceptance of these new ideas are debated is more 

difficult for non-English-first-language mathematics educators because of the dominance 

of English language journals in this field. A similar issue was raised in the Education 

Research forum hosted by the web based research social network Researchgate where a 

participant, Professor Attila Szabo of Eötvös Loránd University, asked the question: 

Does language-mastery barrier trim scientific knowledge and the chance of publication? What is 

your experience in your field?  

(https://www.researchgate.net/post/Does_languagemastery_barrier_trim_scientific_knowledge_and

_the_chance_of_publication_What_is_your_experience_in_your_field, 19 Oct 2013). 

Aligned with this question is an issue identified by McKay (2002). 

The increasing number of bilingual speakers of English means that many speakers of English will 
be using English alongside one or more other languages that they speak, and hence their uses of 

English may be more specific and limited than monolingual speakers of English ... [thus there is] 

need to avoid comparing bilingual speakers of English to native speakers, and rather to recognise 

the many strengths of bilingual users of English who have a rich linguistic repertoire to serve their 

communication needs. (p. 139) 

This paper is a reflective critique of practice within the field of mathematics education 

in relation to the question posed by Professor Szabo and the issue raised by McKay (2002). 

The paper draws on the specific experiences of a German academic (Rudolf), while 

developing a publication for an English language research outlet, and an Australian 

researcher (Vince) who provided a language check of the paper. Data for this study are 
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drawn from communications between the German and Australian academics as the 

Australian assisted the German in negotiating aspects of translation bound by syntactic, 

semiotic, cultural, and colloquial language considerations. This situation gave rise to the 

following research question: 

What challenges must non-first-language-English mathematics educators negotiate in 

order to be published in internationally recognised English language research outlets? 

In addressing this question we will: (1) provide a review of relevant literature; (2) 

examine the countries of origin of internationally recognised research publication outlets; 

(3) analyse exchanges between the two academics related to initial text proposed by the 

German academic and the suggested edits offered by the Australian academic in order to 

categorise the types and forms of language divergence, inconsistency and opaqueness 

between German and Australian English; and (4) offer suggestions that will support 

effective research publication collaborations between English and non-English-first-

language researchers in the future. 

Literature Review 

While a considerable corpus of research literature exists on teaching and learning 

mathematics in classrooms with students and teachers who do not have English as first 

language, there is a paucity of research, or even commentary, on the challenges faced by 

non-first-language-English-speaking academics when attempting to engage with the 

broader community of mathematics educators. For example, a search of MERGA 

publications including, Mathematics Education Research Journal, Mathematics Teacher 
Education and Development, and the Proceedings of the annual conference of MERGA, 

using ESL as a keyword yields only seven results, all of which are concerned with the 

teaching and learning of students in mathematics classrooms (e.g., Miller & Warren, 

2014). Similarly, a search of relevant literature from within the US context reveals research 

related to mathematics and English Language Learners (ELL) but none related to the 

challenges faced by non-first-language-English academics. Consensus on what is known 

about mathematics ELLs is that mastery of content, the principles of literacy, and language 

acquisition are tied together—content, literacy, and language acquisition go hand-in-hand 

(e.g., Roberson & Summerlin, 2005). It is unclear how such findings would translate to the 

challenges faced by non-first-language-English academics. 

By expanding the search to include non-research publications, a number of handbooks 

developed specifically for the purpose of providing advice to non-first-language-English 

speakers (e.g., Glasman-Deal 2009; Burnham & Hutson, 2007) as well as other material 

available on the internet (e.g. the webpage from Nature Education, 2014) were found.  

Taking Science research writing for non-native speakers of English: A guide for non-
native speakers of English (Glasman-Deal 2009) as an example, advice is specific to 

particular publication types, such as journal articles, and offers only a single structure for 

writing empirical articles, that is: Introduction; Methodology; Results; Discussion; and 

Conclusion. There is no advice on how to structure and write other forms of research 

publications, such as theoretical or discussion. Within this standardised structure for a 

research paper, the handbook offers suggestions for appropriate vocabulary and use of 

grammar as these related to different sections of an article. For example, advice is provided 

about grammar and writing skills within the Discussion/Conclusion section (see pp. 154-

159), where there is a discussion on the use of modal verbs like “should, must, can, ought 

to, may, could”.  
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A different approach is offered in Scientific English as a foreign language (Burnham & 

Hutson, 2007) which offers specific advice on how to avoid predictable mistakes in 

English. Based on the experience of consulting with non-English speaking colleagues, the 

authors offer 59 comments on mistakes to avoid, for example, common mistakes 

associated with the use of commas, colons and semicolons, and dashes” (see pp. 34-38). 

Other examples include discussion of pairs of words with overlapping semantics, such as: 

locate and localise; borrow and loan; teach and learn; make and do; and, experience and 

experiment (see pp. 7-14). 

Other advice is available from online collaborative learning spaces such as Scitable by 

Nature Education (2014, http://www.nature.com/scitable) or Unilearning (n.d., 

http://unilearning.uow.edu.au/academic/2e.html) where self-education modules such as 

English communication for scientists (Nature Education, 2014) are available. This 

particular module identifies obvious potential difficulties related to spelling and grammar 

and also flags challenges associated with: (1) expressing concepts associated with a single 

word in a native language in English where the concept may not exist; (2) expressing, in a 

precise manner, the subtleties associated with concepts that are similar but not the same as 

in a native language and English; (3) clarifying the meaning of words that have similar 

forms but different meanings (so-called false friends) in native language and English; and 

(4) using two different words in English for two meanings rendered by the same word in 

the native language. 

Each of these problems, and associated advice, connects with broader questions related 

to the use of English as an international language for the communication of ideas and new 

knowledge among scientific communities. The issue is a complex one and a matter of 

debate among academics from non-English speaking countries. Ammon (2001), for 

example, poses the question of whether English should be accepted as the international 

language of science or if it should be a general means of communication within scientific 

communication. He argues that accepting English as the universal language is problematic 

as there are doubts about whether English can mirror the subtleties of research originally 

completed in other languages. It has also been noted (e.g., Baldauf, 2001) there are even 

differences between the way English speakers from different countries use their language, 

contributing to a lack of clarity in some scientific reports. 

The issue of a universal language of science is taken further by McKay (2002) in 

arguing: 

...the teaching and learning of an international language must be based on an entirely different set of 

assumptions than the teaching and learning of any other second or foreign language.  

As the assumptions McKay refers to are rarely raised when non-first-language-English 

speakers attempt to publish in English language publications it is likely, native English 

speakers underestimate the size of the challenge faced by colleagues from non-English 

speaking countries. 

In summary, the review of literature indicated that while there is general advice 

available to non-first-language-English-speaking academics on publishing in English 

language journals, there appears to be no specific advice to those academics whose native 

tongue is not English about publishing in English language journals devoted to 

mathematics education. It was also noted that while publication advice is available in 

handbooks and online forums with a focus on assisting non-first-language-English 

academics in publishing their work, there appears to be limited, at best, research literature 

available on this topic. 
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English Language Journals in Mathematics Education  

In attempting to gain a sense of the proportion of internationally recognised English 

language mathematics education journals in relation to non-English language journals, we 

conducted a search using the SCImago journal rankings. SCImago is an internationally 

recognised source of journal metrics. Only journals that achieve a benchmark metric are 

listed. While other agencies exist that also provide metrics data on journals, space in this 

paper does not permit a comparison between different journal rankings. SCImago has been 

selected, in this instance, because of its currently unsurpassed capture of journals in the 

social sciences – including mathematics education.  

The search was initiated by using Mathematics (miscellaneous) as key words, which 

yielded 386 results. From the resulting list of journals, we followed-up with a manual 

search of the journals known to publish articles related to Mathematics Education / 

Didactics of Mathematics. This resulted in the 20 journals listed in Table 1. 

Table 1 

Ranked journal listed in SCImago under mathematics education 

Title Country 

Educational Studies in Mathematics Netherlands 

For the Learning of Mathematics Canada 

International Journal of Computational and Mathematical 
Sciences France 

International Journal of Mathematical Education in Science and 
Technology United Kingdom 

International Journal of Mathematics and Mathematical Sciences United States 

International Journal of Science and Mathematics Education Netherlands 

Journal for Research in Mathematics Education United States 

Journal für Mathematik-Didaktik Germany 

Journal of Mathematics Teacher Education Netherlands 

Mathematical Intelligencer United States 

Mathematics Education Research Journal Netherlands 

Mathematische Semesterberichte Germany 

Notices of the American Mathematical Society United States 

PRIMUS United Kingdom 

Pythagoras South Africa 

Research in Mathematics Education United States 

Revista Matematica Iberoamericana Spain 

Teaching Mathematics and its Applications United Kingdom 

Technology, Knowledge and Learning United States 

ZDM - International Journal on Mathematics Education Germany 

Examination of this list shows that the country of origin of these journals stands at 11 

English language countries (55%), 4 journals residing in the Netherlands (25%), 3 in 

Germany (15%), and one each in Spain, and France (5% each). Further scrutiny reveals 

that the 4 journals listed as emanating from the Netherlands are English language journals 
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(e.g., MERJ). One Journal (ZDM), from Germany, only publishes English texts. 

Consequently, 16 out of the 20 listed journals are English language (80%) – demonstrating 

a dominance of English language journals in the field of mathematics education. 

Approach and Analysis 

In addressing the intent of this paper, we describe and analyse, in the form of a 

heteroglossic discourse (Bakhtin, 1981), correspondence between a non-first-language-

English academic, Rudolf (the second author of this paper), who had been invited to be the 

respondent to a keynote address at a prestigious international mathematics education 

conference, and Vince, a first-language-English mathematics educator (the first author of 

this paper) who provided Rudolf with advice on a draft of his response. Rudolf’s response 

was required to be written in English and published in the conference proceedings as a 

complement to the paper written by the keynote speaker. Rudolf contacted Vince for 

advice on his use of English language within the paper. 

 In outlining and describing this collaboration, we present the original text provided by 

Rudolf to Vince, Vince’s suggested edits to this text, commentary from both Rudolf and 

Vince related to the nature of the suggested edits, and the fashion in which edits were 

received. Rudolf initiated the conversation as he was seeking:  

A language check from Vince to be sure that my text was correct English, understandable in terms 

of the mathematics education arguments, and respecting the terminology in use in this scientific 

community. 

While Vince was very happy to assist he was concerned about exerting too much 

influence on the text: 

I was, of course, more than willing to assist a colleague. After a long association with Rudolf, I was 

aware of the difficulties non-first-language-English speakers face in having their work published in 

prestigious English language outlets. But the request also brought with it challenges for me, as there 

was a dilemma associated with changing Rudolf’s text so that it was not just understandable but also 

acceptable within the conventions of native English, while at the same time also preserving the 

author’s voice. 

  Initial Texts and Edits 

In this section, categories that represent the types of advice Vince provided to Rudolf 

are illustrated via excerpts from the text sent to Vince for comment. Each excerpt is 

accompanied by comments, from both Rudolf and Vince, which are intended to exemplify 

the type of editorial suggestions made by Vince and Rudolf’s responses. 

Words that are Not Suited to the Context or are Unfamiliar in English 
Original text from Rudolf with comments from Vince  

This definition transports the three categories of competencies (as defined in a longer, 

interdisciplinary project sponsored by OECD)...  

 

 

Vince: The use of the word transports did not appear to make sense in the context within it was 
used. Thus I made suggestions to Rudolf about alternatives. 

Rudolf: As a German, I was not aware of “transport” being a word not used in this context. 

Consequently, I had no problem in changing to Vince's first suggestion “outlines”, which perfectly 

met my intentions. 

Comment [Vince]: Do you mean “outlines or “describes” or 

“communicates”?  
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Later, Rudolf used a word that was unfamiliar to Vince.  

Looking into Comparative International Surveys (“CIS”), this difference will prove helpful to better 

understand what CISs do. Following the competence approach of sensu Chomsky, CISs only gather 

information on performance. 

 
 

Vince: I was simply unfamiliar with the word sensu. I was aware that it is a Latin word used in 

some scientific disciplines but I did not know if this was a term in common usage in European 

education research literature or a term drawn from Rudolf’s home tongue. Thus, I asked if it was the 

right word rather than assuming it was incorrect and offering suggestions. 

Rudolf: Checking the word sensu in English dictionaries, I had to realise that it is not a word 

commonly used in English (even if I was sure I had read it in an English text). So I changed this 
expression into “The competencies (in the sense of Chomsky and his followers) ...” 

A direct translation from a native tongue can seem out of place when viewed by a first-

language-English speaker. The challenge associated with this type of choice of words is 

consistent with the mistakes in English language usage identified by Burnham and Hutson 

(2007), who provide advice of the selection of words with overlapping semiotics. 

Formal Versus Informal Expressions and Literal Translations of Words 
At times, Rudolf’s translations took the form of informal expressions when the 

expectation is that formal language is used in academic papers. There were also examples 

of literal translations that seemed awkward to a native English speaker. 

Original text (Rudolf): In xxx’s plenary, I do like two messages which I want to highlight and 

bolster up: 

Edited text (Vince): In xxx’s plenary, I would like to support two messages, in particular, which I 

want to highlight and reinforce. 

Vince: Rudolf used I do like – an informal expression in English. I made a suggestion I thought 

would captured the sense of the original wording, while shifting the expression towards a more 

formal form. I was, however, concerned about altering the original meaning. Also, bolster up 

appears to be a literal translation of a word Rudolf thought of in German when writing this sentence. 
I thought the word reinforce would be less jarring to a native English speaker’s ear. 

Rudolf: Here, I simply trusted my Australian colleague, who must have a better feeling / knowledge 

on which words to use. 

While it is no surprise that the use of colloquial language in a native tongue would 

creep into a translation, we did not find and specific advice in the literature. There was, 

however, advice to be found on the internet (e.g., Unilearning, n.d.). 

Use of Punctuation 
Rudolf’s use of punctuation was different to that commonly seen in English. In the text 

below, the use of colons attracted Vince’s attention. 

Original text (Rudolf): The first one is a repetition of this year’s conference theme: teaching and 

learning mathematics have to be discussed in a lifelong perspective, or: mathematics education is an 

issue “across the life span”. 

Edited text (Vince): The first one is a repetition of this year’s conference theme, which the teaching 

and learning of mathematics must be discussed from a lifelong perspective or that mathematics 

education is an issue “across the life span”. 

Comment [Vince]: Are you sure of this word? 
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Vince: I noticed that Rudolf was using a colon to introduce a pause into his text. I was aware that 

colons can be used to indicate a long pause is needed in reading a text, but colons are most 

commonly used in English to mark the beginning of a list, or to mark the beginning of a quote (as in 

this paragraph). I made a suggestion on how to rewrite the text so that colons were not necessary. 

Rudolf: I know that I have a personal over-use of colons. So I simply followed my colleague's 

advice – not realising that this is a more general issue. 

That punctuation mistakes are a challenge for non-first-language-English authors has 

been identified by Glasman-Deal (2009) and Burnham & Hutson (2007). Again it is no 

surprise that the conventions of punctuation usage differ across cultures of mathematics 

education. It is a difficult problem to alleviate as authors, essentially, must unlearn the 

grammatical conventions of their native tongues in order to write coherently in English. 

Words with Different Meanings in their Native Educational contexts 
Original text (Rudolf):  

The same issue is relevant for a researcher in Didactics of Mathematics.  

Vince: The meaning of the word didactics, in English, is often associated with direct teaching 

methods. In Europe it has a broader meaning including considerations of content knowledge and 

pedagogy. While I noted the use of the word, which I might have edited if the paper was for an 

Australian publication, I left the text alone as I knew it would be understood in the context in which 

it was to be presented.  

Rudolf: Vince was correct in noting that didactics carries a meaning different in my research 
community from the use in an Australian and English research tradition. In France (where it is 

Didactique), Germany and Scandinavia, Didactics of Mathematics is the name of the scientific 

discipline analysing the teaching and learning Mathematics (to make a long story short). It does not 

have the negative connotation as it has in the Anglo-Saxon tradition.  

The same or similar words with different meanings in different languages, as 

exemplified in the above exchange, has been identified as a frequently encountered 

difficulty by Burnham & Hutson (2007, e.g. see no. 7). Such words are known as false 
friends in German and other languages (for specific examples and a comment see Nature 

Education, 2014). In linguistic terms, even if words seem to be the same (in terms of 

vocabulary), they may be quite different in terms of their related semantic field. 

Conclusion 

The excerpts from the initial text, the editing suggestions, and the author's reactions 

have provided some examples of the challenges which non-first-language-English authors 

from Mathematics Education / Didactics of Mathematics may face when publishing in 

English language research outlets. While space has prohibited a comprehensive list of such 

challenges, other issues exist, for example, the use of the original (in our case German) 

grammar while writing in English. These challenges potentially limit the full participation 

of non-first-language-English academics in the international mathematics education 

community.  

A number of initiatives are needed to address this situation. The very least of which is 

that journal editors of English language journals need to be sensitive to this challenge. But 

what additional help could be provided in order to meet this challenge? Is it possible to 

identify a committed group of English language colleagues willing to help non-first-

language-English authors with writing scientific papers? We believe this to be particularly 

important for early career researchers. Could the solution outlined and described in this 

paper become part of the institutionalised support structure of English language journals? 
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While this might be a plausible solution, it is only possible once English language 

colleagues are aware of the linguistic and cultural differences faced by non-first-language-

English academics, and consequently themselves.   

Our discussion has drawn attention to the problems non-first-language-English authors 

face when attempting to publish in English language research outlets, however, this issue is 

symptomatic of the situation in which English has become the universal language of 

science. As identified by McKay (2002), these challenges are far greater than simply 

learning English as a second language and then conducting a translation from their native 

tongue into English. Through the preceding discussion, we have attempted to raise the 

sensitivity of colleagues, in the mathematics education community, to this issue while, at 

the same time, offering one possible solution through the way in which this paper has been 

generated. Further systematic research is required, however, to find the best possible 

solutions. 
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Let’s Count is an early mathematics program that has been designed by The Smith Family 

and the authors to assist educators in early childhood contexts in socially disadvantaged 

areas of Australia to work in partnership with parents and other family members to promote 

positive mathematical experiences for young children (3-5 years). A longitudinal evaluation 

of Let’s Count was undertaken in 2012-2014 involving 337 children in two treatment 

groups and 125 children in a comparison group. This paper shares preliminary results from 

the evaluation. Overall the findings demonstrate that Let’s Count was effective. 

Introduction 

Children’s dispositions towards learning mathematics and their formal mathematics 

knowledge vary considerably when they begin school, partly because of a diversity of 

experiences and opportunities to explore mathematical contexts and ideas prior to school. 

There is a wide variation in how well young children will be positioned to benefit from 

mathematics teaching when they begin school. Many children living in socially 

disadvantaged communities will be vulnerable. This raises concern about how families, 

educators, and communities can best promote mathematics learning in early childhood so 

that all children benefit; and about how to support those who are less favourably positioned 

than others when beginning school. 

The Smith Family (2013), an Australian children’s charity, commissioned Let’s Count, 
an initiative aimed at promoting positive mathematical experiences for young children (3- 

5 years) in ways that position them to learn mathematics successfully when they start 

school. This paper reports some initial findings from the Let’s Count longitudinal 

evaluation which has been conducted by the authors. It examines whether participation in 

Let’s Count is associated with increases in children’s performance on mathematics tasks, 

and explores the implications of the findings for the children’s transition to school. The 

key research questions investigated were:  

1. For which mathematics tasks was participation in Let’s Count associated with 

increased performance?  

2. What was the nature of the mathematics underpinning the tasks for which there was 

a difference? 

Disadvantaged Communities and Mathematics Learning  

When communities are designated by governments as disadvantaged, there can be 

expectations that, on average, children will not perform as well academically as children 

from more advantaged communities (Caro, 2009). This expectation extends to pre-school 

children (Carmichael, McDonald, & McFarland-Piazza, 2013; Rimm-Kaufman, Pianta, 

Cox, & Bradley, 2003). Carmichael et al. (2013) concluded that “the socio-economic status 

of the community in which the family resides was the strongest home microsystem 
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predictor of numeracy performance, explaining 10.5% of the variance in the home-

community microsystem model”. (p. 16) 

In contrast, there is also evidence that many young children begin school as capable 

mathematicians who already surpass many of the first year expectations of mandated 

mathematics curricula or textbooks (Bobis, 2002; Clarke, Clarke, & Cheeseman, 2006; 

Ginsburg & Seo, 2000; Gould, 2012; Hunting et al., 2012). For example, Gould (2012) 

concludes from his study of the results of the mandated Best Start assessment in New 

South Wales (NSW Department of Education and Communities, 2013) that the expectation 

in the Australian Curriculum – Mathematics (ACARA, 2013) that students can make 

connections between the number names, numerals and quantities up to 10 by the end of the 

first year at school “would be a low expectation for at least half of the students in NSW 

public schools” (p. 109). Even in disadvantaged communities (Ginsburg & Seo, 2000) and 

rural and regional communities (Hunting et al., 2012), many children show that they are 

powerful mathematicians before they start school. The examination of children’s 

knowledge presented in this paper will consider whether this is also true for children who 

participated in Let’s Count. 

Let’s Count 
Let’s Count is an early childhood mathematics initiative commissioned by The Smith 

Family (an Australian children’s charity) to promote positive mathematical experiences for 

young children (3-5 years). The focus of Let’s Count is building partnerships between early 

childhood educators and families who live in disadvantaged communities so that 

opportunities are cultivated for children to engage with the mathematics encountered as 

part of their everyday lives, talk about it, document it, and explore it in ways that are fun 

and relevant to them. Such an approach is designed to enable children to learn powerful 

mathematical ideas in ways that develop positive dispositions to learning and mathematical 

knowledge and skills. Let’s Count was piloted in 2011 in five socio-economically 

disadvantaged communities spread across Australia. In 2013-2014, The Smith Family 

delivered a revised Let’s Count program in additional disadvantaged sites in 2013 and 

2014 (Gervasoni & Perry, 2013).  

Let’s Count involves two professional learning modules for early childhood educators: 

(1) Noticing and exploring everyday opportunities for mathematics; and (2) Celebrating 

mathematics. Between modules, the educators meet with families to discuss ways that they 

can encourage children to notice, explore and discuss the mathematics that they encounter 

in everyday situations, including through games, stories and songs.  

One method for evaluating the effectiveness of Let’s Count was to measure 

participating children’s mathematical growth across their preschool year and contrast this 

with a comparison group of children whose families had not participated in Let’s Count. 
This comparison group was from the same economically disadvantaged communities and 

provided baseline data in 2012 prior to the introduction of Let’s Count in 2013-2014. 

Method 

The Mathematics Assessment Interview (MAI) (Gervasoni et al., 2011) is used 

extensively throughout Australia to measure the mathematical knowledge of children when 

they begin school and throughout schooling and was used in the Let’s Count longitudinal 

evaluation. The MAI is a task-based assessment interview, formerly known as the Early 
Numeracy Interview (Clarke et al., 2002), the development of which has been widely 
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reported (e.g., Bobis et al., 2005). The tasks in the MAI are designed to correspond to a 

research-based learning trajectory in nine mathematics domains: Counting, Place Value, 

Addition and Subtraction Strategies, Multiplication and Division Strategies, Time, Length 

and Mass Measurement, Properties of Shape, and Space Visualisation (Clarke et al., 2002).  

The interview includes a Foundation Section for school beginners, or any students who 

have difficulty counting a collection of 20 objects. This Foundation Section was the 

starting point for assessing the pre-school children in the Lets Count longitudinal 

evaluation. Children were assessed in the domains of Counting, Place Value, Addition and 

Subtraction Strategies, Multiplication and Division Strategies, Time and Length 

Measurement, Properties of Shape, and Space Visualisation. Interview stress on the 

children is reduced through scripted instructions that the interviewer only continues with 

the next task in any domain (e.g., Place Value) for as long as the child is successful. The 

interview was conducted by specifically trained interviewers, and independently coded to 

obtain the data examined in this paper.  

Participants 
The participants in the Let’s Count longitudinal evaluation included three groups of 

children and their parents/caregivers and pre-school educators. The children are the key 

focus of this paper. Three groups of children including a Comparison Group of 125 

children who were assessed in December 2012 and eligible to start school in 2013, and the 

2013 and 2014 Let’s Count groups. The comparison group children attended 10 low SES 

Early Childhood centres in regional Victoria (5) and New South Wales (5).  

The 2013 Let’s Count Group comprised 142 children eligible to start school in 2014, 

whose educators and families were going to participate in Let’s Count during 2013. These 

children were assessed using the MAI in March and November 2013. Of the 142 children 

assessed in March, 117 were assessed in November. These children came from the same 10 

Early Childhood centres as the 2012 Comparison Group. 

The 2014 Let’s Count Group comprised 195 children eligible to start school in 2015, 

whose educators and families were going to participate in Let’s Count during 2014. They 

were assessed in March and December 2014 using the MAI. Of the 195 children assessed 

in March, 172 were assessed in December. These children came from 17 low SES Early 

Childhood centres in regional Victoria (6), regional NSW (8), and metropolitan Perth, 

Western Australia (3). 

Assessment of Young Children’s Mathematics Knowledge Using the MAI 
The children were assessed by a team of interviewers who were all familiar with the 

assessment instruments and with working with young children. All children’s responses to 

the MAI tasks were recorded on a detailed record sheet completed by the interviewers. The 

record sheets were then analysed by independent coders, with all responses entered into an 

SPSS database. The responses for each task were coded as correct or incorrect, and where 

appropriate, children’s strategies for solving the tasks were also coded. These data were 

further analysed to calculate the percentage of children in each cohort who were successful 

with each task and the percentage of students using particular strategies to solve the tasks. 

The performance of the Let’s Count children were compared within groups and with the 

Comparison Group to determine whether any differences between the performances of 

groups was statistically significant. This paper focuses on the results of these comparisons 

for the whole number tasks. 
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Results 

The analyses presented in this paper focuses on whether participation in Let’s Count 
was associated with improved performance in the Whole Number and Foundation Detour 

aspects of the Mathematics Assessment Interview. Table 1 shows the results for tasks 

involving small sets for the children in the 2012 Comparison Group and for the 2013 and 

2014 Let’s Count Groups. Of importance for the analysis was identifying any tasks for 

which there was a significant difference in performance associated with participation in 

Let’s Count.  
Table 1 

Percentage Success on Tasks with Small Sets 
Tasks 

 

 

 

    

Significance: 

Comparison  

(Dec, 2012) to  

(Dec, 2013)  

(χ2 , p) 

Significance: 

Comparison  

(Dec, 2012) to 

(Dec, 2014)  

(χ2 , p) 

Com

p 

Dec 

2012   

(n=1

25) 

LC 

Dec 2013   

(n=117) 

LC 

Dec 2014 

(n=172) 

Tasks with Small Sets      

Count a collection of 4 

teddies 

NS NS 95 96 97 

Identify one of two 

groups as "more" 

NS NS 90 92 87 

Make a set of 5 teddies 

when asked 

7.043, p<0.01 10.735, p<0.01 77 90 91 

Conserve 5 when 

rearranged by child 

NS 

 

6.748, p<0.01 79 88 90 

Make collection of 7 

(when shown number 7) 

11.016, p<0.01 23.852, p<0.01 63 84  

(n=92) 

89 

(n=135) 

Knows one less than 7 

when 1 teddy removed 

12.018, p<0.01 

12.018, p<0.01 

24.804, p<0.01 

 

24.804, p<0.01 

61 82  

(n=85) 

88 

(n=131) 

Knows one less than 7 

without recounting 

25 40  

(n=85) 

33 

(n=131) 

One to one 
Correspondence  

     

Know 5 straws needed to 

put 1 straw in each of 5 

cups  

NS NS 88 87 95 

The results in Table 1 suggest that most children, whether or not they participated in 

Let’s Count, were able to accurately count small collections, identify which of two groups 

was more and demonstrate one to one correspondence. These are all important ideas 

associated with Level 1 in the Australian Curriculum. Let’s Count made a positive 

difference to children’s ability to accurately make a set of 5 and 7 items and to work out 

how many teddies remained when one teddy was removed from the set of 7 teddies. Thus 

it appears that Let’s Count was associated with children’s increased abilities to produce 

small collections (as opposed to count collections that someone else produced) and to 

problem solve with these collections.  
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The ability to recognise and produce repeating patterns has been noted as an important 

aspect of young children’s algebraic reasoning (Papic, Mulligan, & Mitchelmore, 2011). 

The next set of results report on this aspect of mathematics. The results in Table 2 show 

that almost all children can name the colours in a pattern prior to beginning school. 

However, participation in Let’s Count was positively associated with increases in 

children’s ability to both match and continue patterns. 

Table 2 

Percentage Success in Pattern Tasks 
Tasks 

 

 

  

Significance: 

Comparison  

(Dec, 2012) to  

(Dec, 2013)  

(χ2 , p) 

Significance: 

Comparison  

(Dec, 2012) to  

(Dec, 2014)  

(χ2 , p) 

Comp 

Dec 2012   

(n=125) 

LC 

Dec 2013   

(n=117) 

LC 

Dec 2014 

(n=172) 

Pattern Tasks      
Name colours in 

pattern  

NS NS 98 99 96 

Match pattern 5.623, p<0.05 8.824, p<0.01 72 85 86 

Continue pattern 5.102, p<0.05 14.765, p<0.01 34 48 56 

Explain pattern NS 8.464, p<0.01 34 42 51 

The tasks in Table 3 involve rote counting, counting collections of 20 items, and 

ordering numerals. The results show that participation in Let’s Count was not associated 

with improvements in children’s ability to count to 10 or order numerals from 1-9. 

Participation was associated with improvements in children accurately counting at least 20 

items and in ordering numerals from 0-9. These are certainly the more cognitively 

challenging tasks in Table 3.  

Table 3 

Percentage Success with Counting and Ordering Numerals 
Tasks Significance: 

Comparison  

(Dec, 2012) to  

(Dec, 2013)  

(χ2 , p) 

Significance: 

Comparison  

(Dec, 2012) to  

(Dec, 2014)  

(χ2 , p) 

LC 

Comp 

Dec 

2012   

(n=125) 

LC 

Dec 2013   

(n=117) 

LC 

Dec 

2014 

(n=172) 

Counting Tasks      

Rote count to 10 NS NS 87 93 95 

Rote count to 20  NS 6.117, p<0.05 45 55 59 

Count a collection of at 

least 20 

8.079, p<0.05 

 

8.079, p<0.05 

 

13.165, p<0.01 

  

13.165, p<0.01 

 

37 55 58 

Count a collection of at 

least 20 & when one 

item is removed knows 

total without recounting  

8 16 11 

Ordering Numbers 
Tasks 

     

Order numeral cards 1-9  NS NS 48 60 54 

Order numeral cards 0-9  10.354, p<0.01 5.924, p<0.05 31 52 45 

257



The final cluster of tasks involves calculations (see Table 4). Children use small plastic 

teddies to model the calculation context. The first two tasks involve adding two groups of 

teddies. The third task requires children to place two teddies in each of 4 cars and then 

work out the total number or teddies. This task can be solved using multiplicative or 

additive reasoning, but the strategy used has not been distinguished here. 

Table 4 

Percentage Success on Calculation Tasks Involving Materials (Teddies) 
Tasks 

 

Significance: 

Comparison  

(Dec, 2012) 

to  

(Dec, 2013)  

(χ2 , p) 

Significance: 

Comparison  

(Dec, 2012) 

to  

(Dec, 2014)  

(χ2 , p) 

Comp 

Dec 2012 

(n=125) 

LC 

Dec 

2013 

(n=117) 

LC 

Dec 

2014 

(n=172) 

 

Calculation Tasks      

Adds 5+3 with materials NS 17.081, 

p<0.01 

49 63 72 

Adds 9+4 with materials 9.664, 

p<0.01 

 

7.627, 

p<0.05 

25 42 40 

Calculates total for 2 

teddies in 4 cars 

NS 

 

12.005, 

p<0.01 

58 64 76 

The results presented in Table 4 demonstrate that participation in Let’s Count was 

associated with more successful performance on these calculation tasks, although this was 

more often significant for the 2014 group.  

Discussion and Conclusion 

Examination of the data demonstrates that participation in Let’s Count was associated 

with statistically significant differences in young children’s performance on a diverse 

range of mathematics tasks. What distinguished these tasks was the higher level of 

mathematics reasoning in which the Let’s Count children engaged. For example, there 

were significant differences in the proportion of children who could produce small 

collections and problem solve with these collections when the Let’s Count cohorts were 

compared to those children who did not access Let’s Count. Producing a specified quantity 

requires more sophisticated number understanding than simply counting a collection that 

has been provided. This is demonstrated by the findings in Table 1 showing that almost all 

children in the 2012 Comparison Group and Let’s Count groups were successful in 

counting a collection of four teddies, but only 77% of the Comparison Group could make a 

set of five teddies and 63% could make a set of seven teddies. In contrast, for the 2013 and 

2014 Let’s Count children, the percentage of correct responses was significantly higher, 

with over 90% of children correctly making a set of five teddies and over 80% correctly 

making a set of seven teddies. The Let’s Count groups were also more successful with 

working out the total in a larger group of 20 items and in finding solutions for addition and 

multiplication tasks. 

The ability to see and understand patterns has a strong correlation to early algebraic 

thinking (Papic et al., 2011), which in turn “promotes structural development, relational 
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understanding and generalisation … laying the foundation for mathematical thinking 

(Papic et al., 2015, p. 221). This highlights that significance of our finding that children in 

the Let’s Count groups were more likely than the comparison group to successfully match, 

continue, and explain a pattern.  

There were some significant differences across the three groups of children in the 

counting domain, particularly in the more demanding tasks of counting to 20, recognising 

one less, and ordering numerals. The Let’s Count groups were more successful in ordering 

numerals (0-9) from smallest to largest, while performance did not differ across the Let’s 
Count cohorts and the Comparison Group when children were ordering the numerals from 

1-9. This suggests that the children participating in Let’s Count had a better understanding 

of zero. 

All three calculation tasks provided statistically significant differences between the 

Comparison Group and the Let’s Count cohorts, particularly the 2014 group. Perhaps this 

shows that greater realisation of the mathematics in young children’s worlds provides them 

with opportunities to experience such calculations. 

Overall, the findings highlight the extent of many children’s mathematics knowledge 

prior to beginning school. Sometimes, this knowledge exceeds what the children will be 

asked to learn in the first year of school (Gervasoni & Perry, 2015; Gould, 2012). While 

these data demonstrate that children’s knowledge is diverse, it is also apparent that the 

Let’s Count children’s everyday home and pre-school experiences provided them with a 

flying start as they made the transition to learning mathematics at school. Of interest in 

extending this research is investigating how successfully these children learn school 

mathematics and under what conditions the positive impact of Let’s Count persists. 
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This paper compares the counting and whole number knowledge and skills of primary 
school children in Australia and Germany at the end of Grade 1 and Grade 2. Children’s 
learning was assessed using the Early Numeracy Interview and associated Growth Point 
Framework. The findings highlight substantial differences between the two groups that vary 
for the four whole number content domains that have been investigated. These variations 
are likely due to different curriculum emphases in the two countries. 

Introduction  
Understanding the mathematical knowledge and capabilities of young children is 

essential for designing high quality curriculum and teaching methods that enable all 
children to thrive mathematically at school. Many studies demonstrate that young children 
learn and use informal mathematical ideas as part of their everyday lives, but countries 
differ in how they approach more formal whole number learning with young children. A 
key question is whether these differences matter. Selter, Walther, Wessel, and Wendt 
(2012) found that at the end of Grade 4 in Australia there were more children in the lowest 
(9.7% vs. 5.8 %) and highest mathematical competence levels (9.8% vs. 5.2%) than in 
Germany, while the mean scores in arithmetic (and overall) did not significantly differ 
between the two countries (p. 103). This suggests that while overall the outcomes of 
mathematics education in Australia and Germany may be quite similar, the experience and 
outcomes for children at the higher and lower ends of the competency spectrum may be 
quite different. In order to explore further the impact of different curriculum and teaching 
approaches on children’s whole number learning, the authors compared the development of 
7 to 8-year-old Australian and German children. The children’s whole number learning 
was measured using the task-based Early Numeracy Interview and associated Growth Point 
Framework (Clarke et al., 2002) that was first developed in Australia and then translated 
into German (Peter-Koop, Wollring, Spindeler & Grüßing, 2007). 

Gaining Insights About Young Children’s Mathematics Knowledge Using the 
Early Numeracy Interview 

It is well established that teachers need access to high quality information about their 
students’ mathematical knowledge in order to plan effective instruction and to monitor 
their progress. It is also known that formal written tests are limiting in providing this 
information about young children as they do not provide information about the strategies 
that children choose and apply when solving computation problems. For these reasons, the 
Early Numeracy Interview (Clarke et al., 2002; Peter-Koop et al., 2007) was designed 
especially for young children, is task-based and interactive, derived from extensive 
research, and enables young children’s mathematical learning to be measured in multiple 
domains. This assessment instrument was originally developed as part of the Early 
Numeracy Research Project (ENRP) (Clarke et al., 2002; Department of Education, 
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Employment and Training, 2001). The principles underpinning the construction of tasks 
and the associated mathematics Growth Point Framework were to:  

• describe the development of mathematical knowledge and understanding in the first 
three years of school in a form and language that was useful for teachers; 

• reflect the findings of relevant international and local research in mathematics (e.g., 
Fuson, 1992; Gould, 2000; Mulligan, 1998; Steffe, von Glasersfeld, Richards, & 
Cobb, 1983; Wright, Martland, & Stafford, 2000);  

• reflect, where possible, the structure of mathematics; 
• allow the mathematical knowledge of individuals and groups to be described; and 
• enable a consideration of children who may be mathematically vulnerable 

(Gervasoni & Lindenskov, 2011; Peter-Koop & Grüßing, 2014). 
The development of the interview and Growth Point Framework has been widely 

reported and is explained in detail in Clarke et al. (2002). The assessment includes four 
whole number domains (Counting, Place Value, Addition and Subtraction Strategies, and 
Multiplication and Division Strategies), three measurement domains (Time, Length, and 
Mass); and two geometry domains (Properties of Shape and Visualisation). Children’s 
growth point data for the four whole number domains are explored in this paper. 

The Australian and German Primary School Systems 
Children begin school in Australia as a whole cohort in February, after the summer 

holidays (typical ages are from 4 years 6 months – 5 years 6 months). Australian children 
are encouraged to complete 15 hours of pre-school in the year before they begin school. 
This is subsidised by the government. Formal mathematics education begins when children 
begin school. 

In Germany children begin school at 6 years as a whole cohort at the start of the school 
year in August and after the summer holidays. Most children (over 90%) attend 
kindergarten prior to school enrolment for at least one year, but more typically for 3 years 
(between the ages of 3 and 6). Kindergarten education does not follow a mathematics 
curriculum and is not compulsory. However, kindergarten curricula increasingly 
acknowledge the importance of early numeracy learning for later success in school 
mathematics and most kindergarten children would experience activities that involve 
counting, cardinal, and ordinal numbers as they evolve in every-day situations and in their 
play. In some cases there is even early support with respect to their mathematics learning 
prior to school.  

Whole Number Learning in Australian and German Mathematics Curricula 
The primary school mathematics curriculum in Australia is set by each State and 

Territory, but follows the framework provided by the Federal Government in consultation 
with the States. The Australian Curriculum: Mathematics (ACARA, 2013) focuses on the 
domains of number and algebra, geometry and measurement, and probability and statistics. 
The curriculum also incorporates four proficiencies: understanding, fluency, problem 
solving, and reasoning. There is a variety of textbooks used in primary schools, but it is 
also common for teachers not to use a textbook at all, but rather devise their own tasks or 
draw on a variety of resources, including textbooks. 

Like Australia, the German mathematics curriculum is set by each State following the 
“National Standards” (KMK, 2005); that is, the curriculum guidelines agreed to by all 
States. While there is a clear focus on arithmetic in Grades 1 and 2, other content areas 
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include space and shape, measurement, pattern and structure as well as chance and data. 
Like Australia, the National Standards and respectively the state-based curricula 
incorporate cross-content proficiencies: communicating and reasoning, problem solving 
and modelling as well as using representations. In Germany the vast majority of primary 
mathematics teachers would use one of the major textbooks available for each grade level. 

Curricula and Approaches for Teaching Whole Number Concepts and Arithmetic 
Teachers in Australia use a variety of teaching approaches for whole number concepts 

and arithmetic. One common approach is using problems connected to everyday 
experiences. It is also common for teachers to encourage the use of manipulatives and 
pictures for modelling a problem to assist children to find a solution. The use of tokens, 
blocks, and counting frames are customary. Children are encouraged to work in pairs or 
small groups to discuss their strategies and solutions. Many teachers use a framework, such 
as the ENRP Growth Point Framework, to evaluate the development of children’s whole 
number learning and arithmetic strategies, and plan experiences that enable children to 
replace counting-based arithmetic strategies with basic and derived strategies such as 
building to ten, doubles and commutativity. Initially children work with whole numbers in 
the range of 1-20 and then expand to increasingly greater number ranges. At this point 
Multi-base Arithmetic Blocks (MAB) are often used to model the problems and support 
children’s calculation strategies. The Grade 1 Australian Curriculum Mathematics 
emphasises counting to 100 by 1s, 2s, 5s and 10s, building concepts for numbers to 100, 
using partitioning to count collections to 100, and representing and solving addition and 
subtraction problems using a range of strategies including counting-on and partitioning. In 
Grade 2 the curriculum emphasises investigating number sequences from any starting 
point, building concepts for numbers to 1000, arranging collections up to 1000 in 
hundreds, tens and ones to facilitate efficient counting, solving simple addition and 
subtraction problems using a range of efficient mental and written strategies, recognising 
and representing multiplication as repeated addition, groups and arrays, and division as 
grouping into equal sets, and solving simple problems using these representations. 

The vast majority of German primary mathematics teachers use a mathematics 
textbook. In Grade 1 the focus is on whole number arithmetic with numbers up to 20. 
Counting activities, comparing sets, getting to know and learning to write the numerals 
from 0 to 9 as well as matching numerals to sets is the focus of the first 4 to 5 months of 
school. After that, firstly addition and then subtraction is introduced with the aim to help 
children understand the underlying concepts and to increasingly develop and use heuristic 
strategies based on derived-facts to replace initial counting-based arithmetic strategies. In 
most classrooms manipulatives such as the arithmetic rack would be used to model 
addition and subtraction strategies based on derived facts. In Grade 2 the focus is on 
addition and subtraction strategies with 2-digit numbers as well as the introduction of 
multiplicative concepts. This includes understanding and automatising the multiplication 
facts, as well as understanding division as the counterpart of multiplication and associated 
with distribution and sharing. Children are invited to share their computation strategies 
with a partner or small group and discuss multiple strategies for how to solve problems 
such as 57 – 29. These strategies are also discussed in class and applied to similar 
problems, emphasising advantages and disadvantages of these different strategies. With 
respect to the multiplication facts, while teachers would adopt/use different strategies to 
introduce these (either by tables or by taking a rather holistic discovery based approach), 
they would spend extensive time and effort on the automisation process.  
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Methodology 
In order to compare the whole number learning of the Australian and German children, 

Early Numeracy Interview data were compared for children who had completed Grade 1 
and Grade 2 and who were present for both interviews. This was after the second and third 
year at school for the Australians and at the end of the first and second years at school for 
the German children. The 637 Australian children attended school in the States of Victoria 
and Western Australia, attended schools in low SES communities, were present for both 
interviews, and were assessed in 2010 and 2011 after the summer holidays (at the 
beginning of the school year), as was the standard practice. It is noted that, after the 
summer holidays, it is typical for some children, who may have learnt procedurally, to 
have some lower growth points than at the end of the school year, but also for some 
children to reach higher growth points. The 334 German students attended schools in a 
region in the northwest of Germany and included children from low SES communities to 
suburbs with predominantly middle class families. The children were assessed before the 
summer holidays (at the end of Grade 1) in 2013. The Australian students were part of the 
Bridging the Numeracy Gap in Low SES and Aboriginal Communities longitudinal study 
(Gervasoni, Parish & Upton et al., 2010), and the German students were part of a 
longitudinal study on children’s mathematical development from one year prior to school 
until the end of Grade 2 (first results of this study are reported in Peter-Koop & Kollhoff, 
2015). We do not claim that the two cohorts are closely matched due to the different 
countries, cultural backgrounds, school starting ages, and curricula. Rather, the selection of 
participants is pragmatic for enabling the research questions to be investigated. 
Generalisability of results is not claimed. Importantly, children in both cohorts were about 
the same age, were assessed using the same instrument, and the results were analysed using 
the same Growth Point Framework. The research questions guiding the data analysis and 
comparison are: 

1. Does the data show relevant differences between the performances of the 
Australian and German children in the four whole number domains with respect to 
each year level and over time? 

2. Do any observed differences reflect the different curricula or approaches to 
teaching whole number concepts and arithmetic in Australia and Germany? 

Data Collection and Analysis  
The whole number tasks in the Early Numeracy Interview (ENI) take between 20-30 

minutes per child and for the studies described in this paper were administered by 
classroom teachers in Australia and by pre-service teachers in Germany, who all followed 
a detailed script. The classroom teachers and pre-service teachers were competent with 
using the interview and had participated in associated professional learning. Throughout 
the assessment interview process the interviewer continued with the next tasks in a domain 
for as long as a child was successful, according to the script. The processes for validating 
the growth points, the interview items and the comparative achievement of students are 
described in full in Clarke et al. (2002). 

A critical role for the interviewer during the assessment was to listen and observe the 
children, noting their solutions, strategies and explanations for completing each task. These 
responses were noted in detail on a record sheet and next independently coded to:  

• determine whether or not a response was correct;  
• identify the strategy used to find a solution; and  
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• identify the growth point reached by a child overall in each domain. 
The assessment data for both groups were analysed to determine children’s whole 

number growth points, according to the ENRP framework (Clarke et al., 2002). The 
growth point data was then entered into an SPSS database for analysis. Of particular 
interest for this paper is comparing the distribution of growth points for the Australian and 
German children to identify any differences. 

Results 
Figures 1 and 2 show the children’s growth point distributions for the four whole 

number domains across two years of schooling. The data was collected after the first and 
second years of school for the Germans and after the second and third year of school for 
the Australians.The children from both countries were approximately 7 years old for the 
first assessment and 8 years old for the second assessment. For the purpose of discussing 
the comparative data, and although the Australians were assessed at the start of Grade 2 
and Grade 3, we refer to these assessment periods below as ‘end’ of Grade 1 and Grade 2. 

Counting Knowledge and Skills 
Figure 1 shows that both groups clearly develop their counting knowledge from Grade 

1 to Grade 2. Although the spread of growth points is similar, the median growth point 
(GP) for the Germans at the end of Grade 1 is GP2 (count 20 items) but for the Australians 
is GP4 (skip count by 2s, 5s and 10s from zero). One year later the median growth point is 
GP4 for both groups, and both distributions are similar, except that 19% of the German 
children reached GP6. We wonder whether the German children’s increase in counting 
knowledge was influenced by the curriculum focus on automatising the multiplication facts 
that are quite frequently presented in tables that emphasise the counting sequence. 

Figure 1. Counting and place value growth point distributions for German and Australian 7 year-old and 8 
year-old children. 

In order to gain insight about the longitudinal development of children’s whole number 
knowledge, we traced children’s knowledge in the Counting Domain for the two preceding 
years (i.e., immediately before starting Grade 1 (6-year-olds) and one year prior to that (5-
year-olds; for details see Peter-Koop, Kollhoff, Gervasoni, & Parish, 2015). The growth 
point distributions for the 5 year-old children are fairly similar, with the major difference 
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being the number of children able to count 20 teddies (GP2) or count forwards and 
backwards past 109 (GP3). One year later, as six year-olds, most German children 
increased one growth point, but a large group of Australian students increased two growth 
points (typically from GP0 to GP2 or GP2 to GP4). Nearly half of the German 6 year-old 
children who were attending kindergarten were not yet able to count 20 objects. This type 
of counting activity is a significant focus of the Australian primary school curriculum, but 
was not a focus in German kindergartens. Figure 1 highlights that the ability of German 
children to count 20 items changed dramatically after they began school. 

Place Value Knowledge and Skills 
While there is a large difference between the two groups concerning the percentage of 

students who understand 2-digit numbers (GP2) at the end of Grade 1, the spread of 
knowledge in both groups is almost the same after Grade 2. It is interesting to note that the 
curriculum in Germany in Grade 2 is limited to numbers up to 100, however 45% of the 
German children can deal with 3- and 4-digit numbers without that being taught explicitly 
in school mathematics. In contrast, the curriculum in Australia focuses on numbers to 1000 
(GP3) and only 42% of children understand 3- and 4-digit numbers. This suggests that the 
German curriculum in this domain may be more suitably focused for Grade 1 and Grade 2. 

Addition and Subtraction Strategies  
The development of Australian and German children’s addition and subtraction 

strategies appears to follow a different trajectory from Grade 1. By the end of Grade 1 
nearly half of the Germans have replaced counting-based strategies with basic and derived 
strategies, compared with only one-quarter of the Australians. The predominant strategy 
(72 %) for the Australian children at the ‘end’ of Grade 2 is GP2 (count on) while 80% of 
German children use more advanced basic and derived strategies (GP5). The Grade 2 
German curriculum focuses directly on the development of heuristic strategies and this 
appears to be reflected in the data. 

 
Figure 2. Addition and subtraction strategies and multiplication and division strategies growth point 

distributions for German and Australian 7-year-old and 8-year-old children. 

The Grade 2 Australian curriculum also focuses on children solving simple problems 
using efficient mental and written strategies, but the heuristic strategies are not as clearly 
described. Of note is that the Grade 1 Australian curriculum focuses on representing and 
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solving simple addition and subtraction problems using a range of strategies including 
counting on, partitioning and rearranging parts. This focus on representation and counting-
on is in stark contrast to the German situation that emphasises heuristic strategies based on 
derived-facts to replace children’s initial counting-based arithmetic strategies.  

Multiplication and Division Strategies 
At the end of Grade 1, the German and Australian growth point distributions for 

Multiplication and Division Strategies are quite similar except for the larger group of 
German children able to use the abstract strategy (GP3) in multiplicative situations. This 
confirms the trend that German children appear to develop more advanced arithmetic 
strategies in addition, subtraction, multiplication, and division strategies, while the 
Australian students reach higher growth points in Counting and Place Value at the end of 
Grade 1. 

After Grade 2, 50% of the German children can solve multiplication and division 
problems without using any manipulatives (GP 3 and higher) compared with 20% of the 
Australian children. It is also interesting to note that there are hardly any German children 
on GP0 and GP1, compared with nearly 10% of the Australian children.  

Discussion and Conclusion 
The comparisons between the counting and whole number knowledge and skills of 

German and Australian children highlight some interesting differences. While it is 
important to note that the Australian children by the end of Grade 2 have spent an 
additional year at school and certainly show more elaborate competencies in the domains 
Counting and Place Value at the end of Grade 1, the German children catch up by the end 
of Grade 2. 

While the German children in Grade 1 were more advanced in the Addition and 
Subtraction Strategies domain, with few differences between groups in Multiplication and 
Division, their competencies in these two domains significantly increase by the end of 
Grade 2. Of some concern is that almost 50% of Australian students are still using 
counting-based strategies (GP1-GP3) at the end of Grade 2 in Addition and Subtraction, 
compared with about 10% of German children. Typically, this persistent use of counting-
based strategies is one criterion for identifying children who are mathematically vulnerable 
and who may benefit from an intervention program (Gervasoni, 2004). 

We hypothesise that the noted differences between the German and Australian 
children’s learning can partially be explained by different emphases in the two curricula at 
these levels, characterised by a strong focus on the learning and teaching of heuristic 
computation strategies in Germany, but of counting and place value concepts for numbers 
up to 1000 in Australia. Further, in Australia, children are more likely to be given 
manipulatives to help them model calculation strategies. Perhaps this reduces children’s 
opportunities to replace counting strategies with more abstract heuristic strategies. It is 
likely that the Australian and German children’s differing opportunities to formally explore 
whole number arithmetic at school matters, in at least the short term. It is also possible that 
the greater Australian curriculum focus on counting and place value for numbers to 1000 
by the end of Grade 2 is misplaced. Indeed, the German children perform just as well in 
these domains, without this higher curriculum expectation. 

The findings raise some interesting questions about the influence of curriculum 
documents and their emphases. Although comparisons between these Australian and 
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German children are mitigated by differences in cultural backgrounds, country, SES status, 
and school starting ages, some important differences have emerged. These are most likely 
explained by differences in curriculum emphases and possibly teaching strategies. Of 
interest is whether the noted trends and differences persist or diminish over time. This is a 
profitable area for further research. 
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This paper reports on a project that aims to foster interdisciplinary collaboration between 
mathematicians and mathematics educators in pre-service teacher education. The project 
involves 23 investigators from six universities. Interviews were conducted with selected 
project participants to identify conditions that enable or hinder collaboration, and to 
identify learning mechanisms at the boundaries between disciplinary communities. A 
hybrid narrative constructed from the interviews is used to illustrate transformation as a 
learning mechanism that leads to new practices. 

Introduction 
In Australia, as in many other countries, pre-service teacher education programs are 

structured so that future teachers of mathematics and science typically learn the content 
they will teach by taking courses in the university’s schools of mathematics and science, 
while they learn how to teach this content by taking content-specific pedagogy courses in 
the school of education. Such program structures provide few opportunities to interweave 
content and pedagogy in ways that help develop professional knowledge for teaching. A 
suite of Australian government funded projects is addressing this problem by developing 
and disseminating new interdisciplinary approaches to mathematics and science pre-
service teacher education. This paper reports on preliminary findings from one of the 
projects – Inspiring Mathematics and Science in Teacher Education (IMSITE). The 
overarching aims of the project are to: (1) foster genuine, lasting collaboration between the 
mathematicians, scientists, and mathematics and science teacher educators who prepare 
future teachers and (2) identify and institutionalise new ways of integrating the content 
expertise of mathematicians and scientists and the pedagogical expertise of mathematics 
and science teacher educators. The first aim provides the focus for this paper, which 
explores the potential for learning at the boundaries between disciplinary communities of 
mathematicians and mathematics educators.  

Project Context and Overview 
The three-year (2014-2016) IMSITE project is being undertaken by 23 investigators in 

six universities who are collaborating to develop, test, and evaluate the following 
approaches: 

(a) recruitment and retention strategies that promote teaching careers to undergraduate 
mathematics and science students; 

(b) innovative curriculum arrangements that combine authentic content and progressive 
pedagogy to construct powerful professional knowledge for teaching; 

(c) continual professional learning that builds long term relationships with teacher 
education graduates, enabling them continually to renew their professional and 
pedagogical knowledge of mathematics and science. 

Three universities are located in state capital cities and three in regional cities. Each 
university’s project team comprises at least one discipline professional (mathematician, 
scientist) and one education professional. 
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A feature of the IMSITE project approach is its emphasis on diversity. It is not the 
intention to promote a single model of pre-service teacher education that privileges one 
structure for degree programs, one way of combining content and pedagogy, or one form 
of collaboration between discipline and education professionals. In the project’s first year, 
each participating university committed to implement at least one strategy that had already 
been piloted or tentatively formulated before the project began (see Table 1 for examples). 
In the second year, the core group of six universities is engaging with a new group of 
universities to adapt and transfer strategies to new institutional contexts. The third year will 
be taken up with preparation of case studies of implementation, analysis of survey and 
interview data collected from project participants, and development of implementation 
guides to support engagement and transfer of project outcomes to other contexts. 

Table 1 
Example Teacher Education Strategies Implemented in Year 1 

Priority Strategies 

(a) Recruitment and 
retention 

Design courses that provide a taste of education studies to 
mathematics, science, and engineering undergraduates. 

(b) Innovative curriculum 
arrangements 

Design courses that integrate mathematics content and 
pedagogy, co-taught by a mathematician and a mathematics 
teacher educator. 

(c) Continuing professional 
learning 

Conduct a pre-service teacher education alumni conference 
to connect current students, graduates, teachers, teacher 
educators, and mathematicians. 

One of the intended outcomes of the project is the development of diverse models of 
pre-service teacher education that are adaptable to different institutional contexts. This 
could be viewed as the product-oriented outcome of the project. However, an equally 
important process-oriented outcome is concerned with identification of principles for 
fostering new forms of collaboration between discipline professionals (mathematicians and 
scientists) and education professionals (mathematics and science teacher educators). The 
conceptual framework for this latter aspect of the project draws on Wenger’s (1998) social 
theory of learning, and in particular the notions of communities of practice and boundary 
practices, to understand how the perspectives of mathematicians, scientists, and teacher 
educators in these fields can be coordinated and connected. At the time the project began, 
there were few known instances of productive collaboration in the design and delivery of 
pre-service mathematics and science teacher education programs in Australia, even though 
it has been argued that both discipline professionals and education professionals have an 
important role to play in the preparation of teachers (Hodgson, 2001).  

The IMSITE project aims to promote strategic change in teaching and learning in the 
Australian higher education sector. However, the project has also been designed to 
contribute to a long-term research program that conceptualises learning from a 
sociocultural perspective (see Goos, 2014). The research program has investigated the 
learning of school students and teachers (Goos, 2004; Goos & Bennison, 2008), and it is 
now being extended to explore opportunities to learn through the exchange of expertise 
across disciplinary boundaries in mathematics education. 

This paper is concerned with interactions between the mathematicians and mathematics 
educators in the project team. Aligned with the first aim of the project – fostering 
interdisciplinary collaboration – the paper addresses the following research questions: 
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1. What conditions enable or hinder sustained interdisciplinary collaboration? 
2. What learning mechanisms are emerging at the boundaries between communities? 

Learning Within, and Between, Communities of Practice 
Wenger (1998) argued that learning involves participating “in the practices of social 

communities and constructing identities in relation to those communities” (p. 4, original 
emphasis). He identified practice as contributing to the coherence of a community, and 
described three dimensions of communities of practice: mutual engagement of participants, 
negotiation of a joint enterprise that coordinates participants’ complementary expertise, 
and development of a shared repertoire of resources for making meaning.  

Mathematicians and mathematics educators are members of related, but distinct, 
communities of professional practice, and it is a fundamental premise of the IMSITE 
project that connecting the communities is essential to achieving a seamless, meaningful, 
and rigorous academic preparation for pre-service teachers of mathematics. Wenger (1998) 
wrote of boundary encounters as potential ways of connecting communities. Boundary 
encounters are events that give people a sense of how meaning is negotiated within another 
practice. They often involve only one-way connections between practices, such as one-on-
one conversations between members of two communities. However, a two-way connection 
can be established when delegations comprising several participants from each community 
are involved in an encounter. Wenger suggested that if “a boundary encounter – especially 
of the delegation variety – becomes established and provides an ongoing forum for mutual 
engagement, then a practice is likely to start emerging” (p. 114). Such boundary practices 
then become a longer-term way of connecting communities in order to coordinate 
perspectives and resolve problems. 

There is an emerging body of research on learning mechanisms involved in 
interdisciplinary work on shared problems. This type of work is becoming increasingly 
important because of growing specialisation within domains of expertise that requires 
people to collaborate across boundaries between disciplines and institutions. Akkerman 
and Bakker’s (2011) review of this research literature emphasised that boundaries are 
markers of “sociocultural difference leading to discontinuity in action or interaction” (p. 
133). Boundaries are thus dynamic constructs that can shape new practices through 
revealing and legitimating difference, translating between different worldviews, and 
confronting shared problems. As a consequence, boundaries carry potential for learning.  

Akkerman and Bakker (2011) identified four potential mechanisms for learning at the 
boundaries between domains. The first is identification, which occurs when the 
distinctiveness of established practices is challenged or threatened because people find 
themselves participating in multiple overlapping communities. Identification processes 
reconstruct the boundaries between practices by delineating more clearly how the practices 
differ: discontinuities are not necessarily overcome. A second learning mechanism 
involves coordination of practices or perspectives via dialogue in order to accomplish the 
work of translation between two worlds. The aim is to overcome the boundary by 
facilitating a smooth movement between communities or sites. Reflection is nominated as a 
third learning mechanism that is often evident in studies involving an intervention of some 
kind. Boundary crossing – moving between different sites – can promote reflection on 
differences between practices, thus enriching one’s ways of looking at the world. The 
fourth learning mechanism is described as transformation, which, like reflection, is found 
in studies investigating effects of an intervention. Akkerman and Bakker state that 
transformation is a learning mechanism that can lead to a profound change in practice, 
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“potentially even the creation of a new, in-between practice, sometimes called a boundary 
practice” (p. 146). They go on to label processes of transformation as including: 

• Confrontation – encountering a discontinuity that forces reconsideration of current 
practices; 

• Recognising a shared problem space – in response to the confrontation; 
• Hybridisation – combining practices from different contexts; 
• Crystallisation – developing new routines that become embedded in practices; 
• Maintaining the uniqueness of intersecting practices – so that fusion of practices 

does not fully dissolve the boundary; 
• Continuous joint work at the boundary – necessary for negotiation of meaning in 

the context of institutional structures that work against collaboration and boundary 
crossing. 

Akkerman and Bakker note that, although transformation is rare and difficult to achieve, it 
carries promise of sustainable impact. They also propose that identification and reflection, 
both of which involve recognising and explicating different perspectives, are necessary 
pre-conditions for transformation to occur. 

While boundary practices might evolve spontaneously, they can also be facilitated by 
brokering. Wenger (1998) explained that the job of brokering is complex because it 
requires the ability to “cause learning by introducing into a practice elements of another” 
(p. 109). Bouwma-Gearhart, Perry, and Presley (2012) identified brokering as one of the 
key interdisciplinary strategies for improving pre-service teacher education in the STEM 
disciplines in US research universities. They found that successful brokers connect the 
disciplinary paradigms; they are able to speak the specialised languages of mathematics 
and science, as well as translate the language and concepts of education research into 
forms that STEM academics can understand and use. Brokers have the ability to 
understand and coordinate the expertise that academics from all disciplines can contribute 
to the task of improving pre-service teacher education. 

Research Methods 
The IMSITE project is jointly led by a mathematician and a mathematics educator (the 

author of this paper) from one of the participating universities. In the first year of the 
project, interviews were conducted with the lead investigators based in the other five 
universities. In Universities A and B, the lead investigators were a mathematician and a 
mathematics educator, who were interviewed together. In Universities C and D, the lead 
investigator was a mathematician, and in University E a mathematics educator. The 
interview for University A was conducted by the two project co-leaders; other interviews 
were conducted by the lead mathematics educator only. The timing of interviews was 
arranged to take advantage of events that participants were scheduled to attend. These 
included the 2014 MERGA conference (June), a project dissemination forum (September), 
and the Connections and Continuity conference organised by the Australian Association of 
Mathematics Teachers and the Australian Council of Deans of Science to explore the 
transition in the study of mathematics from school to university (December). Table 2 
summarises information about the interview timing and participants. 

Interviews were semi-structured to allow for consistency in the topics of inquiry and 
flexibility in the depth and sequencing of questions. Question prompts included: 

• To what extent is there interdisciplinary collaboration between mathematicians and 
mathematics teacher educators in your university? 
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• Can you describe any barriers to, and enablers of, such collaboration? 
• What types of exchanges and activities that bring together mathematicians and 

mathematics educators do you consider to be most successful?  
• Do you know of any people who act as brokers of interdisciplinary collaboration? 

What brokering activities do they successfully use? What are their characteristics 
that make them effective brokers? 

Table 2 
Interview Timing and Participants 

Date University Mathematician Mathematics Educator 

September A * * 
December B * * 
December C *  
December D *  
June E  * 

Interviews lasted from 20-40 minutes; they were audio-recorded and later transcribed. 
Analysis of the interviews was guided by the two research questions listed earlier. To 
answer question (1), regarding enabling/hindering conditions, a content analysis of 
transcripts identified relevant excerpts and developed a minimal set of categories that 
allowed similarities and differences in the responses to be highlighted. This part of the 
analysis was therefore inductive, in moving from data towards principles for developing 
interdisciplinary collaboration. To answer question (2), regarding emergence of learning 
mechanisms at the boundary between disciplinary communities, the transcripts were 
scrutinised for evidence of the mechanisms theorised by Akkerman and Bakker (2011). 
Supplementary data to address question (2) were drawn from reports presented at a project 
team meeting in June 2014. 

Towards an Understanding of Interdisciplinary Collaboration 

What Conditions Enable or Hinder Sustained Interdisciplinary Collaboration? 
All participants referred to personal qualities, including open mindedness, trust, mutual 

respect, shared beliefs and values, as being crucial to enabling interdisciplinary 
collaboration. Such qualities allow for productive disagreements and challenges: 

I like the fact that you [mathematician] are challenging what I say, my views of the world. I really 
value that. Obviously, there’s trust there because, I guess, if there wasn’t trust I wouldn’t be happy. 
[University B, mathematics educator] 

One interviewee (a mathematics educator) identified the importance of having confidence 
in one’s own disciplinary knowledge of mathematics while at the same time being willing 
to admit ignorance: 

I’m sure that sometimes education people might feel a bit inferior to … mathematicians when they 
talk to them. Possibly vice versa as well, when they’re talking about pedagogy and they 
[mathematicians] think “I don’t know anything about that, that’s strange language”. So I guess 
there’s that fear of looking like a fool in front of the other, which you’ve kind of got to get over at 
some point somehow. [University E, mathematics educator] 

A second condition, explicitly mentioned by interviewees from three universities, was 
identification of a common or shared problem. In one case the problem became shared 
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when the mathematician and mathematics educator realised that they could help each other 
solve problems that were initially unrelated: 

A lot of the stories that X [mathematics educator] told me about what she was facing in terms of 
challenges with her maths students or the people training to be maths teachers caught my attention; 
stories of students who weren’t capable enough when they were out in the classroom as pre-service 
teachers. So at that point I knew that I had to put in some effort in terms of meeting X’s needs. At 
the same time X was able to put in effort in meeting my needs because we were having challenges 
in our first year maths classes around tutorial engagement and that sort of thing. X was able to offer 
some as a sort of mentoring type of role in an action research project where she was the facilitator. 
[University A, mathematician] 

In other cases, a shared problem was identified when participants recognised that they 
taught the same pre-service secondary students – “You teach the students maths and I teach 
them education, we should at least be sharing what we know about the students” 
(University B, mathematics educator). 

A striking hindrance to interdisciplinary collaboration, mentioned by interviewees 
from four universities, was the physical separation of the buildings where mathematicians 
and mathematics educators worked. In one university these disciplines were located on 
separate campuses, and at the other universities the disciplines were typically on opposite 
sides of the same campus: 

We are at polar ends of the campus. There’s a big gully in between and there is a bridge. So we’ve 
got our metaphorical bridge. We alternate weekly meetings between the math and stat side and the 
education side. So we’re walking over to the other side or the other side is coming to us. [University 
C, mathematician] 

A further structural hindrance, identified by interviewees in four universities, was 
embodied by workload formulas or financial models that did not recognise or reward 
interdisciplinary collaboration: 

It’s very difficult to get things like what we do [design and teach with a mathematics educator a 
course on mathematical knowledge for teachers] to be recognised in workload models. We do a lot 
of things under the radar but we don’t actually get acknowledged on our workload. So in a sense 
we’re doing extra stuff. [University A, mathematician] 

Despite respectful relationships having been established between the mathematician-
mathematics educator pairs who participated in the project, interviewees in three 
universities referred to entrenched cultural differences between the disciplines in their 
institutions as hindrances to broader collaboration. More often than not, interviewees 
expressed frustration with the culture of their own discipline: 

It annoyed me when I heard colleagues of mine complain about the other side, the people across the 
creek. When it came to the science pre-service teachers or the maths pre-service teachers, whatever 
problems they had, my colleagues blamed the other side. [University A, mathematics educator] 

I think my colleagues are free to let me do whatever I want to do, provide that it doesn’t impact on 
their day-to-day workload and the way they approach what they look to do. So they’re very 
supportive … “but we don’t actually care what you’re doing”. [University B, mathematician] 

What Learning Mechanisms are Emerging at the Boundaries between Communities? 
Glimpses of some of the learning mechanisms identified by Akkerman and Bakker 

(2011) emerged during the interviews. The following brief narrative presents a hybrid case 
constructed from all the interviews. The purpose is not to draw conclusions about boundary 
practices in any one university, but to illustrate what transformation can look like as a 
mechanism for learning at the boundary between disciplines. (Quotes have been selected 
from interviews. Names are pseudonyms.) 
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A mathematician (Carol) is working with a mathematics educator (Tess). Before the 
IMSITE project began they got to know each other via an externally funded teaching and 
learning project. Carol was then allocated to the teaching of a first year mathematics 
subject for pre-service teacher education students. She was surprised by students’ apparent 
lack of mathematical knowledge after having completed 12 years of schooling: 

I was lamenting, “Oh my goodness me, I can’t believe they don’t know any maths”, like they know 
less that I had anticipated for someone who had come through the Australian schooling system. 
[Carol, mathematician] 

This experience represents a confrontation, a kind of discontinuity between the two worlds 
of school mathematics and university mathematics that prompted Carol to reconsider her 
current practice as a teacher of university mathematics. Recognising this confrontation led 
both to explore each other’s worlds: 

I learned a lot about how education works and Tess learned a lot about how we function. We broke 
down some of the scepticism that both sides can have. [Carol, mathematician] 

Carol discussed her observations with Tess, who was sympathetic and interested in 
exploring the differences between teaching mathematics and education in a university 
environment. Tess remembered “noticing that my pre-service teachers, their content 
knowledge was not strong”, and she pointed out to Carol the areas that she wanted her to 
focus on in the first year mathematics course. Carol acknowledged that “I was teaching her 
[Tess’s] students at the time”, and both thus recognised a shared problem space in which 
both were contributing to the mathematical preparation of future teachers. 

Given this problem space, Carol and Tess are working towards a hybridisation of 
practices from their respective disciplinary contexts. The hybrid result is a new 
mathematics content subject that is jointly planned and taught, as Tess explained: 

We’re in the class together, one of us leads and the other acts as a sort of sounding board. We 
planned the weeks so certain weeks are Carol’s weeks and certain weeks are my weeks. [Tess, 
mathematics educator] 

There are encouraging signs that this new hybrid practice will become crystallised, or 
embedded into institutional structures. The teacher education program is under review, and 
the Heads of Mathematics and Education have invited Carol and Tess to design two new 
mathematics-specific pedagogy subjects for the revised program. The subjects will be 
owned by Education, with an income sharing arrangement to recognise the teaching 
contribution from Mathematics. 

Despite the success in creating a new hybrid practice, Carol and Tess also maintain the 
uniqueness of their established practices as a mathematician and mathematics educator. 
Carol acknowledged their complementary expertise when teaching the mathematics subject 
together: 

We go to class and there are times when she says to me “That’s all yours because it’s beyond what I 
understand” and that’s fine. Likewise she’ll come in and talk about the greats of education and I’m 
just going blank, no idea. As an educator it comes out very strongly that she’s very well practised. 
[Carol, mathematician] 

The collaboration is sustained by continuous joint work at the boundary between the 
two practices. This includes weekly project meetings, attending and teaching into each 
other’s tutorials in mathematics and mathematics education subjects, joint supervision of 
Honours students, and jointly conducted professional development for practising teachers. 
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Concluding Comments 
Theorising interdisciplinary collaboration in terms of communities and boundary 

practices makes it possible to conceptualise the boundaries between disciplines as 
sociocultural differences that are generative of new practices – and, therefore, new 
learning. This paper has begun to consider what that learning looks like, and what 
conditions favour or hinder it. Akkerman and Bakker’s (2011) classification of learning 
mechanisms at the boundary, while not a fixed model, does illuminate possibilities that are 
emerging in the IMSITE project and that could inform the development of future 
collaborations in other universities. Their review, together with the interview data from the 
project, also highlights some challenges for sustaining collaboration. One of these is the 
ambiguous nature of boundaries and the implications for people who work there, especially 
those who act as brokers between disciplines. As Akkerman and Bakker point out, brokers 
can feel like they belong to both one world and the other, or to neither one world nor the 
other. This was a challenge articulated by one of the mathematicians who participated in 
the IMSITE interviews: 

I’m seeing myself more and more in between maths and education, caught a little bit in no man’s 
land so I don’t belong to either. I’m not unhappy with that because it’s been quite an interesting and 
exciting mind-opening experience, but I do see that the expertise I’m gaining from being involved 
in the IMSITE project is not necessarily going to get my career furthered in terms of being a 
mathematician. [University D, mathematician] 

The IMSITE project is providing valuable evidence of learning at the boundary between 
communities of mathematicians and mathematics educators. It will be important for both 
communities to support the brokers and boundary crossers who work in this ambiguous 
space and to acknowledge their innovative role in fostering new practices. 
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While principals and systemic leaders have a significant role to play in leading, supporting 
and structuring mathematics education, their influence tends to be indirect and general. 
However, middle leaders such as curriculum leaders, senior teachers, and faculty heads, 
exercise their leadership much closer to the classroom, and as such they can have a more 
direct influence on the quality of teaching and learning in schools. To improve mathematics 
learning outcomes of student, it is crucial that educational leading is practiced by those 
with the greatest capacity to bring about positive practical and sustainable change – middle 
leaders. These school-based curriculum leaders can promote this development by engaging 
in forms of Critical Participatory Action Research that allows them to improve the quality 
of teaching and learning through an evidence-driven, site-based, collaborative approach. 

It has been well known for a long time that leadership is critical for educational reform 
and this is no less the case in promoting educational development in mathematics 
education (Sexton & Downtown, 2014). In general, the literature related to leadership 
focuses on the role and practices of principals and school heads, and indeed their 
participation is crucial, but it is always at some distance from the classroom. These leaders 
have the capacity to open a space for pedagogical development and to support innovation, 
but they are often limited in their capacity to actually make a difference in the classroom. 
Lingard, Hayes, Mills and Christie (2003) found that the “principal effects on student 
outcomes were small and indirect” (p. 51), and, “teachers have the greatest impact upon 
student learning of all ‘educational variables’. The effect of principals’ practices on student 
learning are, in contrast, heavily mediated and limited” (p. 148). However, unlike 
principals, middle leaders are positioned much “closer” to the classroom and the practices 
that “happen” there and so their potential for impacting student learning is apparent. 

While learning occurs in a range of sites within and outside the school, formal 
education through schooling is primarily focussed on the classroom. The classroom is 
where all the intentions and requirements of the curriculum meet learners through the 
practices of the teachers (Edwards-Groves, 2003). It is also the place where the effects of 
decisions made by principals, and educational managers and bureaucrats, have to be 
interpreted and enacted to promote learning (Grootenboer & Marshman, in press). It is not 
surprising then, that a number of studies have highlighted significant role of the teacher in 
the effectiveness of education (e.g., Lingard et al., 2003). In general, it is the teacher that 
has to interpret and put into practice the educational policies, programs and procedures in 
the classroom to facilitate rich student learning. It is the teacher that is the interface 
between the mathematics curriculum and learners, and so all the educational decisions 
made ‘before or above’ to the classroom site, they are always mediated through the teacher 
(Edwards-Groves, 2003; Grootenboer & Edwards-Groves, 2014). 

With this in mind, it is clear that middle leaders are critical in the development of 
quality educational outcomes because they exercise their leading in and around 
classrooms. Middle leaders are those who have an acknowledged position of leadership in 
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their school, but also have a significant teaching role (e.g., senior teacher, Head of 
Mathematics Department) (Grootenboer, Edwards-Groves & Rönnerman, 2014). In 
general, they can be viewed as those whose leading practices operate between the Principal 
or the Head, and the teaching staff – in the middle! It is these people - the middle leaders, 
who can have the greatest impact on teacher learning and development (Edwards-Groves 
& Rönnerman, 2013) and more directly impact classroom practices. As such they can be 
‘instructional’ and ‘curriculum’ leaders who can focus on the core business of schooling – 
learning and teaching. 

The concept of middle leading has significance in three ways: 

1. Positionally – middle leading is structurally and relationally practised ‘between’ 
the school senior management and the teaching staff. They are not in a peculiar 
space of their own, but rather than are practising members of both groups. 

2. Philosophically – middle leading is practised from the centre or alongside 
colleagues. In this sense, middle leaders are not the ‘heroic crusader’ leading from 
the front, but rather alongside and in collaboration with their colleagues. 

3. In practice – middle leading is understood and developed as a practice. To this 
end, the focus is on the sayings, doings, and relatings of leading rather than the 
characteristics and qualities of middle leadership. (Grootenboer, Edwards-Groves 
& Rönnerman, 2014, p. 18) 

Thus, we see middle leaders as critical educators in the improvement of mathematics 
learning and teaching. 

Leading Mathematics Learning and Teaching 
To improve the mathematical learning outcomes for students, the main focus is usually 

on improving pedagogy. While there are a number of important factors that impact on the 
mathematical achievement of students, the most amenable to influence and development 
from a school perspective is the teaching. And, as was noted previously, the teacher is the 
single most significant player in influencing student learning (Lingard, et al, 2003). 
Therefore, given the critical role of quality teaching, the focus for improved student 
learning in mathematics has to be on professional development for teachers. Here we want 
to argue that to be both effective and sustainable, teacher learning has to be fundamentally 
site-based (Grootenboer & Edwards-Groves, 2014). While there is a place for externally 
run and organised courses and programs, primarily professional development needs to be 
undertaken at a local level. Indeed, the effectiveness of teacher development courses run 
outside of the school site is determined by the capacity of those involved to take the 
learning back and apply it in their particular school. Also, pedagogical development needs 
to be responsive to the particular learning needs of the school site (Edwards-Groves & 
Grootenboer, under review). Student identities and learning contexts vary greatly from site 
to site, and so notion of ‘best practice’ can only have meaning at a very general level 
(Kemmis, McTaggart & Nixon, 2014) and might therefore, be talked about as ‘good 
enough practice’ in the meaning of letting context and site matter (Groundwater-Smith, 
Smith, Mockler, Ponte & Rönnerman, 2012). 

For example, the mathematical pedagogy that might be needed with students in the 
Torres Strait Islands would be quite different from students in an urban school which 
would be different again from Aboriginal learners in schools in central Australia. Finally, 
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professional development should be collaborative and critically reflective. Lingard, et al. 
(2003) commented: 

… productive leadership encourages intellectual debates and discussions about the purposes, nature 
and content of a quality education; promotes critical reflection on practices; sponsors action 
research within the school; and seeks to ensure that this intellectual work connects with the 
concerns of teachers, students, parents and the broader educational community. Such leadership 
also ensures that teachers, and others working within schools, are provided with the support 
structures necessary to engage in intellectual discussions about their work, to reflect on the reform 
processes within their schools, as well as their pedagogical and assessment practices. (p. 20) 

Considering these points, it seemed appropriate to focus on developing pedagogical 
capacity within schools and mathematics classrooms that would be localised and 
sustainable. To this end, equipping and supporting middle leaders to be curriculum leaders 
within their own school sites is an important and effective way to improve pedagogy, 
which in turn facilitates better learning outcomes in mathematics. Furthermore, critical 
participatory action research processes are an effective way to structure pedagogical 
development that was responsive to the needs and conditions of the school and classroom. 

Critical Participatory Action Research (CPAR) 
In educational contexts, we believe that there is an imperative to actively pursue the re-

emphasis of educational research that places the interests of students, teachers and 
societies at the centre of the research process/project. CPAR is one way to promote this 
agenda. In this vein, mathematics education research is about transforming and developing 
mathematics learning practices in schools and classrooms.  

Action research in a variety of forms has been employed for many years to facilitate 
and structure school development. Most commonly action research has been associated 
with, and seen as synonymous with, the ‘action research cycle’ (see Figure 1). 

Step 4: Reflect and 
Evaluate 

 
 

 
While the ‘cycles’ are useful, we see CPAR as more than just a cyclic process. CPAR 
fundamentally involves participants changing a social practice (e.g., mathematics 
teaching), and, changing what people think and say, what they do, and how they relate to 
others in that practice. To allow this to happen it is of importance that teachers get time 
and resources to meet in democratic dialogues where they can share knowledge and 
experiences related to their mathematics teaching practices in that site (Rönnerman & Salo, 
2014). 

Step 3: 
Collect Data 

Step 2: 
Act 

Step 1: Plan 

NEXT 
CYCLE 

Figure 1: The Action Research Cycle 
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The Critical Dimension  
The critical nature of CPAR stems from its essential drive to question the moral and 

ethical nature of our practices. Specifically, this involves asking whether current 
educational practices and our educational institutions are: 

• Rational – or are the practices irrational, unreasonable, incomprehensible, 
incoherent; 

• Sustainable – or are the practices unsustainable, ineffective, unproductive, non-
renewable; and, 

• Just – or are the practices unjust, adversely affecting relationships, serving the 
interests of some at the expense of others, causing unreasonable conflict or 
suffering? (adapted from Kemmis, McTaggart & Nixon, 2014) 

These are not just theoretical or esoteric questions, but rather they provide thoughtful 
prompts for evaluating whether educational practices are viable and responsive to the 
needs and circumstances of those involved at the time. For example, in mathematics 
education we should ask whether our current practices are irrational. Is it rational, 
reasonable and coherent to have many students completing their mathematics education 
seeing mathematics as irrelevant, boring and useless? We should also ask whether our 
current practices are unsustainable. Is it sustainable for the nation to, each year, produce 
many less mathematics graduates than is needed? And finally, we should ask whether our 
current mathematics education practices are unjust? Is it just that particular groups of 
students (e.g., students in remote schools) have lower mathematical outcomes than their 
urban peers? As these examples illustrate, the critical questions are relevant at a broad 
level, but also at a local site-based level where mathematics learning and teaching actually 
occurs. 

Participation 
Participation in CPAR is about developing a “communicative space” (Habermas, 1987) 

and requires consideration of who is involved, affected and included. Creating conditions 
for members to participate freely in this space - within what is described as a public sphere 
– makes communicative action possible. People who come together around issues of 
genuine concern about their circumstances and strive for intersubjective agreement about 
the language and ideas they use, mutual understanding of one another’s perspectives, and 
unforced consensus about what to do (Kemmis, McTaggart & Nixon, 2014). In a school-
based CPAR project this would obviously include the mathematics teachers and the school 
leadership, but fundamentally it also involves the students and often they are not 
considered as participants. We are not suggesting that all are participants in the same way 
or to the same degree, but nevertheless the students should be included because they are 
the prime focus of the mathematics education programs. Indeed, it would be irrational, 
ineffective and unjust to ignore the students in a mathematics education development 
project. 

Action Research 
As is clear from the preceding sections, action research is concerned with the 

development of social practices – in this case, practices of mathematics teaching and 
learning. To this end, the purpose, the site and the focus of CPAR are the practices of 
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learners and teachers, and, the associated practice architectures (practice arrangements or 
conditions which enable or constrain practices). This is consistent with the premise stated 
earlier that sees the interests of students, teachers and their communities at the centre of the 
research process. Here, in the context of discussing mathematics curriculum leadership in 
schools, we are also concerned with the practices of middle leaders, and how their leading 
practices enable and constrain mathematics education practices in their particular sites. 

This is a form of critical hermeneutic research that aims at understanding (rather than 
simply describing and explaining) and transforming a situation (so that it is not irrational, 
unsustainable or unjust). It tends to be interpretive and qualitative in nature with a practical 
intent (educating practitioners so they can act rightly – as a form of praxis). 

Mathematics Leading Through Site-based CPAR 
As has been noted previously, effective professional development is grounded in the 

particular arrangements of the site, and the people who are learning and teaching in the 
school. Therefore, programs and activities that focus on development need to begin with an 
understanding of the site, and this involves data gathering. Teaching and learning practices 
are enabled and constrained by the practice architectures, and so any mathematics 
education development will have to be cognisant of these local arrangements as well as the 
practices themselves. Evidence-informed site-based pedagogical development will lead to 
teaching that is responsive to the actualities of the learner’s mathematical education and 
the conditions within which they undertake their learning. To this end, CPAR is useful. 

In CPAR we do not aim to produce generalisations about the ‘one best way’ to do things. In fact, 
we don’t want to find the best way to do things anywhere except here – where we are, in our 
situation. (Kemmis, McTaggart & Nixon, 2014, p. 69) 

“… productive leadership encourages intellectual debates and discussions about the purposes, 
nature and content of a quality education; promotes critical reflection on practices; sponsors action 
research within the school; and seeks to ensure that this intellectual work connects with the 
concerns of teachers, students, parents and the broader educational community. Such leadership 
also ensures that teachers, and others working within schools, are provided with the support 
structures necessary to engage in intellectual discussions about their work, to reflect on the reform 
processes within their schools, as well as their pedagogical and assessment practices.” (Lingard, et 
al., 2003, p. 20) 

To illustrate, below we recount how mathematics middle leaders in one secondary 
school used a form of CPAR to promote deeper learning and engagement with their 
students in Years 8 to 101. The middle leader’s role was to participate, facilitate, support 
and resource the action research-based development. 

Case Study2: Urban Secondary College3 Mathematics Department 
Urban Secondary College (USC) is a large metropolitan high school and broadly their 

goal was to improve students’ mathematical learning outcomes by improving mathematical 
pedagogy. The mathematics department teachers worked in three smaller groups that 
focussed respectively on the Year 8, Year 9 and Year 10 classes, and each group was led 

                                                      
1 At this time, these were the first 3 years of secondary school. 
2 The first named author worked with these middle leaders as a ‘critical friend’. Therefore, what is reported 
here is not so much a research report, but an account of what occurred. 
3 Pseudonyms have been used throughout this paper 
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by one of the mathematics faculty middle leaders. Generally, the mathematics classes at 
USC had been fairly traditional in nature involving teacher exposition and textbook work, 
and through this project the goal was to engage in different forms of pedagogy in order to 
promote deeper mathematical thinking and conceptual understanding. 

The middle leaders in the mathematics department (the three middle leaders noted 
above and the Head of Department) had been successful mathematics teachers for a 
number of years, but their challenge was to facilitate engaging mathematical pedagogy 
across all the mathematics classrooms, including those that were taught by non-
mathematics specialists (e.g., a physical education teacher who may have just one 
mathematics class). Indeed, the middle leaders realised that bringing about pedagogical 
change in mathematics required a cultural change in the department and this was accepted 
as being a long-term and on-going project. The consensus of the middle leaders and the 
department, after engaging in some focussed professional learning on engaging 
mathematical pedagogies, was that ‘hands-on’ discovery learning activities were 
appropriate. The middle leader’s first response was to change the focus of their fortnightly 
department meetings from management and administration to pedagogy4, hence providing 
curriculum leadership. 

The three Year level groups met fortnightly and developed one ‘discovery’ type 
activity for the ensuing unit of work, and each teacher committed to using it and collected 
some evidence from their students related to the activity. Furthermore, they agreed to visit 
and observe in each other’s class when this activity was being employed. Although these 2 
developments may seem fairly small, they were not insignificant for those involved, and 
they marked a beginning to some cultural changes in the department (i.e., opening up their 
classrooms to colleagues) and some pedagogical reform (i.e., investigative approaches to 
learning mathematics). As curriculum leaders, the middle leaders engaged in the same 
pedagogical and cultural change as the staff, they usually invited others into their 
classroom first in order to build a climate of trust and collegiality. 

To illustrate, in the Year 8 classes the students initially investigated the sum of interior 
angles in a polygon. In this lesson the students were involved in drawing polygons, 
marking and cutting off the ‘corners’, and rearranging the pieces to uncover the 
relationship between the number of sides of the polygon and the sum of the interior angles.  
During the lesson, visiting teachers observed students using a range of methods to 
investigate the relationship and generalise a rule.  Historically, the students would simply 
have had the rule presented to them, however, it was noted that because students were 
given the time to develop their own conceptual understandings, they became confident in 
investigating more complex shapes, and in the process they developed more robust 
problem solving skills and dispositions.  

It is important to note that when the teachers visited one another’s classrooms, the 
observations were not so much of the teacher per se, but rather of the students’ learning 
and their engagement with the particular activity. They paid particular attention to the 
nature of student participation, the learning behaviours they employed, and the questions 
or comments that they offered. These notes, along with the work samples of these students, 
provided useful evidence regarding what actually happened in the classroom, and the 
teachers used this to reflect on the activity, the pedagogical approach, and the 
mathematical learning practices of the students. Each teacher would reflect on their own 
practice in the light of the data collected, and then they met as a group and through 

                                                      
4 Administrative matters were then largely managed through email and the school intranet 
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dialogue they reflected collaboratively. After these reflections, the teachers then went on to 
plan their next common lesson, incorporating their understandings from the previous cycle, 
and thus the next action research cycle began.  

Towards the end of the year the teachers again met in their groups, and as a whole 
department. At this time they looked back over their development throughout the year, 
using their data and meeting notes as references for what they undertaken. At this time 
they were able to identify significant changes in their mathematical pedagogy, and 
although this looked different for each of the individual teachers (i.e. individual praxis), 
there was clearly a shared approach to teaching that was more responsive to the students’ 
needs (i.e., collective praxis), and a different department culture. Furthermore, they were 
able to specifically identify pedagogies that were more successful in engaging the students 
and facilitating their learning in mathematics. 

Discussion, Conclusions and Implications 
Throughout this paper we have highlight two key aspects of leading in mathematics 

education and pedagogical reform for improved learning outcomes in mathematics – 
middle leading and CPAR. We believe that these are both important because learning and 
teaching occurs in actual sites, and therefore, it must be responsive to the particularities of 
that site. This is no less the case in mathematics education, where generalised notions of 
‘best practice’ are seemingly well established and difficult to change, and yet we know that 
for many they complete their mathematics education with debilitating and restrictive 
mathematical identities. To this end, we argue that there is not a single best practice per se 
for mathematics education that can be successfully implemented across all school sites, but 
rather what is needed is pedagogical leadership and development that is responsive to the 
specific mathematical learning needs within each school and classroom site. 

In the case recounted above, the initial impetus for the change emerged from a critical 
evaluation of their current practices and students’ learning outcomes in mathematics. 
While not overtly addressing the questions noted previously about their practices being 
irrational, unsustainable and unjust (although these could have been productively 
employed to structure their department discussions), they did want to address issues related 
to the reasonableness and effectiveness of their mathematics education. Specifically, they 
were concerned that the students’ were becoming disengaged and disenfranchised with 
mathematics, and this was occurring in the very place they wanted to promote engagement 
and appreciation of the subject – their mathematics classrooms. Their practices in the past 
had been largely built on an unquestioning acceptance and use of traditional ‘best 
practices’ of mathematics teaching, and through their CPAR facilitated by the middle 
leaders, they brought about changes to their practices. 

As we noted at the beginning of this paper, improved educational outcomes in 
mathematics requires the support, involvement and commitment of educational leaders 
(Sexton & Downtown, 2014). This leadership is needed at all levels from government and 
system ‘down’, and particularly includes school principals. However, if actual classroom 
practice is to be developed then the critical leadership that is required – curriculum 
leadership, needs to be exercised ‘closer’ to the site where teaching and learning is 
actioned. To this end, middle leaders, as in those who have formal leading positions but 
also have a teaching role, are the leaders with the capacity and position to most directly 
influence pedagogy and in turn learning among both teachers and students.  They can focus 
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on the key educational site – the classroom where teachers, students and mathematical 
ideas meet. 

Effective middle leading is not simple, and it involves a range of roles including 
administrator, manager, and teacher, but the critical one is curriculum leader. As a 
curriculum leader the middle leader is focussed on improving the learning outcomes of the 
students, and this primarily is done through staff and pedagogical development (Sexton & 
Downtown, 2014). Furthermore, the middle leader has to nurture a sense of understanding 
of the students including their educational needs and their broader life worlds, and to 
facilitate connection with the community. This becomes particularly important when 
students don’t come with the cultural capital necessary for success in school mathematics, 
and disproportionately these students come from disadvantaged communities. 

Pedagogical leadership provided by senior teachers, faculty heads and the like, can 
ensure that teaching is responsive to the learners needs, thus avoiding the homogenizing 
effect of a standard approach. While the mathematics curriculum may be standardised 
across Australia, the way that curriculum is taken-up and presented in the classroom can 
and should vary through a diverse range of teaching approaches appropriate for the 
learners in that site. In this way mathematics education may become more rational, 
sustainable and just. 
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Concerns regarding the dominance of the traditional written algorithms in schools have 
been raised by many mathematics educators, yet the teaching of these procedures remains a 
dominant focus in in primary schools. This paper reports on a project in one school where 
the staff agreed to put the teaching of the traditional written algorithm aside, replaced with 
computational strategies. The results reinforce a belief that I have held for many years that 
the traditional algorithms should be removed from the primary mathematics curriculum. 

Background 
Computation involving the four operations (addition, subtraction, multiplication, and 

division) is a major content area in primary school mathematics. Curriculum documents 
advise teachers to take an approach focusing more on strategies and less on traditional 
written algorithms. For example, the current Australian Curriculum: Mathematics Version 
7.3 (ACARA, 2015) states that students “apply a range of strategies for computation and 
understand the connections between operations” (p. 5). Despite mathematics education 
research stating concerns about overdependence on procedural thinking (e.g., Hiebert & 
Lefevre, 1986), and those stating the benefits of computational strategies as leading to 
deeper understanding of the structure and properties of numbers (e.g., Plunkett, 1979; 
Reys, 1984; Thompson, 1999), the development of number sense (e.g., Sowder, 1988), the 
development of problem solving and thinking skills (Callingham, 2005; Plunkett, 1979), 
and better alignment of school mathematics to the mathematics used beyond the classroom 
(e.g., Australian Education Council, 1991; Callingham & Watson, 2008; Hedren, 1999; 
Northcote & McIntosh, 1999), the teaching of computation in primary classrooms is still 
dominated by the traditional written algorithms. 

The dominance of the traditional written algorithms in schools can be traced back to 
times before calculation machines had been invented and schools needed to prepare 
students for jobs where they would need to manually add long columns of figures with 
accuracy. To enable others to check the calculations a standard method was preferred. 
Today we have several electronic calculation methods with calculators, spreadsheets, and 
other applications readily available in all classrooms, as well as in the world beyond the 
classroom. Back in 1999, Northcote and McIntosh conducted a study into how adults 
completed computations. In a twenty-four hour period only 11.1% of the calculations 
involved any written component and 6.8% used a calculator. Today, I would predict that 
the percentage of adults who used a calculator would be much higher given the availability 
of these devices, especially on mobile phones. These researchers also found that in 60% of 
the computations situations only required an estimate for the calculation task. The need for 
traditional written algorithms in the world beyond school today is limited if not non-
existent. However, the need to think and reason mathematically is high. The place of 
traditional written algorithms as a dominant aspect of primary school programs deserves to 
be seriously questioned. However, teachers and parents maintain a belief that the place of 
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algorithms in primary school is deserved and that to teach mathematics properly its 
inclusion is important. 

The Project 
  I was asked to begin a teacher professional development project with the staff of one 

primary school north of Brisbane in January 2012. My brief was to work with a team of 
teachers to develop their mathematics pedagogy The school had conceived and been using 
a professional development system that involved the use of experts working with teams of 
teachers across year levels using classroom demonstrations and reflection, followed by the 
teachers supporting their year level peers toward whole school implementation. I was 
employed to be the mathematics expert. The project’s overall aim was to improve student 
learning outcomes. Student data was consulted which included their current NAPLAN 
data. The school was performing below cohort, below state, and below national average 
scale scores (see Figure 1). While the data was not excessively below average, the school 
and system wanted to see it improve. The school staff also articulated a desire for the 
students to be more confident in their approach to mathematics and to be able to reason 
mathematically and problem solve, which are proficiency strands in the current Australian 
Curriculum (ACARA, 2015). 

 
Figure 1. 2011 NAPLAN data for the project school 

After discussion with the school administration we decided to focus on encouraging the 
teachers to challenge the students to think and reason mathematically. We discussed 
research including work done on student thinking related to the use of computation 
strategies rather than traditional written algorithms (Hartnett, 2008). The school 
administration was interested in challenging the teachers to approach the teaching of 
mathematics in a more investigative way. Given the dominant place of the traditional 
written algorithm and its procedural focus it was agreed to work with the Maths team (at 
least one teacher from each year level) to develop their own understandings of strategies 
that could be used instead of algorithms to challenge traditional views of the teaching of 
mathematics, while offering a professional development pathway that would support the 
teachers to work differently. The Maths team teachers would then mentor their peer 
teachers, working with same year level, to change the focus of computation instruction to 
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strategies. The staff, supported by the school administration, agreed to stop teaching the 
traditional algorithms completely and instead to encourage students use strategies for 
computation. The school adopted a computation strategy categorisation framework as the 
organiser of the content to be learnt (based on Hartnett, 2007; see Table 1) and the project 
began in January 2012. 

 
Table 1.  
Categorisation of Computation Strategies used in the Project (based on Hartnett 2007) 

Strategy Categories Examples (addition 27+19) 
Break Up 1 Number  27+10=37; 37+3=40; 40+6=46 
Break Up 2 Numbers  20+10=30; 7+9=16; 30+16=46 
Change 1 Number and Fix 27+20=47; 47–1=46   
Change 2 Numbers and Fix 30+20=50; 50–3–1=46  
Change 2 Numbers 26+20=46 (27–1  + 19+1) 
Count on to Subtract (e.g. 16–9)  

This categorisation framework was chosen for consistency of strategy names across the 
four operations. The category names described the action of the strategies in language 
students could understand. In a previous study where this framework was used, students 
started to use the strategy category labels even though they had initially been designed to 
assist teachers with their planning for the development of the strategies (Hartnett, 2008). 
The plan was for the students to make a simple choice between whether they would break 
up numbers, or whether they would change one or both of the numbers and decide on the 
fix, if needed. The thinking and number sense required to use the strategies was an 
identified deficiency with the students at this school. 

The project began with Year 3 to Year 7 teachers focussing on introducing the 
strategies for addition to their students. Teachers in Prep to Year 2 focussed on developing 
number sense and operation concepts as well as working on basic fact development. The 
Maths team worked to develop a whole school plan for developing the strategies during the 
first year of the project. A program of professional development and mentoring was 
actioned and teachers began to work with their students to develop the strategies and 
related number sense. Support was provided to the Maths team, as needed, as they worked 
with their year level peers to introduce the strategies to their classes. Because all of the 
strategies were new to the staff and the students, most of the first year was spent focussing 
on strategies for basic addition and multiplication facts and the development of the 
strategies for addition. The Maths team teachers worked ahead of their peers trying 
strategies with other operations, as appropriate, and developing lessons and activities to 
support student understandings and sharing these with their peers. 

Initially, students and parents reactions (reflected on through students sharing 
perspectives from home as well as teachers interacting with parents formally and 
informally) indicated that the algorithms were viewed as having higher importance than the 
strategies. It was this perception that influenced the decision in this project to not teach the 
algorithms at all so as to raise the status of the strategies. Students were not banned from 
using the algorithms but were encouraged to use strategies and to show their thinking in 
the way they recorded their responses. This was especially important the older students 
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who were quite familiar with algorithms, but teachers gently shifted the focus from the 
procedural algorithms to conceptual understanding of numbers and operations. 

Observations 
The project is ongoing and data presented is observational. The data is anecdotal and 

qualitative in nature. It is presented as a commentary of the process so far: outlining factors 
influencing the project, problems encountered, and reflections by the education advisor 
expert supporting the school (the author), teachers, and parents. In the first year of the 
project, qualitative data was collected where all students in Years 1 to 7 completed a range 
of computations showing their thinking or working out. Each response was coded for 
accuracy and strategies used. This data collection has not been repeated as yet. It is 
planned to conduct this data collection at the end of this year to capture change in the 
cohort that was in Year 3 at the start of the project. This cohort has not had the traditional 
written algorithms taught to them at all, unless they have come from a different school. 
The data would not be able to be used for student comparison but for overall change in the 
range of strategies used.  

At the beginning of the project, students in the upper grades were reluctant to let go of 
the traditional written algorithms they had learned to use already. This was understandable 
but interesting in terms of their reasoning. When questioned students had difficulty 
articulating why they preferred the algorithms or why they were not keen on learning other 
ways to approach the operations. One possible reason was that they were successful with 
the algorithms and predicted they would not be as successful with something that was new 
and different. This seemed to be the case with students identified by their teachers as good 
at maths. These students may have decided that it was better to not try than to try and be 
unsuccessful.  

The project included parent information sessions to share the school’s direction with 
the wider community. During these sessions I found there was a need to make a distinction 
between the use of strategies for computation as an end user beyond school, and as part of 
a learning program in school. While many parents recognised and acknowledged that some 
of the computation strategies presented were ones they used in their everyday lives, there 
were other strategies that they would not choose to use. At school the students were being 
exposed to a wide range of possible strategies as a learning activity to encourage them to 
develop their number sense, reasoning, and operation sense as well as the strategies. As the 
students developed their understandings it was predicted that they too would choose they 
found personally effective and which made sense to them from the strategies studied. The 
use of calculation technologies was also discussed as a practical means to finding answers 
as an end user and that during the learning process the focus was on development of 
number sense and operation sense that could inform the choice of computational method. 
This distinction was discussed with teachers in the Maths team during professional 
development sessions as well. 

NAPLAN Data 
One set of quantitative data that has been analysed to identify the impact of the project 

has been the school NAPLAN data. While it is recognised that only a small proportion of 
the questions on the Yr 3/5/7 tests each year can be directly linked to computation or 
potential use of computation strategies, the overall aim of the project was to assist teachers 
to use pedagogy that would improve the students’ understanding about maths and their 
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ability to think mathematically so the data could be used to reflect progress on this overall 
aim. The pre-project NAPLAN data from 2011, the year before the project, is summarised 
in Figure 1.  After three years working with the staff and developing a relationship with 
them and the students at the school we are starting to see changes. The NAPLAN data 
below shows the Year 5 and Year 7 school data above system, state and national average 
scale scores for the first time. The Year 3 data has improved but not passed the other scores 
(Figure 2). Figure 3 shows the Year 5 data and Figure 4 shows the Year 7 data. 

 
Figure 2. NAPLAN data Year 3 2011 (before the project) and 2014 (current data)  

 
Figure 3. NAPLAN data Year 5 2011 (before the project) and 2014 (current data)  
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Figure 4. NAPLAN data Year 7 2011 (before the project) and 2014 (current data)  

Teacher Reflections 
The reflections below provide some further anecdotal data as the project progresses.  

After a whole day professional development session with the Maths team where we discussed the 
computation strategies for each operation, one teacher commented that she could see the reasoning 
behind the use of strategies instead of the algorithms, but that she still believed there was a place for 
the traditional methods in primary classrooms. I returned to the school the following week to be 
greeted by the same teacher who asked me to disregard her previous comments and that she “was 
now convinced”. She had started working with her Year 5 class on a Break Up strategy for 
multiplication where the multiplication was represented using an area model. She reported how the 
students “loved the strategy” and how it “made so much sense to them” and to her. Her other 
observation was how confident the students were as they approached multiplication problems; 
something she had not experienced teaching traditional multiplication algorithms to students this 
age. (Education Advisor leading the project)  

When I began teaching here at [school name] I wasn’t sure about how not using an algorithm would 
work. At the end of my first twelve months I was delighted with what I had learned and the progress 
my class had made in thinking about what they were learning and doing in Maths. As I became 
more confident with the teaching strategies, I was able to clearly see how beneficial it was to teach 
the children a range of skills, which not only made sense, but also enabled them to solve problems 
using a variety of strategies, which enhanced their understanding of what they were actually doing. 
(A teacher who came to the school in 2012) 

I came to [school name] with no concept of these strategies and at first I found it hard to 
comprehend and tended to stick with the algorithm concept. After teaching these strategies, I found 
that the students and I really began to improve our mathematical thinking. I was never the strongest 
in Maths but now I have learnt many new strategies to work with numbers and no longer need to 
write down algorithms. The improvements I have made using these strategies has given me the 
confidence and enthusiasm to teach the children and never use the old methods again. (Yr 5 early 
career teacher who came to the school in 2012) 

Parent Reflections 

My daughter seemed to have lost confidence in her ability with maths as she moved from Year 3 
into Year 4 in 2013. Her Year 5 teacher last year used the strategies and as the year went on her 
number knowledge grew. At home we noticed she was engaging in conversation involving maths 
and she was using strategies in everyday situations, like with her pocket money. We noticed that her 
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confidence grew and are now quite confident she be more comfortable in high school next year with 
a better attitude to maths. (Parent of a current Yr 6 student) 

My son is in Yr 5 this year. At the start of this project, my husband was very resistant to the 
strategies focus. As Jack has become more proficient he has been able to explain to his Dad how the 
strategies work. His Dad is now seeing Jack learning rather than just doing it quickly and getting 
answers. When Jack makes mistakes he can look back and understand what he did. He has 
confidence and considers himself good at maths. Anyone who can convince my husband he was 
wrong must be doing something right. (Staff member and parent) 

Conclusions 
The project is ongoing. Having the opportunity to work in one school on a long-term 

project has been a factor in the success so far. Being able to build rapport with the staff and 
students as an expert builds their trust in me to lead them through the process. This school 
entrusted me to lead them to make the decision about this project. It is to their credit that 
the results are showing improvement in what they set out to achieve–improvement in the 
students’ ability to think mathematically and to be confident users of mathematics and to 
improve the teachers’ pedagogy in relation to mathematics. By changing a very traditional 
aspect of the school program, we sent a message to the staff and school community that we 
wanted to do things differently. I had held a belief for many years that changing students 
perceptions of mathematics as a subject, as well as changing their ability to think and 
reason mathematically, could be achieved by starting with a change to the focus for 
computation. This project has allowed me to test this theory. 

We have shown that students can be successful in mathematics without the traditional 
written algorithm as part of the school mathematics program. The traditional algorithms 
are procedures that can assist students to get answers to computations but by using 
strategies and number sense instead students gain more than just answers. 
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In Māori medium schools, research that investigates children’s mathematical computation 

with number and connections they might make to mathematical ideas in other strands is 

limited. This paper seeks to share ideas elicited in a task-based observation and interview 

with one child about the number ideas she utilises to solve a problem requiring probabilistic 

thinking. The explanations provided by the child demonstrate how early number and spatial 

patterns can impact on computation, ease of determining possible outcomes and assigning a 
numerical probability measure to an event. 

Crites (1994) states that mathematical literacy is crucial for citizenship in today’s 

society. An important component of mathematical literacy is number sense and the ability 

to apply it in a range of contexts is essential for coping confidently with the demands of an 

information-laden society.  

Quantifying the probability of an event occurring is linked inextricably with number. 

Difficulties arise when measuring the chances of an event occurring for learners with 

limited number knowledge including that of fractional number (Langrell & Mooney, 

2005). Reasoning in number and probability is vital for life beyond school (Gal, 2005; 

Jorgensen & Dole, 2011). For example, making decisions about whether or not a rain 

jacket is needed or where to invest for retirement are based on probability. 

Since the introduction of the Numeracy Development Projects into New Zealand 

schools in 2000 there has been a major focus on the development of number strategies and 

knowledge for children learning mathematics. The national implementation of these 

projects meant that children beginning their formal mathematics education were expected 

to develop a strong base in numeracy as a foundation for learning a broad range of ideas in 

mathematics and statistics. Developing number sense and understanding connections 

between numbers, how they might be manipulated when calculating and noticing patterns 

with numbers is fundamental to effective mathematical thinking (Jorgensen & Dole, 2011). 

Mulligan & Mitchelmore (2013) state that children’s development in mathematics is 

heavily dependent on their awareness of pattern and structure “…mathematical pattern 

involves any predictable regularity involving number, space, or measure” (p.30). Mason, 

Stephens & Watson (2009) argue that children who have sound understanding about 

structure in mathematics not only recognise key ideas about properties in a relationship but 

they also have an awareness of how numbers might be manipulated.  

Numeracy involves computation, interpretation, and making appropriate decisions with 

and about numbers to support mathematics learning.  Learners need to be able to count, 

quantify, compute and manipulate numbers (Ministry of Education, 2007). By Year 8 Te 

Marautanga o Aotearoa (the national curriculum document for Māori medium schools in 

New Zealand) outlines the expectation that children should be working fluently with whole 

number and fractional number in a range of mathematical contexts including probability 

(Ministry of Education, 2008). Children are expected to have developed clear conceptual 

understandings of proportion and be able to utilise that knowledge to determine the 

likelihood of an event, for example, the probability of getting a 7 when throwing two die 

and adding the numbers together. Representing, interpreting and evaluating data to make 
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informed decisions is dependent on having a sound understanding of whole number and 

fractional number, including percentages (Gal, 2004; 2005).  

To develop probabilistic thinking learners will need to understand that the kind of 

thinking required with probability is different to that typically addressed in school 

mathematics (Langrell & Mooney, 2005).  While exploring probability contexts requires 

the use of mathematics, this area of study is based on chance (Neill, 2010). Learners have 

to come to appreciate the idea that it is not possible to determine an individual outcome, 

but it is possible to predict the frequency of an outcome (NCTM, 2000). The reasoning that 

is required for such thinking develops over time and may be understood through a 

framework offered by Jones, Langrell, Thornton & Mogill (1997).  The four levels of 

reasoning involve: 

1. Subjective reasoning 

2. Transition between subjective and naïve quantitative reasoning 

3. The use of informal quantitative reasoning 

4. The incorporation of numerical reasoning 

The reasoning constructs may not be uniform and children may not follow an ordered 

progression of learning. Learners do however require frequent experience with actual 

experiments to develop their probabilistic thinking. 

Determining the sample space is fundamental to aspects of probabilistic reasoning and 

requires the coordination of different cognitive skills. Children need to recognise that there 

may be different ways of obtaining an outcome. Research suggests that children should be 

presented with opportunities to actively participate and use physical material for exploring 

and investigating probability situations (Jorgensen & Dole, 2011; Neill, 2010). Being able 

to systematically and exhaustively generate possible outcomes is important to help 

consider the value of experimental probability and its relationship to theoretical probability 

(Barnes, 1998; Gal, 2004).  

According to New Zealand curriculum documents assessment of children’s learning in 

mathematics is to be based on multiple sources of evidence gathered over time (Ministry of 

Education, 2009). It is crucial that children are presented with opportunities to 

communicate their mathematical thinking, reasoning and solutions in a variety of ways 

(Hunter, 2009; Hunter, 2006). Making time for listening to children share their thinking 

can support assessment of learners’ development in mathematics (Higgins & Weist, 2006; 

Reinhart, 2000). This practice includes listening to their thinking about probability 

(Barnes, 1998; Neill, 2010). 

The ability to represent mathematical ideas using words, symbols or pictures supports 

children to communicate their thinking. Using different representations can encourage 

flexible thinking and provide teachers with artifacts constructed by learners, to support 

teacher judgments about children’s learning (Suh, Johnston, Jamieson & Mills, 2008).  

Representations also serve as tools for justifying and making sense of mathematical ideas 

while supporting learners to construct knowledge (NCTM, 2000).  

Children rate highly those opportunities for mathematics learning that incorporate 

physical movement and situations that include concrete materials (Attard, 2012). Ensuring 

that a task is accessible to everyone and that it facilitates reasoning and communicating, 

while incorporating multiple approaches, can also ensure that it is worthwhile (Breyfogle 

& Williams, 2008).   

The purpose of this paper is to illustrate how one child’s thinking in number supported 

her learning and understanding in a probability context. 
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Method 

Data was collected as part of a larger study in a Year 7-8 class in a Māori medium 

setting (80-100% teaching and learning in the Māori language). The classroom teacher had 

base line information that indicated the class had gaps in knowledge with regard to the 

statistics component of assessment for Whanaketanga Pāngarau: He Aratohu mā te kaiako 

(Ministry of Education, 2010).  She explained that due to a strong focus on number in 

recent years the children had limited exposure in their formal mathematics education 

programme to the development of probability ideas. She wanted to focus on helping 

children to work out the possible outcomes of an event and communicate their process and 

solutions appropriately and effectively.  

This paper concerns one child’s ideas for solving a probability task. The child had 

earlier completed a similar probability task involving the addition of numbers when two 

dice are thrown and finding the probability of different outcomes. The child was familiar 

with the researchers who had been into the classroom to observe and listen to them sharing 

ideas while completing the probability addition task.   

This task (shared with the children in the Māori language) was about saving dolphins 

(six for each player) that had stranded themselves on some sandbanks (labelled 0-5 on 

same sheet for both players) and needed to be “saved”. When players took turns to throw 2 

dice and subtracted the numbers to find the difference, they could “save” one of their 

dolphins if it was on that numbered sandbank. Players have to decide before they start the 

game where to locate their six stranded dolphins (counters). The “winner” is the one who 

saves their six dolphins first. 

The child for this case study was asked to play the game with one of the researchers in 

a space away from the other children. This situation was designed so that the researchers 

could record, listen and probe the child’s thinking. 

Results 

Key ideas and recordings that emerged from this particular 12 year-old child Marino, 

about finding all possible outcomes and their significance for determining the likelihood of 

particular events are noted below. 

1) Recognition of Spatial Patterns and Using that Knowledge  
Upon throwing two dice and finding the difference between the numbers, Marino 

recorded the results in a tally chart. She noticed that some numbers appeared more 

frequently than others. When asked to explain why that might be occurring, Marino then 

recorded what she considered to be all possible ways of obtaining numbers zero to five as 

seen in Figure 1. 

 
Figure 1. Marino’s recording of different ways of getting outcomes 0-5 
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When asked how many possible outcomes there were in her diagram she said there 

were 21 because “5 and 6 =11 and 10 and 11 = make 21”. She explained that the above 

recording resembled a triangle where the first 4 columns (beginning from the right hand 

side) had a pattern of 1, 2, 3 and 4 sets of numbers. She likened that pattern of numbers to 

the first 4 rows of another drawing (Figure 2) where the circles represented that same 

pattern of numbers. The spatial representation of the circles in each row i.e. 1, 2, 3, and 4 

automatically indicated to her a total of 10. Continuation of the spatial pattern meant to her 

that the next two rows would equal 11. Therefore the total number of items had to be 21 

because she stated that was a pattern that she had learned when she was much “younger”. 

 

 
 
 
 
 
 
 
 

Figure 2. Drawing of circles to support addition of possible outcomes shown in Figure 1 

2) Adding up all the Possible Outcomes 
After being prompted to consider more possible combinations when throwing two dice, 

Marino then added to her recordings shown in Figure 1. 

 

Figure 3. Total number of combinations noted by Marino when throwing two dice and subtracting the 

numbers 

When asked how many outcomes there were when looking at her recording, Marino 

recognised and utilised another pattern. She started from the right hand side of Figure 3 

and counted the number of combinations in each column and stated: “1, 3, 5, 7, 9, 11 is 

36”. Only when asked to explain her mental addition strategy to a very puzzled researcher, 

did she record “1, 3, 5, 7, 9, 11” on the sheet as shown in Figure 4.  She then explained that 

“11 is 10 +1” (as shown to the right of 11), “…then you have 9+1 (left hand side column)) 

is 10 (right hand side column), then 7+3 is 10 and 5 is 36 altogether”.  
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Figure 4. Numbers recorded by Marino when adding total number of combinations shown in Figure 3. 

3) Alternative Presentation of Findings 
When asked if she could present her findings in another way Marino was able to show 

quickly in an array the outcomes when throwing 2 dice and finding the difference as shown 

in the Figure 5. 

 

Figure 5. Array showing outcomes when throwing two dice and subtracting the numbers. 

To find the “chances of getting a zero” Marino counted the number of zeros on the 

array and said six. She stated that there were 36 possible outcomes altogether on the array 

when throwing two dice and subtracting the numbers and the fraction for the chances of 

getting a zero was 6/36. When asked if 6/36 could be stated as another fraction, Marino 

said that it was the same a 1/6.  

“He ōrite ngā nama e rua nā te mea e ono ngā ono i roto i te 36”  

(The two numbers are the same because there are six sixes in 36). 

Marino stated “He koretake te rima…Ko te tahi te nama pai. Ko te tekau o te toru tekau mā ono ka 

puta mai te tahi”. 

(…Five is useless…One is a good number. One will appear ten out of thirty-six times). 

4) Making Connections between Fractions and Percentages  
When asked what one sixth would be as a percentage, Marino showed in Figure 6 that 

it was about 16.5%. Marino explained that 1/3 of 100 is 33.5 If dividing that by 2 you get 

about 16.5. Therefore 1/6 is the same as 16.5 because a half of one-third is a sixth. 

297



 

Hāwera and Taylor 
 

 

 

Figure 6. Marino’s recording of the link between fractions and percentages. 

Discussion 

This student was able to recognise patterns and use her knowledge and strategy 

development in number to support her to calculate all possible outcomes and the chances 

of an event occurring in probability. For example, she was able to calculate how many 

combinations there were in the recording (Figure 1), based on connections she made with a 

spatial pattern. Her immediate recognition of the recorded sets of numbers in a triangle 

(Figure 1) and knowledge that the first four rows of the pattern (Figure 2) would equal 10 

with the next two rows equalling eleven, made it easy for her to add the two totals together 

to quickly determine that there were 21 possible outcomes.  This thinking indicated that the 

spatial pattern with perceived links to number was a mathematical idea that she had met in 

the past and had become an example of “predictable regularity” (Mulligan & Mitchelmore, 

2013). She was familiar with the spatial pattern and its associated number sequence and 

knew from past experience that it would be ‘true’. 

The ease of calculation to 21 enabled Marino to then respond to prompting about the 

possibility of determining other combinations when throwing two dice. She was able to 

move forward and reason that there were other possible outcomes for this task and 

therefore reconsider her original total of outcomes. Accurate working out of the sample 

space is a crucial aspect of probabilistic thinking (Jorgensen & Dole, 2011).   

Failing to understand all the possibilities that a particular context offers reinforces 

misconceptions about all possible outcomes. There was a need to support Marino to think 

more deeply about other combinations when throwing two dice so that she could 

appreciate that probability idea. A fundamental premise of supporting learners to develop 

probabilistic thinking is helping them to recognise and address misconceptions that might 

be held (Barnes, 1998; Neill, 2010).  

Students with sound number sense can see numbers in a range of combinations and 

groupings (Jorgensen & Dole, 2011). When it came to calculating the total number of 

outcomes (36) Marino demonstrated use of a “Make 10” number strategy that she had 

learned earlier in her mathematics education. This part whole strategy is one that is 

promoted early for children to learn in their formal mathematics education in New 

Zealand. Her obvious awareness of the predictable regularity of the tens pattern and how 

numbers can be restructured to create it (Mason, Stephens & Watson, 2009; Mulligan & 

Mitchelmore, 2013), assisted her to apply that knowledge in a probability context and not 

be hampered by the mechanics of calculation. 

The systematic recorded representation that Marino presented in Figure 5 showed the 

arithmetical difference that results when throwing two dice. The picture meant that she 
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could easily count or quantify the likelihood of any number in the zero to five range 

appearing in this context. She was able to link these numbers to the 36 possible outcomes 

and make a fraction.  Children need to draw on fractional number knowledge when the 

context demands, so that the probability ideas can be realised.  

“Six out of 36” is a number idea that children have to take further when developing 

ideas about probability. They need to make meaning of such fractions according to the 

probability context that has been presented. While Marino abandoned the ‘dolphin 

scenario’, the context of throwing two dice and subtracting the numbers remained. The 

‘best’ theoretical outcome still had to be ascertained by comparing the various numerical 

probabilities of each. The uncertainty of particular outcomes needed to be quantified if the 

focus of the learning was to be about developing probabilistic numerical reasoning (Jones, 

Langrell, Thornton & Mogill, 1997). 

Assigning a numerical probability measure to an event can be demonstrated in a 

number of ways. Marino showed that she was able to make connections between fractions 

and percentages and understood key ideas of equivalence. She understood the relative size 

of fractions; that a third is equivalent to two sixths and is therefore approximately 33.5%. 

She understood that a sixth as a percentage could be found by dividing 33.5% by two. The 

ability to make rapid connections between common fractions (1/3 = 2/6) and then between 

fractions and percentages allowed Marino to express the probability of an event occurring 

in a variety of ways as expected of Year 7-8 children in New Zealand (Ministry of 

Education, 2010). 

Conclusion 

Research suggests the importance of children having sound number ideas if they are to 

explore and develop appropriate quantitative probabilistic thinking. The task-based 

interview has provided some specific examples of instances where number sense proved 

critical for determining the chance of an event occurring. The ease of accessing and 

understanding the probability ideas was enhanced by a facility with number. Working with 

a task that was easily accessible, that encouraged the use of concrete materials and 

inherently provided opportunities for reasoning and communicating, supported 

engagement with the probability concepts. Being able to record and express significant 

ideas in a variety of ways indicated a security with two related but distinctly different ways 

of thinking. Despite limited formal development in probabilistic thinking, early 

development with numerical and spatial patterns provided a platform to support 

investigation of probability ideas. A limitation is that this paper examines just one rich 

example of how a child’s robust in number can support learning and understanding in 

probability. There would be merit in examining further task-based observation and 

interview data with a wider sample of learners to make a stronger argument for the 

significance of number understanding in a probability context. 
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In this paper, an examination of students’ relationships with mathematics is informed by 
affective research into internal mathematical structures and identity research into students’ 
narratives. By analysing the perceptions of a class of 31 adolescents, five interacting 
elements emerged: students’ views, feelings, mathematical knowledge, identities, and 
habits of engagement. These elements contributed to the context within which students 
engaged in mathematics and resulted in their unique learning experiences. This framework 
has potential for researching aspects of students’ mathematical journeys and can be used by 
teachers to get to know individual students’ unique connection to the subject of 
mathematics. 

Introduction 
A secondary school mathematics classroom is a physical space shared by a teacher and 

a group of students who have a set of shared norms. They generally work on the same 
mathematical tasks. Despite these similarities, students engage in mathematics in different 
ways. Some relish the experience, investigating and discussing further possibilities. Some, 
bored and restless, follow the necessary steps to get the task over with as quickly as they 
can. Some steel themselves to have a go, checking the answer frequently and feel lucky if 
they get it correct. Others avoid the situation by chatting socially or sharpening their 
pencil. 

Students engage in mathematics in different ways because they have unique 
relationships with the subject. A student’s relationship with mathematics is defined in this 
paper as the dynamic connections between the student and the subject of mathematics. 
This concept has strong links to notions of mathematical self or self-identity found in 
affective and identity research. This literature informed the examination of a group of 
students’ relationships with mathematics. This paper reports specifically on these 
relationships as one aspect of a larger, longitudinal study (Ingram, 2011). The elements of 
these relationships are specified in this paper and the potential for using this framework in 
research and practice is explored.  

Affect 
Learning mathematics is an emotional practice that generates a range of affective 

responses. Affect describes the experience of feelings and emotions (McLeod, 1992). 
Research into affect in mathematics education explores these as well as other elements in 
the affective domain such as motivation, anxiety, engagement, attitudes, identity, and 
beliefs. These elements interact in complex ways and holistically researching across 
elements is valuable (Grootenboer, 2003). 

One aspect of affective research in mathematics education is the conceptualisation of 
individuals having stable internal structures that relate to mathematics. These have been 
variously described as a global affective structure (DeBellis & Goldin, 2006), self-system, 
(Malmivuori, 2006), mathematical disposition (Op 't Eynde, De Corte, & Verschaffel, 
2002), or identity (Op 't Eynde, De Corte, & Verschaffel, 2006). These structures generally 
contain the following elements: 
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• Beliefs about mathematics which incorporate students’ personal, internal and 
shared subjective conceptions about mathematics, mathematics teaching and 
learning, about themselves in relation to mathematics, and about the context 
(Malmivuori, 2006; Op 't Eynde et al., 2006); 

• Related goals and needs related to autonomy, competency, and social belonging 
(Hannula, 2006); 

• Other global affects such as values and attitudes (DeBellis & Goldin, 2006); 
• Mathematical content knowledge such as the facts, symbols, concepts, and rules 

that constitute mathematics (Malmivuori, 2006). Strategies for accessing and using 
knowledge to solve problems (Op 't Eynde et al., 2006); 

• Meta-knowledge, which involves knowledge about meta-cognitive functioning and 
knowledge about affect and its use (Malmivuori, 2006);  

• Habitual affective pathways and behaviours in mathematics, including affective 
skills (DeBellis & Goldin, 2006). 

These structures develop from students’ previous experiences with mathematics in 
social environments (Malmivuori, 2006). They form part of the context within which 
students learn mathematics. When learning, students interpret the mathematical situation 
according to their internal structure. As a result, they experience a wide range of unique 
affective responses, which can be unstable, hot emotions, with accompanying 
physiological arousal such as anxiety or joy, or they can be less hot responses such as 
boredom or interest. These provide information for the individual about their progress 
towards their needs and related goals and may disrupt or distract the learning process and 
affect the level of capability while performing mathematics. This information activates 
self-appraisals, which thus determine how a student approaches the mathematical task, 
depending on their current level of awareness, control, and regulation capacities. These 
processes result in unique performances and new learning experiences. Students’ 
interpretations of these experiences reinforce or, if sufficiently powerful or repeated often 
enough, alter these structures. 

This research generally views students’ learning as a product of individual cognitive 
processes and students are usually researched outside of a classroom context in problem 
solving situations, rather than within the social context of the mathematical classroom. 
Furthermore, there are few examples in the affective literature of students’ perspectives of 
how their affect and learning are associated. 

There has been some recognition of learning as a social process and connections made 
between affect and identity. Op ‘t Eynde et al. (2006) see learning as taking place through 
engagement in the language, rules, and practices that govern activities in the community of 
the mathematics classroom. They connect affect and identity: 

[Students’] understanding of and behaviour in the mathematics classroom is a function of the 
interplay between who they are (their identity), and the specific classroom context. Who they are, 
what they value, what matters to them in what way in this situation is revealed to them through their 
emotions” (p. 194). 

The elements of a student’s internal structure related to mathematics need to be viewed 
as both collectively and individually constituted through participation in the shared 
practices of the mathematics classroom. To understand better how students’ learn 
mathematics, there seems to be potential in better understanding connections between the 
notions of a student having stable internal structures relating to mathematics and ideas of 
mathematical identity. It is these connections that are now explored.  
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Identity 
Identity is variously seen in mathematics education research as how an individual 

names themselves and how they are looked on by others (Grootenboer, Smith, & Lowrie, 
2006), self-concept (McFeetors & Mason, 2005), a performance (Darragh, 2014), or a 
narrative about a person (Kaasila, Hannula, Laine, & Pehkonen, 2005). Many researchers 
in mathematics education (e.g., Boaler, 2000; Op 't Eynde & Hannula, 2006) are informed 
by Wenger (1998) who defined identity as a constant becoming of who one is in a 
particular social context. 

Sfard and Prusak (2005a, 2005b) take a dynamic view of identity powered by their 
investigation into the differences in mathematical learning processes between immigrant 
students from the Soviet Union and native Israelis. They dispute any process of defining 
identity as who one is, just as they reject notions of God-given personality, ethnicity, and 
nature; essentialist visions of identity, which “seem to be saying that there is a thing 
beyond one’s actions that stays the same when the actions occur” (Sfard & Prusak, 2005b, 
p. 15). They developed a narrative approach to identity and see identity formation to be a 
form of communicational practice. In their view, identities are the stories that surround a 
person. “No, no mistake here: We did not say that identities were finding their expression 
in stories – we said they were stories” (Sfard & Prusak, 2005b, p. 14). Specifically, Sfard 
and Prusak (2005a, 2005b) and later Sfard (2008), equated identities to be those stories 
surrounding a person which are:  

• Reifying – the transformation of an action into a state which suggests repetitious 
behaviour through the use of the verbs be, have, can, and the adverbs always, 
never, usually. 

• Endorsable – the identified person (the person the story is about) endorses that the 
story reflects the actual or expected state of affairs. 

• Significant – if any change in it is likely to affect the storyteller’s feelings about the 
identified person particularly with regard to membership of a community. 

A person has a number of stories told about them by multiple narrators, including 
themselves. Stories consist of a person’s self-dialogue (thinking), spoken-out-loud stories 
about themselves or other people, stories told about them by other people, interactions with 
other people, and reactions to events. There are also those stories told about that person by 
other narrators. Identities, according to Sfard and Prusak (2005a, 2005b) also included 
extra-discursive (or mind-independent) stories, such as examination results, certificates, 
and report grades, referred to as institutional narratives. 

Sfard and Prusak (2005a, 2005b) divide a person’s multiple identities into two sets of 
identities. Actual identities are attempts to overcome the fluidity of change by freezing the 
picture (Sfard & Prusak, 2005a, 2005b). These stories are factual assertions about a person, 
and can be identified by the use of I am or he is sentences told in the present tense, such as 
I am bad at maths or He is a good mathematician. Designated identities – I should be 
stories – have the potential to become part of one’s actual identity, and influence one’s 
actions to a great extent. Sfard and Prusak (2005a, 2005b) usefully link affect, learning, 
and identity because they suggest there is likely to be a sense of unhappiness in a person 
when there is a perceived and persistent gap between a student’s actual and designated 
identities.  

In the affective research, students are conceptualised as having internal structures that 
connect themselves and mathematics. Viewing identity as a narrative does not discount this 
view. Students’ designated identities are similar to the affective notions of self-directive 
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constructions (Malmivuori, 2006) and needs (Hannula, 2006). Hannula  (2006) described a 
students’ needs as relatively stable and there was stability evident in the students’ sets of 
designated identities in Sfard and Prusak’s research (2005a, 2005b) because of their 
cultural basis. This view of identity as a narrative adds the social to the elements in the 
internal structure and adds to understanding about how students’ internal structures 
change. Using the phrase internal structure from the affective literature now seems too 
static to describe this very dynamic process. Students’ relationships with mathematics’ 
seems a better fit. 

Learning is seen here as engagement in practices of the mathematics classroom and in 
other communities of practice. The students negotiate the meanings constructed from their 
interpretations of their learning experiences and these meanings either reinforce or alter the 
elements of their relationship with mathematics. A student’s relationship with mathematics 
is therefore understood in this paper to have both individual and shared elements that are 
constantly changing. It is these elements that this research seeks to identify. Specifically, 
this research seeks to investigate the nature of students’ relationships with mathematics 
and how these relationships are associated with mathematical learning. 

Methodology 
The 31 participants attended a co-educational school in New Zealand. They were from 

the same class so the social norms and views of the class as a whole could be examined as 
well as the affect and identities of the individual students. Students in Year 10 (aged 14-15 
years) were researched because understanding adolescents’ relationships with mathematics 
is vital because they are on the “brink of deciding whether or not to pursue mathematical 
studies” (Nardi & Steward, 2003, p. 346). 

The methodology of this research was informed by the affective research into students’ 
internal structures and Sfard and Prusak’s (2005a, 2005b) narrative view of identity. Sfard 
and Prusak (2005a, 2005b) operationalised the notion of identity by gathering evidence of 
students’ spoken identities. Their research is based around what students say, rather than 
on the researcher or teacher’s perceptions of what is going on in the classroom. 

A qualitative framework was employed in this research. The data collected included 
observations of mathematics and English classes, interviews, metaphors for mathematics, 
drawings of mathematicians, personal journey graphs, questionnaires, exercise books, 
assessment results, reports, prizes, and attendance. The teachers were interviewed. 
Informed by Evans (2000), affective indicators were sought such as verbal expressions of 
feelings, the use of metaphors, negative or positive self-talk, body language, avoidance, 
and resistance. Other data collected were students’ reflections on their experiences, their 
views of mathematics, and the language they used to describe mathematics. The students’ 
identity stories were collected mainly through the interviews. Decision-making permeated 
the process of data collection and analysis.  

The data was analysed using a grounded theory approach of constant comparison to 
seek, refine, and understand the interrelationship of the emerging elements of a students’ 
relationship with mathematics. A data analysis software package NVivo (QSR 
International, 2006), helped to manage the large data set and aid the analysis. 

Results 
The students described relationships with mathematics that had five elements: 
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1. Views of mathematics: Subjective conceptions students hold to be true about 
mathematics. The students had views about the nature, uniqueness, importance, and 
difficulty of mathematics and perceptions of how boring the subject was. 

2. Macro-feelings: Coined by the students, macro-feelings are a student’s overall 
feelings about the subject of mathematics. These feelings contributed to the context 
within which they engaged in a specific mathematical activity. When a student had 
negative macro-feelings for the subject of mathematics, they were more likely to 
have negative micro-feelings; the feelings they experience during each 
mathematical situation. 

3. Identities: The students each had a unique set of identities related to their view of 
their mathematical ability. They had designated identities – overall expectations 
about mathematics, which included commonly held expectations of class 
placement, individual expectations related to class positioning and how they 
expected the subject to contribute to their future life. They also had actual identities 
– perceptions of how good they were at mathematics, which developed through 
their interactions with others and through their experiences of success and failure 
when they engaged in the mathematics.  

4. Mathematical Knowledge: The students had different levels of mathematical 
knowledge, which students talked about in relation to their knowledge of facts and 
mathematical rules that they knew off by heart. 

5. Habits of engagement: The students engaged in mathematics in habitual ways that 
developed over time. Among were the students’ pathways of engagement – the 
ways they usually engaged in the mathematical tasks. 

The elements of students’ relationships with mathematics were both shared by the 
classroom community and unique to the individual. For example, the class shared common 
views about their expectations of their teachers, yet individual students had unique macro-
feelings about mathematics and unique perceptions of their own mathematical ability. The 
elements also interacted in complex ways. The students’ macro-feelings about the subject 
of mathematics were associated with their views of mathematics and were situated in the 
gap between their actual and designated identities. The students’ mathematical knowledge 
was closely linked to their views of the nature of mathematics. The ways the students 
habitually engaged in mathematics were associated with their macro-feelings, their views 
of mathematics, and their identities. 

Figure 1 summarises the process of change in students’ relationships with mathematics. 
Their relationship with mathematics contributed to the context within which they engaged 
in the task. Students’ views of mathematics led them to judge the task’s importance and 
difficulty. Their identities led them to have expectations of success. The ways they 
habitually engaged in mathematics, interacting with the other elements, affected their 
engagement in the task. Macro-feelings contributed to the micro-feelings they experienced 
during the task. Furthermore, when the students engaged in a mathematical task, they were 
each situated in a unique context of the moment. Even when they were experiencing the 
same classroom conditions – the same teacher, at the same time of day – the students each 
interpreted the context in a unique way. Students’ engagement in the mathematical task 
was therefore determined by the complex negotiation between elements of their 
relationship with mathematics and the context of the moment.  
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Figure 1. Students’ relationships with mathematics 

During students’ engagement in the task, they collected evidence of their progress. 
They experienced micro-feelings as they interpreted whether or not their progress met their 
expectations of success. In Figure 1, the students’ expectations and evidence of progress 
are represented within a circle to show that they surround a student’s micro-feelings, and 
the arrows around this circle show that students’ progress can alter expectations of success 
or vice versa. The way students engaged in the task contributed to their individual 
experiences and performances, with the way they interpreted these experiences, in turn, 
reinforcing or altering components of their relationship. These elements, described above, 
emerged from examining students’ perspective of their mathematical learning, yet there are 
some similarities between these and the components of a student’s internal structure, 
described in the affective research. Both include elements relating to knowledge, beliefs, 
affect, expectations, and habits. Both include aspects of change and stability. The students’ 
views about school mathematics are similar to the beliefs about mathematics that other 
researchers found, but these categories emerged from the students’ perspective, rather than 
in response to prompts in a questionnaire. Similar to Op ‘t Eynde et al.’s (2006) conception 
of a belief, students’ views of mathematics were socially constructed and situated in the 
context of the mathematics classroom, and dynamic.  

Mathematical knowledge is generally defined as the facts, symbols, concepts, and rules 
that constitute the contents of mathematics as a subject field, as perceived by the 

306



Ingram 

community of mathematicians (Op 't Eynde et al., 2002). When students in the current 
research talked about mathematical knowledge, they usually meant the rules they had been 
taught by their teacher. The students’ knowledge was co-created by the community of the 
classroom, and may be different to how mathematicians might conceive of mathematics. 
As discussed by Schoenfeld (1992), the students’ conception of knowledge was related to 
the way the students were taught mathematics – as a series of rules, given with specific 
examples, and reinforced by practice of that rule from the textbook. 

A student’s macro-feelings are similar to DeBellis and Goldin’s (2006) 
conceptualisation of global affect and McLeod’s (1992) notion of a student’s attitude to 
mathematics: stable over time compared to transitory emotions. The students’ macro-
feelings in this research were relatively stable compared to their micro-feelings. The 
students also described, in some detail, the pathways they usually took when attempting a 
mathematical task (i.e., their pathways of engagement), a term adapted from Goldin’s 
(2004) use of the term affective pathways to describe individual’s dynamic problem 
solving processes at a task level. The students used it in a more macro sense to describe 
their habitual pathways of engagement, as described in Ingram (2013). 

Conclusions and Implications 
Combining the affective concept of students having internal mathematical structures 

with identity research into narratives informed this examination of students’ relationships 
with mathematics. Students’ relationships with mathematics were found to have five 
elements: views of mathematics, macro-feelings, identities, mathematical knowledge, and 
habits of engagement. These elements provided part of the context within which the 
students’ engaged in mathematics and contributed to their unique learning experiences. 
The students’ interpretation of these learning experiences reinforced or changed the 
elements of their relationship with mathematics. 

This paper has captured the relationships with mathematics of students in one class. 
These relationships are connected with that particular context, although there were 
similarities with students in other classrooms, both in New Zealand (Averill, 2009) and 
internationally (Boaler, 2000). Despite this, the potential of defining the elements in a 
student’s relationship with mathematics has begun to be realised. The framework of 
elements was used to analyse the 31 students over two years of their mathematical 
journeys as they continued to participate, or not to participate, in mathematics (Ingram, 
2011). It was used to provide a context for a closer examination of students’ engagement 
(Ingram, 2013), the influence of the parents and teachers, and to explore the tensions 
between social and mathematical identities (Ingram, 2008). The elements of students’ 
relationships with mathematics have also been communicated to both in-service and pre-
service mathematics teachers in New Zealand to provide understanding of how affect and 
identity play a part in students’ learning and to provide a framework for getting to know 
their students. 
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When viewed through a lens of embedded cognition, algorithms may enable aspects of the 

cognitive work of multi-digit multiplication to be ‘offloaded’ to the environmental structure 

created by an algorithm. This study analyses four multiplication algorithms by viewing 

different algorithms as enabling cognitive work to be distributed across environmental and 

mental resources to varying degrees. This produces a plausible framework which could 

allow further analysis designed to guide the pedagogical use of alternative algorithms. 

Many students struggle to learn the traditional written algorithms introduced in primary 

school (Pearn, 2009). Heirdsfield (2004) states: “vertical algorithms dictate a rigid 

procedure, and do not lend themselves to encouraging students to manipulate numbers 

flexibly” (p.8). However, Westwood (2000) suggests that: 

children should have no problem mastering these procedures [algorithms] if they are linked as 

closely as possible with the more informal methods … that are typically used by children … 

difficulties arise if the processes are taught without reference to children’s prior learning or way of 

recording (p. 47). 

While many teacher publications (such as Randolph & Sherman, 2001) have advocated 

that alternative algorithms may be beneficial for students, there is less written regarding 

exactly how and why an alternative algorithm may help students (Carroll & Porter, 1998). 

This paper uses a theoretical framework based on embedded cognition to try to assess how 

different algorithms may impact on the cognitive demands of multi-digit multiplication. 

This analysis may provide some explanation as to why some students develop a preference 

for an alternative algorithm, enable such preferences to be used to diagnose student 

understanding and suggest a framework which could demonstrate when teaching an 

alternative algorithm may or may not be justified. This paper focuses on alternative 

multiplication algorithms that can be used instead of ‘traditional’ long multiplication for 

multi-digit problems. 

Student use of Alternative Algorithms for Multiplication 
‘Alternative’ algorithms are defined in contrast to the ‘traditional’ algorithm which is 

sometimes referred to as long multiplication (West, 2011). Many articles which explain 

alternatives to long multiplication are aimed at helping teachers learn how to use these 

alternatives so that: 

Students’ individual needs and styles are the focus of lessons on alternative algorithms. Using these 

options, students develop their own understanding of, and skills in, arithmetic operations, enhancing 

their decision-making and critical thinking skills (Randolph & Sherman, 2001, p. 484). 

Advocates of alternative algorithms tend to argue that they may be of benefit to 

students because knowing alternative methods improves general understanding. It has been 

noted that some students develop a preference for some algorithms. Lattice multiplication 

is one such alternative algorithm – an example is presented in Figure 1 and explained in 

detail in Results. When Carroll and Porter (1998) described the method they noted that, 

“although the reasons are not obvious to us, this method has proved to be very popular 

with students” (p. 111). They also note that low-achieving students tend to like this 
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method, perhaps because of its structure. If low achieving students prefer an algorithm 

such as the lattice method, then perhaps there is something about either the lattice method 

or student understanding which explains this preference. Also, if students’ general 

understanding of mathematics is enhanced by use of alternative algorithms, some 

investigation of the mechanisms which underpin this seem warranted. This study uses a 

framework of embedded cognition to attempt to make sense of students’ use of alternative 

algorithms. The analysis seeks to provide a lens which enables alternative algorithm use to 

be interrogated in more detail. If alternative algorithms can cater to students’ individual 

needs, as Randolph and Sherman (2001) state, then one should ask which student needs an 

alternative algorithms addresses. Embedded cognition, described in the next section, 

provides a method for analysing how cognitive work can be distributed across mental and 

environmental resources. It is hypothesised that different distributions of this cognitive 

work by different algorithms may change the mental demands placed on students as they 

solve a problem.  

 
Figure 1. 34 × 26 using the lattice algorithm 

An Embedded View of Cognition 
Embedded cognition posits that cognition is embedded in an environment. This means 

that people use environmental structures to ‘offload’ cognition so that cognition is 

distributed across both environmental and mental resources (Kirlik, 2007). It is theorised 

that the environment provides a direct model of a problem and that a person can use and 

create environmental structures which offload cognition, using a combination of mental 

and environmental resources to perform tasks which, traditionally, have been seen to occur 

purely mentally. 

Kirlik’s (2007) model of embedded cognition has been developed in the research field 

of Human Factors and Ergonomics. It draws on situated theories of learning, such as those 

developed by Greeno (1998), to describe the interaction between workers and their task 

environments – mainly in Kirlik’s main field of interest, aviation. While situated learning 

theorists often focus on how learning is situated within complex social entities (Greeno, 

1998), Kirlik’s focus examines how cognition is situated within a physical task 

environment. This paper seeks to assess whether the view that cognition can be ‘offloaded’ 

to physical environmental structures could provide a productive lens to understand how 

children develop preferences for particular algorithms. Kirlik’s view of embedded 

cognition would suggest that, when children use different algorithms, they may be able to 

manipulate or utilise environmental structures, in such a way as to ‘offload’ cognition and 

reduce demands made on mental resources. Information can be stored and updated in the 

environment. A calculation can be separated into simpler calculations. Each of the simple 

calculations can be performed mentally, then results can be stored in the environment and 

combined with the results of other calculations at a later time, so that running totals of 

simple calculations do not have to be maintained mentally. By writing or typing 

information into an algorithm’s predetermined structure, not only can information be 

stored, but cognitive processes can be ordered and coordinated. Just as Kirlik (2007) has 
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argued that professionals in aviation are able to improve their task performance by 

effectively distributing ‘cognitive work’ across both mental and environmental resources, 

algorithms may facilitate more effective computation via a similar process of offloading. 

What ‘Cognitive Work’ do Algorithms Perform? 
For the purposes of this study, multiplication algorithms are being viewed as cognitive 

aids which enable a multiplication problem to be broken up into a series of less cognitively 

demanding subroutines. The authors distinguish between two phases in multiplication 

algorithms – a multiplication phase and an addition phase. For example, when calculating 

34 × 26, most algorithms enable 34 × 26 to be calculated by separating 34 × 26 into a 

series of simpler calculations (e.g. 6 × 4, 6 × 3, 2 × 4, 2 × 3). Kilian, Cahill, Ryan, 

Sutherland, and Taccetta (1980) found that 32% of student errors occurred using the 

traditional algorithm related to miscalculation in this multiplication stage. 

During these calculations, the place value position of the numbers being multiplied 

may be suspended. When calculating 34 × 26, 30 must be multiplied by 6. Algorithms 

which suspend place value enable this calculation to be carried out as 3 × 6. If an algorithm 

suspends place value, then successful use of the algorithm requires some cognitive work 

which recognises that this 3 × 6 is in fact 3 tens × 6 (and is therefore 18 tens rather than 

18). Kilian et al. (1980) found that 18% of student errors involving the traditional 

algorithm related to place value. 

As algorithms break 34 × 26 into a series of simpler calculations another cognitive 

demand of using the algorithm entails ensuring that all of these simpler calculations are 

performed. The term ‘completeness’ is used to refer to the cognitive task of ensuring that 

all relevant simpler calculations have been performed. Kilian et al. (1980) found that 7% of 

students’ errors using the traditional algorithm involved missing one of these simpler 

calculations. 

In the addition phase, the products of the simpler calculations performed in the 

multiplication phase must be totalled correctly. This is often performed using a traditional 

addition algorithm which adds like place value parts. Kilian et al. (1980) found that, when 

the traditional algorithm was used, errors in addition calculations were low (9%), but 

‘carrying’ mistakes accounted for approximately a quarter of all errors (24%). One of the 

algorithms analysed does not use a traditional addition algorithm. Instead, the products of 

the simpler multiplication steps are ordered without explicit reference to place value. See 

the line algorithm in Results for a detailed description of this kind of addition phase. 

Method 

West (2011) provided a description of nine alternative multiplication algorithms. In 

this paper we will discuss three algorithms. These three algorithms (Line, Lattice and Area 

multiplication algorithms) were selected because they make use of structures in their 

physical layout. These alternative algorithms are compared to the partial product algorithm 

commonly taught in Australian schools. Each algorithm will be compared to each other 

when used to solve the same problem. A 2-digit multiplied by 2-digit number problem was 

selected (34 × 26) with the numbers being chosen using a random number generator. 

During the multiplication stage of each algorithm, initial analysis will involve 

determining which simpler calculations this multiplication problem – 34 × 26 – is broken 

into. The next analysis involves identifying whether any of these calculations need to be 

performed mentally or can be offloaded to the structure of the algorithm. 
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Place value in the multiplicative stage of each algorithm has been categorised as either 

‘suspended’ or ‘not suspended’. If an algorithm suspends place value, then some cognitive 

work must be performed in order to reinstate place value position after simplified 

calculations have occurred. Algorithms which suspend place value have then been 

categorised according to whether reinstating place value position needs to be performed 

mentally or can be offloaded to the structure of the algorithm. 

Completeness has been analysed in terms of whether this needs to be maintained 

mentally or whether this cognitive task can be offloaded to the structure of the algorithm. 

There are two classifications that have been used in relation to the addition phase of 

each algorithm. Addition phases either employ the traditional addition algorithm or they 

employ a non-traditional addition algorithm which does not add products in place value 

parts (described in the next section). 

Results 

In the following section, each alternative algorithm is analysed separately before these 

separate analyses are compared in Tables 1 and 2. 

 

 
Figure 2. 34 × 26 using the partial product and area model algorithms 

Partial Product Algorithm 
Part A of Figure 2 shows the partial product algorithm broken down into two phases – 

the multiplicative phase and the additive phase. In the multiplicative phase, four single-

digit numbers must be multiplied separately. These calculations must be performed 

mentally. Place value is suspended when these calculations are performed. When recording 

each partial product, place value must be tracked, mentally, by the student. In particular, 

when ‘3’ is multiplied by ‘2’, students must mentally track that this is really 3 tens 

multiplied by 2 tens, and thus, the product is 6 hundreds. A significant amount of mental 

cognition must be employed to track that the product of digits in the second column need 

to be recorded in the third column. Hence, this algorithm has been classified as requiring 

mental cognition to maintain place value. Completeness is also only partially helped by the 

structure of the algorithm. The common approach is to start with the right most digit of the 

bottom row number and multiply this by the digits of the number on the top row starting 

from left to right. However, there is no element of the structure of this algorithm which 

enables students to visually recognise if they have missed a step. Hence, this aspect of the 

cognitive work of using the algorithm has been coded as requiring mental cognition. 

In the addition phase, the column structure of the algorithm allows each place value 

part to be totalled separately. When the second column results in a total greater than 9, 

‘carrying’ is used. Then students must recognise the need to move into the next column, so 

that 18 tens is renamed as 1 hundred and 8 tens. 
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Area Model Algorithm 
Part B of Figure 2 shows the area model algorithm. An area model is used to model the 

problem and the resulting rectangle is partitioned into four separate areas. Place value parts 

are used to partition the rectangle so that the side of the rectangle which is 34 long is 

separated into two segments which are 30 and 4 long respectively. The area of each of the 

four partitions is arrived at by multiplying 4 × 6, 6 × 30, 20 × 4 and 20 × 30. While this 

entails multiplication of more than a single-digit number, the 2-digit numbers do not 

contain a non-zero digit in the ones-digit position, which reduces the difficulty of the 

calculation. This enables calculations to be performed mentally. When this algorithm is 

used, place-value positions in the multiplicative phase are maintained throughout. 

Furthermore, the structure of algorithm provides a visual representation of the magnitude 

of the products of multiplication – the 30 × 20 partition looks considerably bigger than the 

20 × 4 partition. As partial products are recorded in each of the four partitions of the 

original rectangle, completeness is offloaded to the structure of the algorithm. In the 

addition phase, a traditional addition algorithm is used which has the same processes as a 

partial product algorithm. 

Line Algorithm 
Figure 3 shows the line algorithm. The horizontal lines represent 34 as there are 3 lines 

grouped at the top and 4 lines grouped at the bottom. The vertical lines represent 26 (2 

lines to the left and 6 lines to the right). Diagonal lines (dotted in Figure 3) are used to 

create three areas. The number of line intersections in each area are then counted and 

totalled. In the top left region, there are 6 line intersections, 26 intersections in the middle 

region and 24 in the lower right region. 

 
Figure 3. 34 × 26 using the line algorithm 

This algorithm allows the problem to be solved without using mental multiplication 

calculations. A student could use a ‘count all’ strategy to total the number of line 

intersections. Hence, the structure of the algorithm enables 34 to be multiplied by 26 

without having to mentally perform any multiplicative calculations. Place value is 

suspended and does not need to be tracked mentally. Completeness is supported by the 

structure as long as all line intersections are counted. 

In the addition phase, the three products (6, 26 and 24) need to be combined. Starting 

with the right-most total (24), digits not in the right-most position are added to the number 

on the left. Thus, the ‘2’ digit in 24 is added to 26 to get 28, the ‘2’ digit in 28 is added to 6 

to get 8. This produces the number 884 as the final product. In this phase as well, the 

student does need to keep track of place value parts because of the structure of the 

algorithm. If place value is maintained in this algorithm, then the three products derived 

from this algorithm are 600, 260 and 24, and the addition phase of the algorithm combines 

these. However, the algorithm enables these products to be combined without having to 

mentally reinstate place value. 
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The Lattice Algorithm 
Figure 1 shows the multiplication and addition phases of the lattice algorithm. Like the 

partition product algorithm, four pairs of single-digit numbers are multiplied. The products 

of these calculations are recorded differently. When 2 is multiplied by 6 it is recorded in 

the grid where the tens-digit is recorded above the diagonal line and the ones-digit is 

recorded below (e.g. 2/4 for the total twenty-four). If there a product is less than 10 (e.g. in 

the case of 2 × 4), a zero is recorded above the diagonal line (e.g. 0/8).  

Calculations during the multiplication phase are performed mentally and place value is 

suspended. The lattice structure of this algorithm maintains the place value position of 

these digits so that they do not have to be maintained mentally. This structure ensures 

completeness without requiring any mental effort on the part of the student as all parts of 

the grid need to be filled. 

In the addition phase, the dotted arrows on Figure 1 indicate which numbers need to be 

added together. Following the diagonal lines of the lattice, there are four ‘diagonals’ that 

need to be totalled. When the second diagonal results in a total over 9 (8 + 2 + 8 = 18), the 

tens-digit is ‘carried’ to the next diagonal. Each diagonal maintains place value in a similar 

fashion to columns in standard addition algorithms, although zero digits are not needed to 

communicate place value position. 

Table 1:  

Calculations and place value in the multiplication phase of each algorithm 

Algorithm 

Calculation 

 

Place Value (PV) 

Mental Structure 
Suspend 

PV 

Maintain PV position of digits 

Mental Structure 

Partial Product Y N Y Y N 

Area Model Y N N N/A N/A 

Line N Y Y N Y 

Lattice Y N Y N Y 

Comparing Algorithms 
Tables 1 and 2 compare the four algorithms analysed. Each of the four multiplication 

algorithms analysed enable different aspects of the cognitive work of solving a multi-digit 

multiplication problem to be distributed differently between the environment and an 

individual’s mental resources. Multiplication calculations must be performed mentally with 

all algorithms except the line algorithm. Only the partial product algorithm requires 

students to maintain place value mentally – the structure of both the line and lattice 

algorithms allows this cognitive task to be offloaded while the area model does not 

suspend place value.  

Table 2 shows that all three of the alternative algorithms enabled completeness to be 

offloaded to the environmental structure of each algorithm and the line algorithm used a 

non-traditional approach to addition which enabled successful addition to take place 

without mentally maintaining place value position of digits. 
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Table 2:  

Ensuring all multiplication calculations are made and summary of the addition phase 

 Completeness  Addition phase 

Algorithm Mental Structure 

 Traditional PV part 
addition algorithm 

Addition algorithm 
without PV 

Partial Product Y N  Y N 

Area Model N Y  Y N 

Line N Y  N Y 

Lattice N Y  Y N 

Discussion 

Rather than catering to “students’ individual needs and styles” (Randolph & Sherman, 

2001) alternative algorithms – in this analysis – are posited to have a specific impact on 

students’ mental workload. The analysis presented suggests that this view is theoretically 

plausible and could be used to guide further investigation. The lattice algorithm, for 

example, may enable successful calculation of multi-digit multiplication without the need 

to mentally attend to the place value position of component calculations and completeness. 

While Carroll and Porter (1998) could not identify any obvious reason why ‘low 

achieving’ students would develop a preference for the lattice algorithm, viewing students’ 

use of algorithms as embedded cognition provides a theoretical explanation: if the lattice 

algorithm offloads aspects of the cognitive work of solving the problem into an 

environmental structure, students can successfully perform multi-digit multiplication with 

decreased cognitive load. 

If the use of algorithms – like the work of professionals in working environments 

(Kirlik, 2007) – is embedded, and students can use different algorithms to distribute 

cognitive work across both mental and environmental resources differently, then one may 

ask whether all algorithms are created equal; should all algorithms be taught to students; 

and what would warrant the use of a particular algorithm? Viewing algorithms through the 

lens of embedded cognition generates hypotheses which can be tested. If ‘low achieving’ 

students develop a preference for the lattice algorithm (Carroll & Porter, 1998), an 

embedded analysis of the algorithm would suggest that these students may also have less 

understanding of place value than students who use partial product algorithms. Students 

who prefer the line algorithm may also lack effective mental strategies for multiplication. 

Future research may be able to test whether such preferences for alternative algorithms 

correlate with specific mathematical difficulties of students. 

Through the lens of embedded cognition, the traditional partial product algorithm 

enables the least amount of offloading of cognitive tasks to the environment. Completeness 

and place value must be maintained mentally with limited structural support. Kilian et al. 

(1980) found that 56% of students’ errors using a traditional algorithm related to these 

procedural aspects (rather than calculation errors). While the partial product algorithm 

enables a multi-digit problem to be broken down into component calculations, there are 

many mental demands made when using the algorithm beyond calculations. Further 

research may be able to ascertain whether alternative algorithms could be used in a 

sequenced fashion, to enable the mental demands of the partial product algorithm to be 

approached gradually – in that the line algorithm could be used to introduce multi-digit 

multiplication algorithms (with a relatively small mental workload) before transition to the 
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area model algorithm followed by the partial product algorithm. Theoretically, the analysis 

presented in this paper would suggest that this sequence may represent a viable scaffolding 

of the mental demands required to use the partial product algorithm. While further research 

is required to test such a sequence, theoretically it may help students avoid the procedural 

errors Kilian et al. documented with the partial product algorithm. 

Conclusion 

An embedded view of cognition has been applied to four multiplication algorithms to 

assess how the cognitive demands of solving 34 × 26 can be distributed across both 

environmental and mental resources. Results suggest that algorithms differ mainly in 

relation to how place value and ensuring all calculations are made (‘completeness’) are 

supported by algorithms’ structures. This provides a plausible explanation as to why some 

students may develop a preference for particular algorithms as each algorithm requires 

different aspect of the cognitive work of solving 34 × 26 to be completed mentally. Thus, 

alternative algorithms may not be just a matter of individual style but may be used in 

specific ways to enable successful task performance. A traditional partial product 

algorithm offloaded the least amount of cognitive work to the environment and made the 

highest demands on mental resources of the algorithms analysed. Hence, further research – 

guided by a model of embedded cognition – may be able to identify how using alternative 

algorithms may address specific student errors relating to using traditional algorithms. 
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This paper describes the lesson practices at one very remote school that has been highly 
successful in numeracy. Drawing on a significant body of diverse research that promotes 
quality teaching and learning, this case study describes the features of the practice that have 
been implemented across the school. Teachers’ voices provide both justification for the 
adopted practices and insights into why the practices have been effective within the context 
of the school. Finally, consideration is given to the on-going sustainability of changed 
practices within the school. 

 This paper draws on the exemplary work of one site, Balargo, in very remote Australia 
in bringing about success for First Australians – both Aboriginal and Torres Strait Islander 
students – in numeracy.  The paper is structured differently from the traditional research 
paper as it is a case study (Stake & Savolainen, 1995) and so seeks to describe the practices 
of this school. As with the larger project, the case study approach adopted in the project 
sees the research team enter the school context to document the practices of the school. 
Interviews are conducted with key personal (leadership team, teachers, other staff), along 
with lesson observations and document analysis.  A synergy between the interviews and 
observations is sought so as to build rigour and triangulation among the data sources. A 
story is developed by the research team at the completion of a site visit and then negotiated 
with the school until a final story is approved and shared via a public space. The intent of 
the overall project is to develop (and share) case studies of exemplary practice in numeracy 
education and to celebrate the success of quality teaching in remote areas. 

Contextual Statement of the School 
Balargo School (a pseudonym for the school in accordance with the University’s ethics 

guidelines) is located in a remote, isolated region located near the sea and the area abounds 
with much flora and fauna, including crocodiles. There are five communities in the region 
that are made up of both Aboriginal and Torres Strait Islander people. Culture is very 
strong in the region with people retaining many of the ancestral traditions in daily living. 
Being close to the coast, fishing is a major recreational activity as is hunting. The area is 
popular destination for 4WD adventurers in the dry season with 80% of tourists arriving in 
the two months either side of the mid-year school holidays. The communities are 
connected by bitumen roads, but once out of the region, the roads are dirt, and accessible 
by 4WD only. The largest community has a supermarket, bakery, hospital, police station, 
hotel, and a range of service providers. 

In 2008, Balargo decided to build a culture of learning through a focus on literacy and 
numeracy. Through the use of explicit teaching methods, students have come to understand 
the goals of teaching and the approaches being taken. This understanding is believed to 
support a re-engagement of students in learning by allowing them to experience success. 
The approach also aims for students to develop understanding of the purposes of schooling 
leading to consequent improvement in attendance. Since introducing this focus, Balargo 
has progressively built on developing teacher skills in explicit teaching as a pedagogical 
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framework, refining and expanding methods to improve the mathematics teaching 
practices across the school. The impact of this approach is now filtering into the high 
school as the students advance, identifying themselves as successful learners and entering 
the high school ready for learning. The school is trialling many strategies to bring about 
consistency across the three campuses and to build sustainability of the successful practices 
that have been developed by Balargo. There is a strong cohort of regular attenders, 
particularly at the main campus, with many of the students achieving 80% or more 
attendance. 

Balargo operates as an urban school and prides itself in this. Being remote is not seen 
as a valid excuse for lower standards. There are high expectations of learners, teachers, 
leaders, and community.  Teachers are expected to provide a quality education for the 
students, and the school actively seeks to build a strong learning culture. Building this 
culture has taken time and has been sustained over the past two successive principals. 
Many of the teachers and leadership team remain in the school for extended periods of 
time. A number of teachers have been at Balargo for more than 10 years. This has built a 
very stable staff, particularly for a very remote site. 

Defining Success 
Balargo has achieved consistent success in NAPLAN for many years. Since 

implementing the changed practices at the school, Balargo has increased success in 
NAPLAN from the lower band to Bands 3 and 4. Now that there is fluency across many 
aspects of mathematics, the school is focusing on taking student achievement into the 
higher bands. Balargo also uses a range of assessment tools to monitor student 
achievement and growth. These data are used to inform teaching and also to track success 
at the school level. Teachers meet with their Head of Curriculum to discuss data against the 
agreed goals for the class, to discuss plans for numeracy (and literacy) for the whole class 
based on the data, and to develop individual plans for particular students who require 
differentiation. In the following sections, descriptions are provided with regard to the 
principles and strategies used by Balargo to bring about success in numeracy learning. 

Principles for Learning 
In the next two sections, I outline the principles that have underpinned the approach 

adopted by Balargo, and then the specific strategies that have employed to build quality 
numeracy lessons. 

Prioritising Numeracy Learning 
In many remote schools, there has been a priority for literacy learning, where literacy 

blocks have been established to take up the first session of the day, and where approaches 
such as the Accelerated Literacy Program (AL) has been forthright in promoting 
uninterrupted learning for the first session of the day. The research behind AL has shown 
that it is critical for learning to occur in uninterrupted blocks and in the early part of the 
day. There have been many schools in the broader study that dedicate two hours to literacy 
and then one hour to numeracy. However, Balargo has dedicated two hours each day to 
each of literacy AND numeracy. In its early days of reforming Balargo, the leadership 
team had taken a very strong view that literacy and numeracy were the core business of the 
school so that a significant component of the day was dedicated to the teaching of these 
core areas. The final session of the day is dedicated to other curriculum areas. But, it is also 
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noted that numeracy lessons can also be the practical application of mathematical ideas, 
concepts and processes to other curriculum areas (such as science and social science). 

Two-Hour Numeracy Block 
The Numeracy Block is conducted in the second block of the day – from 11.40am -

1.40pm – and is divided into four main activities (see Table 1). The activities can vary in 
structure, form and length depending on the teacher, the student needs, and the topics. So 
while the block appears to be long, it is divided into smaller, distinct phases so as to 
maintain student engagement. 

High Expectations 
Drawing on the work of Sarra and his leadership for learning model, the school has 

adopted the notion of high expectations for Indigenous learners. Sarra (2012) has 
consistently argued that teachers and schools must have high expectations of learners 
(teachers as well as students).  The school adopts the national curriculum and the outcomes 
for the given year level so that students are expected to meet the national outcomes – so 
that there are no lower expectations for learning because of the backgrounds of the 
students. 

Being Explicit 
Balargo has adopted a school-wide structure to mathematics lessons. Teachers follow 

an explicit teaching model where, through careful and explicit scaffolding, students are 
able to complete tasks independently and build a strong sense of success and pride in their 
accomplishments. The Explicit Teaching model (Archer & Hughes, 2011) adopted at the 
school is the “I do, we do, you do” model. This model has been implemented at the school 
for seven years and underpins the approaches in all curriculum areas, including 
mathematics. In this model, the teacher also makes explicit the learning intent for a lesson. 

Teacher:  By telling the students what they are expected to learn, then they know the focus and 
point of the lesson. I often take the intent from the curriculum and then work on it so 
that it is meaningful for the kids. 

Teachers also make the criteria by which they will judge the success of learning. This 
is written alongside the learning intent so that the students can see not only what they are 
expected to learn, but also how they will know if they have been successful. 

Teacher:  The success criteria is important as it helps the students know how they have to show 
me they understand what it is we are learning in maths. 

Whole School Approach 
All teachers at Balargo are expected to adopt the same consistent model.  All 

mathematics lessons are the same format. The rationale: 
Teacher:  The kids need to have the same model so that they can come into class each day and 

know what is happening, what to expect.  You know, their lives are often chaotic, so 
they need consistency at school. They can walk into the classroom and know exactly 
what to expect. Then they can get on with the task of learning. 

The whole school approach is proactively supported by the leadership model that has 
been enacted across the school. This ensures that there is support and compliance with the 
vision of Balargo, particularly in terms of curriculum and pedagogy. 
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Table 1 
Numeracy Block Activities 

Phase of 
Lesson 

Description of Practice 

Consolidation The teacher revises many of the concepts that are foundational to 
mathematics. These are concepts that are usually assumed to be known by 
students but it is recognised that this may not be the case. Topics such as 
time, calendars, conversions, fractions etc. are revised in this session. The 
rationale for this session is that the foundational mathematical concepts 
need to be built into long-term memory so that students then understand 
basic mathematics concepts and can build automaticity with these both. 
The Consolidation phase of the lessons adopt a ‘recite, recall, apply’ 
approach where students will often engage with group chanting of 
mathematics facts (or readings), then the teacher will ask various 
questions to elicit students’ knowledge and understandings; and then the 
concepts are applied to problems. The pacing of this aspect of the lesson 
is brisk. All students are expected to respond to questions, so strategies 
are used for students to display their work (e.g., individual recording on 
boards that are displayed; ladders are used for counting work), which 
allows teachers to assess students’ understanding immediately and to give 
feedback or address problems as they appear. 

Mental Maths Mental maths is a strong feature of the maths block. Teachers scaffold 
students (in the first four days of the week) so that students are able to 
complete the exercises around various concepts. This builds success and 
confidence, and prepares them for the Friday test. The practice activities 
prior to the Friday tests help teachers identify areas where students may 
need further support in order to comprehend the item and be able to 
respond correctly. Students are expected to achieve at least 80% in the 
mental maths quizzes. Their data are displayed on data walls. 

Digital Maths Students access Mathletics and other digital programs (such as apps) to 
support a range of their mathematics skills. The digital environment 
appeals to the students and they actively engage with this medium. Prior 
to the Mathletics activity (usually 2-3 times a week), students are 
scaffolded in the concepts in which they will be engaged online. The 
digital learning also supports independence and engagement. 

Explicit 
Teaching 

Depending on the year level, various (commercial) programs have been 
implemented at the school. There has been an explicit alignment of 
programs used at the school with the Australian National Curriculum (and 
state documents) so that teachers are confident that they are delivering 
learning experiences that align with National Guidelines. In the early 
years of schooling, the school has recently adopted a commercial program 
as a model and aligned this with the National Curriculum and C2C 
learning outcomes. In the middle-to-upper years, the school has adopted 
the Queensland curriculum (C2C) as the basis for this component of 
teaching. The school has sought to ensure that the students are exposed to 
curriculum that aligns with national expectations for all Australian 
students. 
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Strong and Supportive Leadership 
There is a strong leadership team who provide a well-articulated vision of the school 

and have developed support structures to enable the vision to be realised. An important 
factor enabling the school to achieve its current level of success has been the successive 
leadership of two principals who have built and developed the whole of school vision and 
practices. The leadership team explicitly articulate that there is a vision and detail the 
practices with which staff need to comply. This is not negotiable and compliance with the 
vision and associated practices are made transparent to the staff.  All staff work on the 
common approach across the school. Initially commenced at the primary campuses, it is 
now becoming embedded at the secondary campus. The leadership team is structured to 
both support teachers to build their skills and knowledges around the approaches adopted 
at Balargo as well as to maintain a high standard of professional practice across the school. 

Each campus has a Head of Campus who works with the Principal as part of the 
Executive Leadership team. Four curriculum leaders (Head of Curriculum) are also 
employed across the school. The Curriculum Heads assume responsibility for the 
leadership at the grassroots level of the classroom and work closely with the daily practice 
of teachers – supporting teachers with the development of their teaching skills, classroom 
management, lesson planning and data collection/analysis. 

Practices 
In this section, I outline some of the specific strategies that teachers have adopted in 

the classrooms. These align with many of the principles outlined in the preceding sections. 

Hands-On Activities 
Balargo has adopted practices that focus on the use of hands-on activities in 

mathematics lessons. There is a strong belief that students learn best through hands-on 
activities so there is an emphasis on providing a range of activities to engage the learners. 
This is particularly the case in the early years. 

Teacher:  The students here are very tactile learners so we try to make learning maths very 
hands-on for them. It helps engage them with learning. 

Language 
As the students come from an English-as-Second language background, there is a 

strong emphasis on linking mathematical language with Standard Australian English 
language and the mathematical concepts so that the students can make sense of the 
concepts and interactions in the classroom. Teachers focus on many aspects of language 
and have many and rich resources displayed around the classroom. The environmental 
prints in the rooms also support students with various mathematical terms and concepts, 
and are displayed to deliberately prompt the students. 

Recite, Recall, Apply 
A key strategy used by the teachers is the ‘recite, recall, apply’ strategy. A key 

objective for using this strategy on a daily basis as part of the consolidation phase of the 
lessons is to build long-term memory. Teachers reinforce the need for students to learn 
many concepts in mathematics so that these are lodged in long-term memory providing the 
base for success in later years. The focus of the fast pacing of this aspect of the lesson is 
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also to cue students into concepts that could be covered in later segments of the numeracy 
block. This helps to refresh students learning as they build confidence through 
experiencing success. 
Recite: This part of the strategy can include a number of processes used by the teachers. 
Students may use group reading of information that is provided on the Interactive 
Whiteboard (IWB), or they may sing songs.  This aspect of the lesson is undertaken as a 
group. 
Recall: The recall component of the strategy is a fast paced questioning by the teacher 
where simple recall questions are presented so that the general facts are reinforced. 
Apply: Apply questions are posed so that students either demonstrate that they can apply 
the knowledge or successfully address questions that are different in structure but require 
the use of the same knowledge or concept. 
Feedback: Students use resources to provide feedback to teachers. Whiteboards were used 
on which students wrote their responses and teachers could scan the responses to assess for 
learning. 
Praise: When praise was offered, the behaviour being praised was named. 

Seeking and Providing Feedback 
Formative assessment of student understanding is a feature of all lessons. All 

classrooms have adopted a range of processes where students are able to provide individual 
responses to teacher questions. These are typically displayed in some form:  

• Individual whiteboards where the student writes his/her answer and then shows 
these to the teachers. 

• Ladders that are laminated and so can be written on where students can display 
number (or other) sequences 

• Other resources appropriate for the year level of the students 
The teacher is able to scan the classroom and assess students’ level of understanding. 

Individual students may display mis/understandings and teachers are then able to work 
with individual students. The whole class may also show that they have mis/understood a 
key concept and then the teacher can make an informed decision as to where/how to move 
the lesson based on the feedback the students have provided to them. 

When teachers provide feedback to students, they are detailed in their responses – 
whether for mathematical understandings or processes, or for behaviours. The feedback is 
very specific so students are aware of why they are being praised: “I love how Daniel 
didn’t go ‘I don’t know’ – he thought about it and then worked out how many sides were in 
the pentagon.” 

Grouping Students 
The organisation of Balargo is aligned with the learning needs of the students and 

attendance is acknowledged as a key factor in achievement. Year level classes are based on 
attendance, behaviour and achievement. Many of the students who attend regularly are 
working at minimum benchmark or above so these students are clustered into a class set 
where the teachers are able to pitch learning to meet their needs. Students whose 
attendance is less regular, and often have gaps in their mathematics learning, are placed in 
classes where there is a stronger emphasis on differentiation, while those whose attendance 
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is quite poor are in a class where there is an emphasis on Individual Learning Plans (IEPs) 
that meet the needs of the individual learners. 

Environmental Footprints 
Classrooms are rich with resources on the walls. Teachers provide a stimulating and 

rich learning environment with resources to support students in their learning. The intent of 
the resources is to support students to become independent learners and rely on the 
resources (rather than the teacher). To transition students to the use of the resources, 
explicit teaching is undertaken to alert students to how they might use the resources in the 
classroom. These can include the resources on the walls, and other resources that teachers 
may have made available to the students. These include placemats that contain a range of 
mathematical information (calendars, multiplication facts, units and conversions of various 
measures, basic geometric shapes, and solids, etc.). In the various components of lessons, 
teachers make explicit reference to where students might seek support. 

Included in the environmental footprint is the display of student data. Students and 
families are able to see not only achievement but also are also able to track growth over the 
year. Students can readily see their progress and achievements – again reflecting the 
explicitness and transparency of practices valued at the school. 

Building and Maintaining the School Model 
In order to develop and maintain the whole school approach aligned with the vision for 

the school, and the specific teaching strategies, there is a heavy emphasis on professional 
learning within the schools. A strong focus on building a common culture across the school 
where all teachers adopt the same teaching practices in their classrooms is part of the 
school practices. Many of the teachers coming into Balargo are often recent graduates and 
are offered very strong professional development from their induction into the school (and 
remote education), and throughout their time at the school. 

Initial induction into the model for mathematics teaching comes through the induction 
offered by State Authority’s conference where teachers new to remote education receive a 
weeklong induction program into remote teaching (and living). This is followed by 
inductions into policies that are operationalised in the region and impact on the teaching at 
the school; and then a final induction offered by the school in the pupil-free days prior to 
the commencement of the school year. Teachers are provided with the first unit of work for 
the year when they commence at the school so that they can focus on teaching (rather than 
planning). This helps with the transition into the school model. Furthermore, the school has 
a comprehensive program offered each Tuesday in after-school meetings/forums. These 
focus on various practices that the school is adopting to improve the teaching and culture 
of the school. The school is developing a series of Standards of Practice (SoPs) that outline 
various practices that the College adopts across the three campuses. The SoPs are designed 
to cement practices at the school after current staff leave; that is, sustainability of practice. 

At the Tuesday meetings, only two meetings per term focus on the operations of the 
school. Other meetings focus on professional learning of the staff. Teachers are expected to 
attend the meetings. In these sessions, the professional learning may be based on a 
particular SoP, a focus that the College leadership has nominated, a visiting professional, 
or a program that the College may have bought into. Collectively the diversity of 
professional learning not only builds the skills of individual teachers, but also builds a 
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strong culture of learning at the school. It also creates consistency of practice across the 
three campuses. 

Individual teachers are supported by the Heads of Curriculum and the Executive 
Leadership team. It is usual practice for school leaders to conduct regular walk throughs of 
classrooms so that teachers are inducted into a culture of open classrooms where leaders 
can drop in and observe teachers at work, and provide constructive feedback in both 
structured and ad hoc formats. This helps teachers to build confidence in their teaching and 
allows the leadership team to ensure that the model of teaching is enacted. 

Conclusion 
This case study has been intentionally descriptive drawing on data collected and 

synthesised from the school. The descriptions provided here give a summary of key 
principles and strategies used at the school to build success in learning mathematics. There 
are numerous strategies being used, many of which intersect with others. Collectively, 
these provide a rich tapestry of practice at the school. It has been built and sustained over 
seven years, and is now embedded at the school. The school is refining and building the 
practices with constant monitoring to assess the effectiveness of changes. The intent is to 
enable students to experience success and to gain high levels of achievement (as measured 
through a range of tools and resources). 
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This paper explores the value of different paradigms to explain dispositions towards 
mathematics among primary school students from different social backgrounds. As part of 
a larger project designed to elicit students’ thinking and attitudes towards mathematics, we 
seek to develop an explanatory model for the socially-differentiated outcomes in students’ 
responses. The three paradigms – psychology, sociology and post-modernism – form the 
basis of the paper where the data we collected from three geographically close but socially 
different schools were analysed.  

This paper is an exploratory theoretical paper. We have intentionally sought to unite 
three disparate paradigms to explain outcomes in a larger project. The fundamental 
premise underpinning this paper is that one theory is inadequate in explaining students’ 
differentiated discussions about their experiences and dispositions towards mathematics in 
primary mathematics classrooms. This approach, of using two or more different theories to 
try to explain phenomenon, is not new and has been used by other researchers (see 
Williams, 2012) in mathematics education. The project sought to develop a tool that would 
allow students to provide honest feedback about their experiences and feelings towards 
mathematics. What emerged from the data were distinct patterns in responses that aligned 
with the socio-economic backgrounds, as indicated by ICSEA scores presented in Table 
One, of the students. To this end, focusing on the individual was limiting since it failed to 
recognise the structuring practices of mathematics classrooms and the habitus with which 
students entered these classrooms. Similarly, focusing on the social backgrounds of the 
students limited the richness in the responses offered by the students in terms of how they 
were actively constructing themselves as learners.  

To frame this paper, we draw on Bourdieu (1997) who explains that educators need to 
understand the processes around the conversion of social and cultural backgrounds into 
school success. The responses offered by the students in this study, were highly varied and 
have consequences both for their relationship with school mathematics now, and also for 
future academic success in secondary school mathematics and beyond.  This view is 
argued thus: 

To fully understand how students from different social backgrounds relate to the world of culture, 
and more precisely, to the institution of schooling, we need to recapture the logic through which the 
conversion of social heritage into scholastic heritage operates in different class situations 
(Bourdieu, Passeron, & de saint Martin, 1994, p. 53). 

The notion of social heritage thus becomes a central variable in coming to understand 
differential success in school mathematics. In terms of this project, and for school 
mathematics in general, we suggest that it is salient to consider the social backgrounds of 
learners and how this is implicated in the differential outcomes for learners. Using a 
Bourdieuian framework, the lack of success for some social groups becomes a non-random 
event as success or otherwise is partially a product of institutionalised practices of which 
participants may be totally ignorant. When taking a Bourdieuian perspective, success in 
school mathematics is less to do with innate ability and more to do with the synergistic 
relationships between the culture of school mathematics and that which the learner brings 
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to the school context (Jorgensen, 2010). The greater the synergy between the habitus of the 
student and school mathematics, then there is greater probability of success. In 
Bourdieuian terms, the habitus thus becomes a form of capital that can be exchanged 
within the field of school mathematics for forms of recognition and validation that convert 
to symbolic forms of power. Thus, what becomes important for both psychological and 
sociological theories, is the ways in which learners internalise practices within school 
mathematics in relation to their positioning within those practices. For some students, the 
social and cultural habitus with which they enter mathematics classrooms aligns strongly 
with the practices and discourses within those classrooms. For these students, it is highly 
likely that they will see themselves as ‘good’ learners of mathematics. In contrast the 
reverse is the case for students whose habitus does not align with the practices and 
discourses valued within the field.  

It is not our intent in this paper to provide a synopsis of the various paradigms as this 
would restrict the discussion of the data in terms of theory building. However, we will 
provide a brief discussion regarding the major shifts and foci within the divergent fields to 
illuminate key moves in contemporary thinking about the impact of individual construction 
of mathematical identities in terms of access (and marginalisation) in school mathematics. 

Table 1  
Key Paradigms in Mathematics Education  

 Psychologistic Sociological Post-Modernist 
Key terms  Affect, dispositions, 

learning, 
individualistic 

Social groups 
Differences, equity 

Identity formation 
Intersubjectivity 

Explanatory 
concept 

Individualistic Habitus Identity 

Theorists Hannulu Bourdieu, Jorgensen Foucault, Walshaw 

An insight provided by Lewis (2013), with regard to subjective dispositions aligning 
with the psychologistic paradigm, suggests that “motivation and emotion may be more 
central to an understanding of the phenomenon of disaffection than that of a quantitative 
study of attitude” (p.70). Similarly Brown, Brown, and Biddy (2012) argued that there 
were psychological internalisations for students selecting to opt out of further study in 
mathematics. 

The analysis supports findings that perceived difficulty and lack of confidence are important 
reasons for students not continuing with mathematics, and that perceived dislike and boredom, and 
lack of relevance, are also factors. There is a close relationship between reasons for non-
participation and predicted grade, and a weaker relation to gender. An analysis of the effects of 
schools, demonstrates that enjoyment is the main factor differentiating schools with high and low 
participation indices. (p.3) 

In contrast to the embodiment and internalisation of dispositions towards mathematics 
as an individual phenomenon, others have suggested that the practices of school 
mathematics may create opportunities to overtly and/or covertly marginalise particular 
groups of students (See Jorgensen, Gates, & Roper, 2014).  

Another school of thought with implications for mathematics education is post-
modernism. Walshaw (2011) describes this position as 
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Multiple factors have brought about postmodernism. They include political and social crises of 
legitimation, and the resulting changing nature of economies and social structures in Western 
societies. These changes place complex and sometimes conflicting demands on people in ways that 
they are barely able to understand or predict. The effects of these processes for mathematics 
education are unsettling. Conceptual tools and frameworks from postmodern thinking help us to 
develop an understanding of those effects. They help us to understand ideas that are central to 
mathematics education from beyond the standard categories of thought. In particular, they help us 
to understand cognition and subjectivity. (p. 7) 

Each of the three theoretical paradigms briefly discussed has a unique contribution to 
make regarding mathematics education. For us, coming to understand the constructions 
that students from diverse backgrounds are making of themselves and mathematics needs 
to be understood from an interdisciplinary approach. It is limiting to see construction as 
individualistic as this view fails to recognise the structuring practices of mathematics; 
conversely, failing to recognise the agentic power of each individual limits the 
understanding of how students can rise above restrictive practices in mathematics 
classrooms.   

Approach 
The approach adopted in this project was adapted from Noyes’ (2004) study where a 

‘big brother’ technique was employed. Students were able to withdraw from the classroom 
and speak (confidentially) into an iPad recording their thoughts and feelings towards 
mathematics. The approach was designed to elicit responses from students that may be 
more valid given that participation was optional and confidential. The recordings were 
directly between the students and the researchers. We have outlined the approach in more 
detail in other papers, also discussing strengths and limitations of the approach (see Larkin 
& Jorgensen, 2014; 2015). As the project has evolved, we also modified the approach to 
maximise student confidentiality in the iPad diary process.   

Data from three primary schools (two from Qld and one from NSW), each representing 
very different social strata, are included in this paper. The schools were included by 
purposive selection so that an exploration of social differences could be undertaken. Due to 
the sample size, statistical significance cannot be established; however, the sample is large 
enough to allow exploration of the tool for accessing students’ perceptions of school 
mathematics, and for the development of theory. A synopsis of the schools is provided 
below in Table Two. Data are taken from the My School site for each school. The data are 
from the 2013 data set which represents the periods within which the data were collected. 

Table 2  
Key Characteristics of the Three Schools 

 School A School B School C 
Type of school State school State school Independent girls 

school, High fees 
Year Levels P-6 P-6 P-12 
ICSEA score 
(2013) 

1055 970 1135 

Enrolments 922 268 1154 
Location QLD NSW QLD 
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The two state schools performed relatively similar to each other on NAPLAN with no 
remarkable differences. The Independent girls’ school consistently scored better, or 
significantly better, than the national average in numeracy across all years for the past 
three reported periods (2011-2013) on NAPLAN. With the ICSEA score representing 1000 
as the national mean for a measure of social dis/advantage, each 100 points represents one 
standard deviation from the mean. Our schools are at least 80 points different from each 
other and thus are relatively disparate in terms of social advantage.   

The data were analysed using Leximancer – a software package that undertakes 
thematic analysis of the frequency of words as well as establishing relationships between 
terms used by participants. Leximancer allows researchers to see visually, the trends and 
themes that appear in the data set/s. The interview data for the three schools were run 
through the Leximancer program and key themes emerged for each school.  The visual 
reporting shows relative frequency by the size of each theme, and then relationships 
between themes through connecting lines and overlap of themes. From the Leximancer 
analysis it was clear that the responses of the students were quite different in their relative 
frequency in referring to various (key) aspects of mathematics. School C students were 
more engaged with mathematics (in terms of their articulation around concepts) and had a 
much stronger sense of themselves as learners of mathematics. In contrast, the students at 
School A were less likely to enjoy mathematics and focused more on low level 
mathematics (such as operations) in their articulations. The students at School B were 
more likely to talk about mathematics being fun and focused on number work. Figure 1 
provides a pictorial representation of words used frequently by students in School A.   

 

Figure 1. Visual Output from Leximancer – School A 

The visual output from Leximancer shows the relationships between concepts for a 
given unit of analysis (in this example, School A).  The distance between concepts gives 
some sense of the relationships (close or far) between concepts and the lines show the 
direct relationships between various concepts. This is provided for illustrative purposes to 
show the ways in which Leximancer draws relationships between concepts. Each school 
map was quite different in terms of the major concepts and relationships but cannot be 
included due to the limits of a conference paper. Suffice to say, at this point, there are 
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marked differences between the schools’ maps. To provide some rigour to the differences 
between the schools, a further analysis can be undertaken through tabular representations 
of the counts associated with concepts. While the program does not differentiate among the 
use of concepts, for our purposes it was illuminating to see the concepts to which the 
students referred. This summary is provided in Table 3 below. 

Table 3   
Frequency Counts for Key Terms Combined and then Individually by School 

Entire Cohort School A School B School C 
Word Coun

t 
Rel 
% 

Word Coun
t 

Rel 
% 

Word Coun
t 

Rel 
% 

Word Coun
t 

Rel 
% 

Maths 607 10
0 

Maths 170 10
0 

Maths 262 10
0 

Maths 175 10
0 

Fun 163 27 Fun 59 35 Fun 53 20 Fun 51 29 
Feel 96 16 Easy 50 30 Feel 51 19 Teacher 40 23 
Teacher 95 16 Times* 39 23 Teacher 39 15 Groups 36 21 
Easy 91 15 Division 37 22 Times*  33 11 Feel 26 15 
Times*  81 13 Feel 19 11 Numbers 27 10 Fraction 24 14 
Groups 70 12 Boring 18 11 Groups 25 10 Easy 19 11 
Division 57 9 Hate 17 10 Difficult 22 8 Love 18 10 
Difficult 48 8 Love 16 9 Easy 22 8 Probabilit

y 
15 9 

Numbers 46 8 Teacher
s 

16 9 Division 18 7 Diagrams 12 6 

Love 43 7 Sad 11 7 Pods 12 5 Chunking 11 6 
Fractions 41 7 Numbers 10 6    Difficult 11 6 

What this thematic analysis shows us is a number of key differences between the 
schools. This can be seen, for example, in the differences between the frequency of the 
concepts teachers and easy. There is also a notable difference in the emotive words used 
by the students across the schools. For example, the students in School A referred to maths 
being easy and the role of the teachers was profiled quite low in the relative comments 
made by the participants. Conversely, the students in the other schools referred to the 
teacher more often than their School A peers and there was less reference to the ease of 
mathematics. Similarly, the table alerts us to differences in the comments being made 
about mathematics, in terms of content as well as emotional/affective reactions to 
mathematics. For example the students at School A referred to maths using terms such as 
boring, hate love, sad while the students at School B only used the term difficult and 
school C students only used love. These differences are further expanded in the detailed 
transcripts of the students.   

Student Comments 
In this section, we provide more detailed comments as to the responses offered by the 

students from the different schools. The student comments provide insights into their 
thinking about what is mathematics, but also their relationship with mathematics, teachers 
and learning. With the limitations on a brief conference paper, we again use these for 
illustrative purposes to build our theory.  
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School A student comments 
These comments provide insights into the students’ thinking about mathematics.  There 

is a marked difference in the ways that pedagogy is described and their relationship to 
mathematics. 

I don’t like doing maths because I don’t get trading and borrowing because it’s hard and I don’t get 
how you trade and how you borrow. Thank you. (Gr 3) 

I learnt in math today. I learnt how to do dividing and stuff. Let’s see, what I don’t like about 
maths. I hate math, I don’t really like it. It’s not fun. What I like about math is stuff, just stuff and 
all that because sometimes math can be easy and all that. I don’t feel happy when I do maths 
because it’s really hard. What I find difficult in maths. A lot of things basically. So bye-bye, I’m 
out. 

School B Student Comments 
The examples from School B also provide illustrations of the students’ reactions to 

mathematics. 
In maths today I learnt about square numbers and I’m sort of finding them out but I don’t know 
what I’m going to use them for but they’re got to teach what they’ve got to teach. And I think we 
should do maths groups. (Gr 2/3) 

I do like maths, a little bit, so I’m like in the middle. A lot of the maths we do is pretty hard for me. 
Because I just find things hard like most kids, I still try my hardest and people think I’m dumb and 
the teacher knows that I struggle so she will help me sometimes. Today we did a really, really hard 
thing. I got it but the teacher said I could stop and do another maths thing because it was hard for 
me, so I’ll show you what it was. (Gr 5/6) 

School C Student Comments 
The comments below indicate how the students positioned themselves as learners of 

mathematics and gave insights in the pedagogies being used (groups) and strategies being 
taught to the students (chunking). 

I think maths is pretty good. Sometimes I like it and sometimes I get a bit bored doing it. Sometimes 
I feel pretty confident with some things, sometimes I get a bit stuck with other things. I found my 
favourite strategy is the chunking strategy. I find it very easy and that’s why I love it so much. I use 
it all the time because sometimes I get stuck with sums and I sometimes really don’t know what the 
answer is so I use the chunking strategy. … Thankyou. (Gr 3) 

I like maths because we do fun activities to do with the topic. The topics are always fun, like 
fractions. I like fractions because you can show them in many different ways like in numbers and 
pictures. It’s also really fun because you get to work in groups. That’s a bonus because you get to 
work with your friends.  (Gr 6) 

As indicated these data are provided for illustrative purposes and have been selected to 
show some of the differences observed across the schools. The most surprising outcome 
was the very strong positive dispositions that were evident among the students from 
School C towards mathematics. It is this difference we seek to explore in the remainder of 
the paper. 
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Discussion 
The data presented through the iPad diaries alerted us to two key phenomena that we 

now discuss. First we saw that the students are School C were more likely than their peers 
at Schools A and B to have strong mathematical identity and more likely to describe 
mathematics using a mathematically-rich vocabulary e.g. chunking or strategies. The 
students at Schools A and B were more likely than the students at School C to describe 
negative feelings towards mathematics, indicate negative identities towards mathematics, 
and provide low level descriptions of mathematical content. From a psychologistic 
perspective, it can be argued that the motivations and affective domains for the students 
were potentially empowering or disempowering in terms of mathematical success. Having 
favourable dispositions towards mathematics is likely to facilitate the attainment of 
successful learning outcomes. What can be seen from both the frequency data (Table 3), 
and reinforced in the quotes from the students is their relationship with mathematics 
knowledge, not only in terms of the content covered but also in the amount of discussion of 
mathematics concepts. It is clear from the data in Table 3, that mathematics discipline 
knowledge for the students at School C is more frequently reported than for the students at 
Schools A and School B.  For the students at Schools A and B, their reporting was more 
focused on internalisation of dispositions and feelings towards mathematics than was the 
case for students at School C.   

What is also of value to our discussion is a different reading of these data. From a 
Bourdieuian perspective, it is apparent that the students from School C have dispositions of 
themselves, and towards mathematics, that are likely to result in improved outcomes when 
compared to their peers in the other schools. This is not just an individualistic construction 
since, as Bourdieu has suggested, the social and cultural habitus of the students at the all-
girls school (who are likely to be from middle to upper class families) is one that aligns 
with mathematics and hence, becomes reified through success in mathematics – however 
defined (either as a disposition or mathematically). The girls at School C have been 
exposed to practices that they articulate as being strong mathematical, and that have helped 
them to build a habitus that is empowering in terms of future mathematical studies. The 
girls have been able to build scholastic capital that is not as apparent, nor as strong, in the 
students from Schools A and B.  Further, from a postmodernist perspective, we can see 
how the practices position students in particular ways and that these offer various subject 
positions for learners – some who see themselves as productive learners of mathematics, 
while others have become positioned as marginalised learners. 

What we see as important in the discussion in this paper is that one theory may limit 
how we come to understand students’ experiences of mathematics. Relying on one theory 
may offer some explanation of these data but is also limiting. What struck us when 
analysing the data across the three schools were the marked differences in the students 
comments. Clearly the students at School C have a strong sense of themselves as learners 
of mathematics. Relying solely on a psychologistic perspective would only allow an 
understanding of mathematics as an individualistic construction; however by incorporating 
a sociological perspective (particularly that of a critical sociology), we are better able to 
understand the structuring of these differences and how they may result in differential 
access to mathematics learning. Combining the various theories enables a much richer 
perspective on understanding the ways in which the students come to see themselves in 
relation to mathematics. 

331



Jorgensen and Larkin 
 

 

Limitations 
While this paper is theoretical in its approach and primarily sought to develop an 

explanatory approach to the differences in the data collected, we acknowledge that the 
small sample (3 schools) limits the claims we can make as a much larger sample would 
help to establish the validity of our analysis. We also acknowledge that some of the 
differences expressed by students could be due to the teaching practices at the schools, 
rather than social background per se. While this may be a methodological limitation, we 
also contend that the outcomes are noteworthy.  The social stratification that is evident in 
these students’ responses reinforce both psychological (embodied) and sociological 
(social) theories of learning and access. We also acknowledge that there are limitations of 
solely relying on the Leximancer word count as exploring the comments that surround 
those concepts is equally as important. Leximancer does, however, provide a very useful 
tool for beginning explorations into the differences and similarities among cohorts. 
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The aim of this study was to investigate the role of the instructional leader when 
introducing digital technology into the mathematics teaching in the Australian Curriculum. 
The research reported here involves the principal and five teachers from one school and is 
part of a larger study. Results indicated that principal-led ‘crucial conversations’ supported 
educational change that comprised not only curriculum change but also a transition from a 
pedagogy that draws on technology to a pedagogy in which technology is embedded.   

The accountability of primary principals as instructional leaders has increased 
markedly with substantial challenges in Mathematics Education and the Digital 
Revolution. Accountability challenges in mathematics education relate to national 
numeracy testing (NAPLAN) and the new Australian curriculum, which includes 
mathematics as a learning area, and numeracy across the curriculum as a general capability 
(Australian Curriculum and Reporting Authority (ACARA, n.d.). The cross curricula focus 
of numeracy is defined in terms of its social utility (Australian Association of Mathematics 
Teachers, 1997):  “To be numerate is to use mathematics effectively to meet the general 
demands of life at home, in paid work, and for participation in community and civic life” 
(p.15).  

The digital revolution involves the integration of digital resources into the curriculum 
(e.g., interactive multimedia resources; audio, photo and video resources; interactive 
assessment resources; digitised collections of curriculum resources). The Australian 
government is supporting the integration of digital resources into the curriculum, spending 
$32.4 million targeting digital resources, professional learning, and infrastructure upgrades 
(DEEWR, 2012) and using Scootle, a new social network, to assist teachers to “learn, teach 
and collaborate using digital resources” (Education Services Australia, n.d.). With the 
rollout of the National Broadband Network (NBN), even greater use of digital resources and 
improvements in student outcomes is expected (Department of Broadband, Communications 
and Digital Economy, 2013).   

In view of the challenges presented by the new Australian curriculum and the digital 
revolution, the Chief Scientist has argued strongly for inspired school leadership to build 
teacher capacity and improve students’ outcomes in mathematics: “Inspiring leaders will 
encourage innovation and support teachers as they develop particular ways to deliver the 
curriculum” (Chubb, 2012, p. 9).   

Literature Review 
Principals and other school instructional leaders are expected to be agents of change, 

guiding and engaging with teachers to respond to new educational directions. This role is 
very challenging in the case of updated reconceptualised curriculum and the digital 
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revolution, because major changes need to be made regarding what is taught (new 
curriculum), how it is taught (digital resources), and when the change needs to be 
implemented (with pressure on schools in early NBN rollout areas). Furthermore, 
instructional leaders need to be able to persuade teachers of why there is a need for change, 
because these leaders are highly dependent on teachers to implement changes. Similarly, 
teachers are highly dependent on instructional leaders because they are struggling to keep 
pace with educational change (Hargreaves & Shirley, 2009), changes in professional 
practice requires considerable teacher learning (Cobb & Jackson, 2011), and the changes 
needed to ensure academic rigour is maintained or enhanced (Jackson, Shahan, Gibbons, & 
Cobb, 2012). Of the numerous models available to support transition to the purposeful use 
of technology in education, the model selected to guide this study is the Substitution 
Augmentation Modification Redefinition (SAMR) Model (Puentedura, 2015). This model 
is appropriate because it describes four levels of increasing sophistication in the use of 
digital technology (see Figure 1). 

4. REDEFINITION  
where technology allows for the creation of new tasks, previously inconceivable 

 
3. MODIFICATION  

where technology allows for significant task redesign 
 

2. AUGMENTATION  
where technology is used as a substitute with function change 

 
1. SUBSTITUTION 

where technology is used as a substitute without function change 
Figure 1. A model of increasing digital use (Puentedura, 2015).  

Supporting teachers presents a significant challenge for principals and other 
instructional leaders because teachers need to adapt to curriculum changes while 
integrating digital resources into their teaching practices. Millet and Bibby (2004) provide 
insight into how principals can successfully undertake this leadership task by considering 
all school staff as members of a professional learning community (PLC). Within their 
school PLC, principals need to foster a collaborative learning culture where collaborative 
relationships, shared vision and shared values promote the active development of practices 
to enhance student learning (Stoll, Bolam, McMahon, Wallace, & Thomas, 2006). The 
principal also needs to understand a teacher’s capacity to change by examining the context 
and culture of the teacher’s ‘situation’, or working environment (Millet & Bibby, 2004). In 
addition, the principal needs to be able to have ‘crucial conversations’ (Patterson, Grenny, 
McMillan, & Switzler 2012) where topics of change and how to go about that change can 
be had in a safe environment. These conversations enable the PLC to stay focused on the 
goal at hand that leads to action and results rather than being distracted by argument and 
side taking. The recommended initial steps for action in a PLC include: clear identification 
of the goal with ownership of that goal being accepted by all; a combined ‘head and heart’ 
approach where teachers become passionate about the educational change and work 
logically towards achieving it; and alertness to when conversations change from positive 
and goal focused to crucial where important differences in opinion need to be heard so that 
a balanced approach to goal setting and achievement is possible. Achieving a task of this 
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magnitude is difficult when educational change comprises not only curriculum change but 
a reconceptualised view of technology and pedagogy. In order to better understand how 
this change occurs in schools, the following research question was posed: 

How does one primary school principal, as the mathematics instructional leader, 
support teachers to integrate digital resources into the mathematics curriculum and across 
the curricula via numeracy? 

The Study 
The results reported in this paper are part of a larger study. Participatory action 

research was used in this study because it empowers participants to engage in cyclic 
iterations of planning, action and observation, and reflection to improve professional 
practice (Carr & Kemmis, 1986). The study included two complete cycles of participatory 
action research. The key participant reported in this paper is a primary school principal 
with a special interest in the use of digital technology in the teaching of mathematics and 
numeracy across the curriculum. Additional participants were the curriculum leader and 
three Year 3 teachers. One Year 3 teacher had been teaching for four years and the other 
two teachers were in their first year of teaching. 

Data Collection  
The data collection comprised artefacts, observations, interviews, and field notes. The 

artefacts were school planning documents, teacher work and student work produced during 
this project. For each cycle, one lesson per class was observed by four school participants, 
the teacher delivering the lesson (lessons were recorded on video) and one of the 
researchers. The researchers kept field notes documenting any critical incidents or issues 
that arose. Interviews were conducted with the teachers after each lesson during the two 
cycles.  

Data Analysis  
Data were analysed to construct a rich narrative account of how the principal inspired 

and supported the integration of digital resources in the teaching of mathematics and 
numeracy across the curriculum. All data was subject to content analysis, seeking evidence 
of the eight characteristics of a professional learning community, such as shared values, 
shared vision, and collective responsibility (Stoll et al., 2006).  This data was used to 
create a chronological account of the principal’s journey, with critical incidents identified.  
In addition, a quality analysis was undertaken on excerpts of classroom lessons in which 
digital resources were employed. This quality analysis complemented the content analysis 
of the lessons.  

Study Progression  

Phase A: Introduction to project. Step 1 involved a half-day professional development 
session with the primary school principal participating in this study. This session outlined 
how digital technology could enhance current pedagogical practices. 

Phase B: Audit and preparation. Steps 2 and 3 involved a situational analysis of the 
current integration of digital resources. Step 2 was an audit of school planning documents. 
Step 3 consisted of an interview with the Principal.  
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Phase C: Implementation. Step 4 was two iterative cycles of planning, action and 
reflection by the teachers, principal and researchers and focused on the incorporation of 
digital resources into classroom teaching.   

Results and Discussion 

Phase A: Introduction to the Project  

Step 1: Half day professional development. During this session, the principal was 
introduced to ways to extend the use of concrete materials to include digital technologies 
as a first step in educational change. The principal identified that the Year 3 teachers were 
using digital technology to investigate the use of water around the school saying: 

They're [teachers and students] going for a walk around the school to identify uses of water, all 
around the school, where the water is coming from, what they're using it for. So they'll take their 
iPad and take photos and download those photos and put them in a disk.  

This comment identifies good use of the camera function within the iPad but does not 
provide any functional change beyond having photographs of the various water points 
around the school. Discussion between researchers and the principals then focused on 
ways to allow for functional change that could lead to task redesign incorporating a 
problematic situation that would engage student interest.    

Phase B: Audit and Preparation  

Step 2: Audit of school planning documents. The principal provided Year 3 planning 
documents prior to the situational analysis interview. These included planning documents 
from the Year 3 Mathematics unit as well as from the Literacy, Science, 
History/Geography and Religion units in which numeracy could be embedded. These 
documents allowed the researchers to consider not only the mathematics but instances of 
numeracy being taught across the curriculum and how digital technologies were being 
incorporated to support mathematics learning and numeracy development.  

The Mathematics unit had a focus on the teaching of subtraction. This unit used some 
concrete materials but mainly considered the steps in the calculation of abstract numbers 
without context. It appeared that no attention was given to either numeracy or the use of 
digital technologies. The Literacy unit did not identify any aspects of numeracy within its 
content. The only digital technology identified in planning was the use of a data projector. 
The Science unit included numeracy content targeting measurement in planning, but did 
not identify any digital technology to be used. The History/Geography unit did consider 
numeracy in the display and interpretation of data. Digital technology was also identified 
in planning as the use of a DVD to show historical footage. The Religion unit did not 
include any numeracy content although the use of a data projector to display YouTube clips 
was detailed in the unit plan. 

The unit plans prepared by these three Year 3 teachers included some evidence of 
planned teaching of numeracy across the curriculum. Using Puentedura’s (2015) SAMR 
Model to guide analysis of the use of technology, it was clear that the planned technology 
use was restricted to the first level of technology use, Substitution, where technology was 
used as a substitute without any functional change. It is worthy of note that even at the 
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Substitution level, there was limited evidence technology use in the mathematics unit or 
other units. 

Step 3: Situational Analysis. The principal indicated that the focus of professional 
learning within the PLC was primarily on literacy, numeracy and higher order thinking 
skills. She also noted that teachers had made the shift from outcomes-based assessment to 
criterion-referenced assessment. The principal stated that she expected teachers to 
understand the difference between “gimmicks and what is actually going to enhance 
teaching and learning” and noted that “that they [teachers] are discerning enough to know 
what makes a difference to a lesson”. When questioned further about how she encouraged 
teachers to integrate digital technologies in their teaching, she replied:  

I have had stronger conversations when individuals [interested in the use of digital technology] 
have brought in their learning plans but I want teachers to feel safe before I ask them to take that 
next challenge. When we got the iPads two years ago I said, right, we are not going to get any until 
we have done some work, some work around the General Capabilities and then make a decision on, 
do we even want iPads...We visited two other schools that had iPads and I wanted us to have that 
discussion together from a position of information. I then organised some professional learning 
both from the technical position of how to use your iPad as well as how to integrate it [into the 
curriculum]. That all happened before we made a decision to buy them. 

This discussion suggests that the principal did not make a unilateral decision. She 
encouraged the exchange of differing views, thereby making it safe for teachers to express 
their opinion. It was the teachers’ decision to adopt the use of iPads into their classrooms 
and as a result they have taken ownership of this change thereby making a commitment to 
effective iPad use.  

Phase C: Implementation 

Cycle 1, Planning, Action, and Reflection. The planning of lessons in the first cycle of 
the project was initially prepared by each classroom teacher and then shared at a meeting 
with all teachers, the curriculum leader and the principal. This meeting provided feedback 
to each of the teachers and gave each of the five school members’ ownership of the final 
lessons.  

During the action step a researcher attended lessons, observed and recorded them. She 
was accompanied by the principal, curriculum leader and the other two teachers. One of 
these three lessons will be discussed here as an example typical of the teachers’ 
professional practice. The lesson called “Time Travellers” made use of a PowerPoint 
slideshow of children from the class meeting the school bus in the morning. The problem 
situation was created by asking students to indicate on their individual laminated clocks 
what time each member of the class should join the bus. The PowerPoint slideshow had a 
slide for each child and asked students to draw the time on their clock. After discussion, 
the teacher wrote on the whiteboard the correct time before proceeding. Students found 
this lesson very engaging as they each eagerly waited for their photo to appear. 

Following the lesson, the five staff and the researcher adjourned to the staff room 
where the researcher asked the five members of the team to reflect on the lesson. The buzz 
from them was on the level of student engagement and how the use of their photographs 
via the data projector had made this possible. The use of technology meant that each 
student was ‘hooked’ and actively wanted to participate because it involved them. The 
principal moved beyond this discussion to consider additional aspects of the pedagogy 
saying: 
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With the clocks everyone felt really confident to just go. They knew the red [large hand on the 
clock], the blue [small hand on the clock], the minute, the hour…the ones who needed to keep using 
this could. It is having the resource there to help everyone. Like everyone had a clock right there on 
their desk, they could use. 

After this positive discussion about the successful lesson, the researcher moved the 
discussion to the role that technology had played in the lesson. It was evident that the 
PowerPoint slideshow with student photographs had achieved the specific purpose of 
student engagement. But the teachers were challenged because technology was being used 
as a mere substitute for more traditional pedagogical practices without it changing the 
function of the task. Discussion on task modification where the use of technology allows 
for task redesign resulted. The principal took the lead, looking for clarification allowing 
the other teachers to ask questions, and supporting a discussion on how to approach this 
type of planning. The researcher outlined the importance of task redesign to take advantage 
of technology. She also pointed out the planning task should ensure that the academic 
rigour of the task is not lost when technology is used; rather it should add a dimension not 
possible without it. At the end of the discussion, it was agreed that all five school members 
would work on the one lesson together with a view to making the use of technology more 
purposeful as a pedagogical tool to enhance student learning. 

Cycle 2, Planning, Action, and Reflection. The principal, curriculum leader and 
teachers collaboratively planned a probability lesson that promoted the use of accurate 
change vocabulary to describe the probability of chance events. Each pair of students had a 
laptop and was directed to the Math and Teaching Technology Innovation (2014) website 
to source virtual manipulatives. On this site students, created their own spinner 
combinations where they were asked to make spinners to represent probabilities of landing 
on one colour that were: certain, impossible, unlikely, and had an even chance.  

The action again involved all five school participants and a researcher in the classroom 
participating in or observing the lesson. Again, the students were highly engaged with the 
use of technology but many spontaneous opportunities for learning were not followed up. 
Firstly, students had to construct a spinner that had an equal chance of landing on one of 
two colours. They were then directed to spin the spinner 10 times and discuss the results. 
Similarities and differences were discussed. The teacher then asked the student to spin the 
spinner 100 times and compare their results. The spinner tool allowed for immediate 
feedback with a graph showing the distribution of each colour. Again, class discussion 
resulted where the teacher was able to hook up different computers to show the class the 
differing results. This discussion of why some graphs looked different introduced the use 
of experimental probability and various unique combinations of spinners were created. The 
Year 3 students were then directed to create a spinner that had five colours on it, but there 
was a 50% chance of the spinner landing on one colour. The rigour of the tasks was 
maintained throughout the lesson and the teacher was able to orchestrate the discussion 
when she showed different student solutions. At the conclusion of the lesson, the students 
were able to confidently construct digital spinners that addressed the chance elements 
posed by their teacher. As they had been able to access quickly the results through the use 
of the virtual manipulatives, they were able to predict outcomes of various spins.   

The reflection on this lesson was led by the principal who led the planning relating to 
the intentional use of technology in the lesson. When asked by a researcher if she thought 
the use of technology was extending the pedagogy, she answered: 
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I would say it was quite a different purpose. The last time we [the technologies] were more about 
the notion of display where we could have just used an overhead projector or written it up on the 
board. But we were trying to do something different, to enhance the learning, the mathematics itself 
[with technology]. 

When the classroom teachers were asked to comment, they could see the benefits of this 
approach with one saying: 

My students could easily see what the outcome would be if they made it four sections or five 
sections being easily able to change and then spin the spinner 10 or 100 times and get an immediate 
response...Children were able to share their results or repeat their experiment to see if they got the 
same result as their classmates. It all happened so fast! 

The principal agreed saying:  
 It would have not have been possible to have that lesson drawing a spinner and doing (sic) the 
experiment 10 or 100 times…you couldn’t see the fear of making a mistake on their faces today 
because you could just push the button and it would all disappear and they could do it again. 

The collaborative nature of this planning exercise seemed to have all teachers 
including the principal positive about the potential of this type of task. They had learnt 
together as a team to tackle the integration of technology into a mathematics lesson and 
were rewarded by the students’ engagement and achievement. 

Conclusion 
Instructional leaders in the primary school are confronted with educational change 

demands that extend beyond changes to curriculum to one that requires them to lead a 
transition in pedagogy from one where technology was not prioritised to one where 
technology use was optimised thereby creating redefined or novel 21st century pedagogical 
approaches. The achievement of this change requires inspiring leaders to promote and 
support innovation in the delivery of curriculum (Chubb, 2012). But innovation is hard to 
grapple with as teachers try to see what the innovation might look like and why it would be 
more effective than what they currently do. One model supporting teachers with the 
purposeful employment of technology into pedagogy is the SAMR Model (Puentedura, 
2015). This model helps teachers see how technology can be used beyond the simple 
substitution of existing pedagogical practices with technology to one where tasks are 
redesigned and new tasks are created capitalising on the affordances of technology, such as 
the rapid spinning of 100 spinners and the recording of this experiment. But guidance from 
the SAMR Model is not sufficient. The principal needs to stimulate and support the 
professional learning community in this endeavour (Lamb, 2010).  

The principal as instructional leader was very aware of the pressures for curriculum 
change in line with the new Australian Curriculum: Mathematics and numeracy across the 
curriculum. She is also confronting the digital revolution and the need for her teachers to 
keep pace with this change. Her approach to confronting these changes is reflective of a 
leader who understands the need to foster a collaborative learning culture where 
collaborative relationships, shared vision, and shared values were promoted (Stoll et al., 
2006). Her approach was reflective of collaborative conversations that allowed difficult 
points to be discussed in a safe environment.  

The principal in this study worked alongside her teachers in the PLC. She engaged 
fully in the project, proposing, analysing and owning the changes in pedagogy as much as 
the teachers. She created an environment for all to feel safe as she had crucial 
conversations with two first year teachers, one in her fourth year out and her curriculum 
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leader. Importantly, she joined with them in this professional journey celebrating the 
growth in their professional knowledge of how to commence the incorporation of 
technology into the teaching of mathematics and numeracy across the curriculum. The 
journey has just commenced with the PLC planning and practising the new pedagogies 
which over time should become part of their professional repertoire with the embedding of 
technology becoming second nature. The challenge will be to overcome the obstacles at 
each level of the SAMR Model to ultimately effect a transformation in pedagogy made 
possible by technology.  
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The Search for Fidelity in Geometry Apps: An Exercise in Futility? 
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As the use of mathematics apps in classrooms becomes more prevalent, robust research into 
their effectiveness is required to inform best practice regarding their use. This is 
particularly the case for Geometry apps where accurate and dynamic representations are 
critical in enhancing mathematical learning. This paper provides findings from an initial 
critique of 53 Geometry apps. Early findings indicate that the majority of these apps were 
limited in their ability to assist students in developing Geometrical conceptual 
understanding; however, all is not lost as a number of apps were highly appropriate.  

This paper briefly synthesises the research literature concerning the use of digital 
manipulatives and then outlines the qualitative component of a broader three-step 
methodology for critiquing the appropriateness of Geometry apps. Early findings of the 
research indicate that the majority of the iPad Geometry apps reviewed would do little to 
assist students in developing Geometry concepts. Research into apps is needed as, although 
there has been some research into the mathematical effectiveness of apps (See Attard & 
Curry, 2012; Larkin, 2013) there has been little to no specific research into their usefulness 
in developing Geometry concepts. In addition, much of the current research into apps, with 
some exceptions (Larkin, 2014, 2015; Moyer-Packenham, et al., 2015) has been largely 
descriptive. An initial review of apps (Larkin, 2013) uncovered very few Geometry 
specific apps; however, the app market has since burgeoned with the creation of a range of 
Geometry specific apps. For the purpose of this paper, Geometry apps are those that 
include content from the Geometry sub-strands of the Australian Mathematics Curriculum. 
As was indicated in Larkin (2014), determining the quality of an app is difficult not only 
because of the lack of research, but also because the information that is available at the 
iTunes Appstore is written by the app developers to sell their app and thus not reliable. The 
problem of determining app quality in relation to Geometry is additionally complex as 
these apps require the creation of mathematically accurate external representations. Earlier 
research (Larkin, 2013) suggests that accuracy in representations was not commonly 
evident; consequently, a new methodology for evaluating Geometry apps was designed. 
This paper outlines how the constructs of pedagogical, mathematical and cognitive fidelity 
were used to evaluate 53 Geometry specific apps. The goals of this paper are two-fold. 
Firstly, to articulate a component of a broader methodology for reviewing the apps such 
that other researchers can use the methodology; and secondly, as reviewing apps is a time 
consuming process, an outcome of the research was the creation of a web-based database, 
available to teachers, of Geometry apps. This research recognises that the selection of 
appropriate Geometry apps needs to be based on a deeper understanding of the strengths 
and weaknesses of the apps, and what makes them pedagogically, mathematically and 
cognitively reliable (Bos, 2009). 

Literature Review 
It is taken as given in this paper that manipulatives (concrete and digital) support 

mathematical learning (e.g., Burns & Hamm, 2011; Carbonneau, Marley, & Selig, 2013; 
Moyer-Packenham, et al., 2015; Özel, Özel, & Cifuentes, 2014). This affords space to 
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address more fully the research on three aspects of fidelity required in Geometry apps; 
namely, pedagogical, mathematical, and cognitive fidelity (Dick, 2008). 

Pedagogical, Mathematical and Cognitive Fidelity 
Pedagogical fidelity is defined by Dick (2008) as the degree to which a student can use 

a tool to further their learning. Zbiek, Heid, Blume and Dick, (2007) suggest that 
pedagogical fidelity also refers to “the extent to which teachers (as well as students) 
believe that a tool allows students to act mathematically in ways that correspond to the 
nature of mathematical learning that underlies a teacher's practice” (p.1187). Dick (2008) 
suggests that a pedagogically faithful tool will likely be described by students in terms of 
how it allowed them to interact with mathematics (e.g., “I created this triangle” etc.) rather 
than simply as a description of procedures for use (e.g. “I set the preferences to the fastest 
level” etc.). Therefore, to be an effective pedagogical tool, an app must support any action 
by the student that will lead to conceptual understanding of the underpinning mathematical 
principle.  

The second aspect of fidelity to consider is mathematical fidelity. Zbiek et al. (2007) 
defines it as the “faithfulness of the tool in reflecting the mathematical properties, 
conventions, and behaviors (as would be understood or expected by the mathematical 
community)” (p.1173). Thus, mathematical fidelity is present when the activity of a 
student “is believable, is concrete, and relates to how mathematics is a functional part of 
life” (Bos, 2011, p. 171); and when they add strength to an understanding of mathematics 
as a language of patterns and order. Dick (2008) cautions that the drive for user 
friendliness can sometimes run contrary to faithfulness to an accurate mathematical 
structure. This is particularly worrisome as most apps are designed for (a) market reasons 
and (b) by non-educators (Larkin, 2013). Keeping the notion of mathematical fidelity at the 
forefront of decisions when selecting apps reminds teachers to avoid apps that do not 
deliver accuracy in terms of mathematical content or constructs e.g. correct scaling may 
not be evident in transformations.  

The final aspect of fidelity is cognitive fidelity, which refers to “the faithfulness of the 
tool in reflecting the learner's thought processes or strategic choices while engaged in 
mathematical activity” (Zbiek et al., 2007, p.1173). Cognitive fidelity can be viewed 
largely in terms of the external representations provided by the tool. Zbiek et al. further 
note that “if the external representations afforded by a cognitive tool are meant to provide 
a glimpse into the mental representations of the learner then the cognitive fidelity of the 
tool reflects the faithfulness of the match between the two” (p.1176). This notion of 
cognitive fidelity is critical in Geometry apps which are likely to utilise many external 
representations. The digital nature of “app objects” potentially results in high levels of 
cognitive fidelity, for example, 3D objects can be pulled apart and put back to together, 
and in so doing, reinforce the link between 3D objects and their 2D representations (i.e. 
nets); however, we will see that such potential is often unrealised in Geometry apps.  

Although an understanding of the three types of fidelity can assist teachers in making 
decisions about whether or not to use an app, I have argued above that an issue for teachers 
is the time required to determine app quality via the three fidelities or other evaluative 
measures. In addition, although it might be expected that many of the findings on the use 
of virtual manipulatives would reflect the experience of using mathematics apps, rigourous 
quantitative research into mathematics apps is still in its infancy (Larkin, 2015; Moyer-
Packenham et al., 2015). Therefore research into Geometry apps, which might be best 
placed to take advantage of the iPad’s representational capability, is required.  
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Methodology 
This section outlines the process for initially finding the Geometry apps and then 

explains how a qualitative review and a descriptive, quantitative measure of fidelity were 
used to evaluate the apps.  

Locating and Scoring the Apps 
Evaluation of the apps commenced with a targeted search for mathematics apps at the 

iTunes Appstore in October, 2014. The following search terms were used: Geometry 
Elementary Education; Geometry Junior Education; Geometry Primary Education; 
Symmetry Education; and Transformations Education. Many of the apps appeared in two 
or more of the searches.  

Table 1  
Levels of Fidelity in Geometry Apps – Adapted from (Bos, 2009) 

Type of  Fidelity Low Level (1-3) Medium Level (4-7) High Level (8-10) 
Pedagogical 
(Including 
Technological) 
The degree to 
which the App can 
be used to further 
student learning. 
 

App is difficult to work 
with. Accessing all 
aspects of the app is 
difficult. App is not 
appropriate for the 
mathematics concepts it 
uses. Transitions are 
inconsistent or illogical. 

Using App is not 
initially intuitive; but 
with practice becomes 
so. Mathematical 
activities presented are 
appropriate but could be 
developed without app. 
Transitions evident but 
only made via trial & 
error. 

Manipulation of App 
is intuitive & 
encourages user 
participation. 
Little or no training or 
instructions are 
required. Transitions 
are logical & aid sense 
making. 

Mathematical 
The degree to 
which the App 
reflects 
mathematical 
properties, 
conventions and 
behaviours. 

Mathematical concepts 
are underdeveloped or 
overly complex. Lack of 
patterns. Lack of 
connection to real world 
mathematics. 

Application of 
mathematics concepts 
unclear. Patterning is 
evident but lacks 
predictability or is 
unclear. Some 
connection to real world 
mathematics. 

Mathematics concepts 
developed are correct 
& age appropriate. 
Patterns are accurate 
& predictable. Clear 
connection with real 
world mathematics. 

Cognitive 
The degree to 
which the App 
assists the learner’s 
thought processes 
while engaged in 
mathematical 
activity. 

No opportunities to 
explore or test 
conjectures. Static or 
inaccurate 
representations. Patterns 
do not connect with 
concept development. 

Limited opportunities to 
explore or test 
conjectures. Minor 
errors with 
representations but still 
make sense. Patterns 
connect in a limited way 
with concept 
development. 

App encourages 
exploration & testing 
of conjectures. 
Representations are 
accurate & easily 
manipulated. Patterns 
clearly aide concept 
development. 

Apps were excluded from the final review according to a variety of criteria whereby 
only one app in any series was reviewed and apps categorised as Games, Entertainment or 
Lifestyle; apps where mathematics was part of a larger package of reading, writing, and 
spelling skills; and apps that required additional costs for access or further online 
registration were excluded. 
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As indicated earlier, Dick’s (2008) three dimensions of pedagogical, mathematical, and 
cognitive fidelity have been used by other researchers to determine the quality of 
mathematics manipulatives (e.g., Bos, 2009; Zbiek et al., 2008). Two methodological 
innovations in this research are using the measures to evaluate apps; and the use of 
numerical values to represent the degree to which these three dimensions are present. Bos 
(2009) went some way towards using the dimensions as an assessment tool categorising 
software as Low, Medium and High fidelity in each dimension. Table 1 is an adapted 
version of Bos’ work, modified specifically for evaluating Geometry apps. In order to 
make sophisticated comparisons between the three dimensions of fidelity, the nominal 
levels of Low, Medium and High have been replaced by an ordinal continuum ranging 
from 1 (no fidelity) to 10 (very high fidelity) for each of the three dimensions. 

An app is considered low level (1-3) if it is generally static and inaccurate 
mathematically and fails to develop mathematical concepts. It is considered medium level 
(4-7) if more than one solution is possible and conjectures are possible (but not testable) 
and transitions between different aspects of the app are possible but unclear. Finally, an 
app is considered high level (8-10) if it uses accurate representations that are easy to 
manipulate with transitions between app elements that are logical and consistent, and it 
affords the formation of multiple, testable conjectures. In this evaluative schema, an 
individual app could score, for instance, highly on mathematical fidelity, yet poorly on 
cognitive or pedagogical fidelity. 

Findings and Discussion 
Prior to a brief discussion on the initial descriptive statistics collected in this research, 

a comprehensive qualitative evaluation (see Table 2) of the apps is provided. The author’s 
prior research into the use of apps has indicated that this type of qualitative information is 
very important for teachers in making decisions about whether or not to use an app. The 
qualitative reviews of each of the 53 apps are available at (link removed for peer review). I 
have included below an example of one of the reviews. 

Table 2  
Example Qualitative Geometry App Review  

App Name Content Yr. Level Generic Features of the App 
3D Geometry 
Basica  

Shapes Years 6-7 This app includes eight common 3D objects. The 
only action which can be performed on the objects is 
a simple zoom in or out. Each object includes a 
mathematical description in mathematics language 
and includes formulas for Surface Area and Volume. 

Reviewer Comments re Mathematical Fidelity: Using the app is intuitive, largely due to the 
limited options available, and the content is accurate. From a conceptual development 
perspective the app contains complex formulas for finding SA and Volume in Platonic Solids, 
spheres and cylinders, but no linkage is established between the SA of an object and its Volume, 
or between the SA and Volumes of the different objects – E.G. between Pyramid and 
Octahedron. No connection to the real world. Static representations, no nets, no option for 
patterning or for testing conjectures. Very limited usefulness and the app does nothing that the 
actual physical objects couldn’t do. 

As outlined in Larkin (2013) initially locating potential useful apps is a complex and 
time consuming process and therefore the provision of this qualitative review of each app 
is very useful for teachers. Apps are difficult to find due to the sheer number of apps 
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[approx. 150 000 education apps at the iTunes store (148AppsBiz, 2015)] and this 
difficulty is compounded by mismatches with naming (name of app at iTunes store is 
different to name of app on iPad), similar naming (a dozen apps had variations on the word 
geometry), the rapid turnover of apps at the store, and finally a very poor search engine 
(apps not sorted according to category or alphabetically). As indicated in the 2013 
research, teachers are extremely time poor and thus are likely, if they decide to use apps at 
all, to be guided by the description at the iTunes store. These are at best “infomercials” and 
provide misleading details about the app. For all these reasons, educationally robust 
reviews such as the one provided here are critical if teachers are to be directed to find what 
amounts to a “needle in a haystack” – i.e., an app that is appropriate for them to use with 
their students. 

Provided in the following paragraphs are findings based on initial descriptive analysis 
of the data regarding types of app content, levels of quality according to each of the three 
fidelities, an analysis of the range of scores across the three fidelities, and finally a brief 
description of seven apps which scored above 6/10 for each fidelities indicating a high 
level of appropriateness for classroom use. Turning to content analysis first, Table 3 
indicates the number of apps that included a range of Australian Curriculum Geometry 
content.  

Table 3  
Number of Apps Providing Australian Curriculum Geometry Content # 

Sub-Strand / Concepts No. of Apps Sub-Strand | Concepts No. of Apps 
Lines (1D) 16* Slide (Translate) 10 
Shapes (2D) 31 Flip (Reflect) 21 
Objects (3D) 17 Turn (Rotate) 16 
Angles 15 Dilations 6 

*NB: Total app count exceeds 53 as a number of apps include more than one type of content and are 
therefore counted more than once. # Pythagoras and trigonometry is only introduced in Australian secondary 
schools and so was beyond the scope of this review. 

A number of apps just focussed on one content area (e.g., Simitri – line symmetry); 
however, many others took a broad brush stroke approach and covered content from two or 
more areas (e.g. EZ Geometry or Jungle Geometry). This is not always an advantage as 
broad coverage often meant shallow conceptual development and less usefulness as only 
one section of the app was appropriate for a particular year level. By far the most popular 
content area was Shapes and this may be because many of the apps were targeted at very 
young students (Foundation and Early Years) and also because these apps appear easy to 
create from a technical perspective. Whilst most common, many of these Shapes apps were 
very basic and only included naming of the shapes and very simple matching exercises. 
Many of these activities could more easily be completed using actual shapes. Reflections 
were the most common of the four major transformations presented in the apps and this 
may be a consequence of the desire to link the apps to symmetry in nature or the built 
environment which is more easily represented than rotational symmetry, translations or 
dilations. Angles and 1D Geometry apps appear were common; however, this is a result of 
a large number of quiz apps (largely concerning geometric reasoning) rather than the 
availability of a large number of apps developing understanding of 1D and Angles.  

Table 4 provides a breakdown of the number of apps scoring six or more in each of the 
three respective fidelities. Although this looks like a healthy number of apps (42) scoring 
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at least one six, this is not the case as many of the better apps scored a six or more in two 
or three categories. Overall, 26 of the 53 apps failed to score a six in any category; the 
average score of the 53 apps was 12.9/30; and none of the three fidelity categories scored 
an average of 50%. This is a clear indication that there are a large number of Geometry 
apps, categorised as educational at the iTunes store, which do not even meet a very low 
benchmark for appropriateness in classrooms. As might have been anticipated [given the 
findings of previous research (Larkin, 2014; 2015) which indicated that many apps are 
instructional and focus on declarative or procedural knowledge], the apps which were of 
some use tended to score well on the pedagogical fidelity dimension, less well in terms of 
the quality of the mathematics they contain, and generally poorly in their ability to assist 
cognitive development. This again mirrors the generally poor level of conceptual 
knowledge developed by apps in the research noted above.  

Table 4  
Number of Apps Scoring 6 or More in Respective Fidelities 

Type of Fidelity Number of Apps 
(n=53) 

Percentage* (to nearest 0.1) Average Score / 10 

Pedagogical  21 39.6% 4.9 
Mathematical 13 24.5% 4.3 
Cognitive 8 15.1% 3.7 
Overall Average Score for Apps on the three measures / 30 12.9 

Overall, the apps scored more highly in terms of pedagogical fidelity because this is 
the easiest of the categories for non-mathematical app designers to mimic in their apps. 
Many of the apps met one of the pedagogical criteria, namely, they were easy to use 
without instruction, and many of them partially met the criteria of appropriateness of 
activity without necessarily doing anything more than could be easily replicated with an 
IWB, physical manipulatives, or even pen and paper. Many of them incorporated multiple 
choice quizzes (of varying degrees of quality) which may serve some use as revision 
exercises. This was particularly the case where quizzes drew from a large bank of 
questions, did not allow multiple guesses, and allowed results to be emailed (e.g. Kids 
Math-Angle Geometry and Symmetry School Learning).  

Mathematical fidelity issues generally related to incorrect naming or classification of 
shapes and objects, (e.g. diamonds instead of rhombuses, cubes not considered prisms, 
squares not considered as rectangles, triangles not included as polygons); use of 
prototypical shapes and standard orientations (only three apps focused on non-prototypical 
shapes – Cyberchase Quest, Maths Geometry, and Shapes MyBlee); and lack of 
connection to any notion of real world application of mathematics (minor exceptions to 
this include Geometry 4 Kids and Simitri).  

Of most concern was the low cognitive fidelity of most apps and this is problematic in 
terms of classroom use as this relegates many of the apps to only being useful as revision 
activities of for rote learning. The majority of apps did not meet the criteria for supporting 
cognitive development. Despite being technically capable, most apps only provided static 
representations and, where dynamic representations were used, they did not mimic the 
physical activity of, for instance, turning or sliding or flipping but used arrows or numbers 
to direct the transformations (noteworthy exceptions were Squares and Colors and Shapes 
MyBlee). In addition, very few apps allowed opportunity for students to create patterns 
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and develop their own conjectures regarding shapes, objects, angles, or transformations. 
This is a serious shortcoming of the vast majority of the apps.  

Despite the comments above, it is not all doom and gloom in “AppLand” as there are 
some apps that shine in the overall geometric darkness that is the iTunes store (see Table 
5). Of the apps reviewed, seven of them (13% of the total apps reviewed) scored six or 
more out of 10 for each of the three fidelities. These are clearly the apps that teachers 
should be utilising in their classroom practice. What is interesting here is that apart from 
the top three, even the better apps were inconsistent in meeting the three fidelity standards 
as four of the seven scored one six and two of these four scored two sixes. 

Table 5  
Apps that Scored 6 or More on Each of the Three Fidelities 

App Name Pedagogical Mathematical Cognitive Total 
Co-ordinate Geometry 9 8 9 26 
Transformations 9 8 9 26 
Attribute Blocks 8 8 8 24 
Shapes – 3D Geometry  9 6 8 23 
Shapes and Colors 7 6 7 20 
Pattern Shapes 8 6 6 20 
Isometry Manipulative 7 6 6 19 

This level of inconsistency mirrors the findings of Moyer-Packenham et al. (2015) in 
relation to virtual manipulatives. In their research they noted multiple affordances within 
each virtual manipulative such that one or more of these affordances may be more 
influential and beneficial for student learning. An example of this in terms of apps is 
Isometry Manipulative, where one component of the apps is extremely beneficial whilst 
the second component, if used, is likely to undermine student learning. This inconsistency 
becomes more apparent as scores further down the total list of scores are examined, for 
example, Geometry Montessori (9, 6, 5) scored equal to or higher than three of the apps 
listed in the top seven but was relatively poor in terms of cognitive development. Three 
other apps scored highly in pedagogical and mathematical fidelity but poorly in terms of 
cognitive development (GeoEng- 8, 6, 5; Geometry 4 Kids- 8, 6, 3; and Geometry Explore- 
6, 6, 4). It is worth noting that only one app (Simitri- 4, 9, 8) scored very lowly in 
pedagogical fidelity but very highly in mathematics and cognitive fidelity. This indicates 
that this app should not be used unsupervised by students; however, with correct 
scaffolding from the teacher, it is very useful for developing mathematical understanding 
due to its high level mathematical and cognitive fidelity.  

It is clearly the case that, other than with the top three apps, teachers need to decide the 
exact purpose they want to achieve by using an app and then look at the content covered 
and individual fidelity scores of each app, to find one that meets that specific purpose. In 
this manner, Geometry Montessori would be most appropriate to use in a revision mode 
but less so in terms of developing mathematical or conceptual fidelity. The full list of 
scores is available for teachers at the URL provided earlier in the paper.  

Limitations and Next Steps 
As was the case in Larkin (2014), a limitation of any study reviewing apps is a 

consequence of two factors; initially locating (and relocating apps), and the nature of the 
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iTunes App store. Firstly, the sheer number and method of labelling apps (e.g., multiple 
apps called Geometry [or very similar] or apps containing geometry but not indicated in 
their name – e.g., Koala Math) means that there may be useful Geometry apps not 
reviewed. Secondly, the iTunes store is a moveable feast as apps are generated, renamed, 
relocated, or removed on a daily basis. This research has indicated that, although many 
Geometry apps are quite poor in terms of their fidelity, it is, to return to the question posed 
in the title, certainly not a futile exercise to use some of them in primary mathematics 
classrooms. Due to the shortened nature of MERGA conference papers, only one 
component of the quantitative measures used in the broader research has been presented to 
support this claim. A more substantive examination of their quality incorporating three 
quantitative measures, using modified versions of Haugland’s (1999) Software Scale, Bos’ 
(2009) software categorisations and Dick’s (2008) three fidelities will be used in future use 
to more comprehensively determine the quality of Geometry apps in supporting primary 
students mathematical learning.  
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Data from a pilot study concerned with pre-service teachers’ perceptions of the numeracy 

demands on Australian teachers are reported. The sample comprised 211 students enrolled 

in pre-service teacher education courses at a large Australian university. While most 

recognised the importance of mathematics and its applications in everyday life, less than 

half considered there were mathematical demands on teachers beyond their teaching 

domain. NAPLAN-related information data was used to examine the group’s ability to 

access, apply, and interpret the statistical information.  

Introduction 

In Australia there is no shortage of recent reports concerned with the quality of pre-

service teacher education and graduate performance (e.g., Australian Institute for Teaching 

and School Leadership [AITSL], 2014), the falling interest among students at all levels of 

education in mathematics (e.g., Wienk, 2014), the scope and quality of the mathematics 

curriculum (Donnelly & Wiltshire, 2014), and its relevance to the work place and daily life 

of the country’s students and citizens (e.g., The Australian Association of Mathematics 

Teachers [AAMT] and the Australian Industry Group, 2014). The pilot study reported in 

this paper was fuelled by the contents and recommendations of several such reports, the 

challenges they present for those involved in initial teacher education, and the need,  

ultimately, to develop practical solutions.  

Providing a context 

The establishment in 2010 of AITSL powered a renewed focus on the requisites for 

excellence in teaching and school leadership. Expectations for commencing and newly 

graduated teacher education students have also attracted close and careful scrutiny. With 

respect to the former, a clear standard has been advocated by state Ministers for Education: 

that all initial teacher education students will have a level of literacy and numeracy 

equivalent to the top 30% of the population. At the end of their course, it is mandated, 

graduate students must “have an understanding of their subject/s, curriculum content and 

teaching strategies … (and be) able to design lessons that meet the requirements of 

curriculum, assessment and reporting” (AITSL, n.d., para 2). With respect to numeracy, 

they are expected both to know and understand appropriate teaching strategies and their 

applications in teaching areas. Elaborations of this expectation are readily found, for 

example:  

In the Australian Curriculum, much of the explicit teaching of numeracy skills occurs in 

Mathematics. Being numerate involves more than the application of routine procedures within the 

mathematics classroom. Students need to recognise that mathematics is constantly used outside the 

mathematics classroom and that numerate people apply general mathematical skills in a wide range 
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of familiar and unfamiliar situations. (Australian Curriculum and Assessment Reporting Authority 

[ACARA], n.d., para 1).  

That the teaching of numeracy embraces aspects beyond the mathematics classroom is a 

view echoed by the AAMT:  

To be numerate is to use mathematics effectively to meet the general demands of life at home, in 

paid work, and for participation in community and civic life. In school education, numeracy is a 

fundamental component of learning, discourse and critique across all areas of the curriculum. (c. 

1998, p. 2).  

In brief, all teachers, not only those explicitly involved in teaching mathematics, are 

deemed responsible for contributing to the numeracy development of their students. It can 

be inferred from the mantra above that teachers should also be familiar with the 

quantitative requirements of various work settings, including those relevant and applicable 

in their own work place. As Steen (2001) maintained, “(n)umeracy and mathematics 

should be complementary aspects of the school curriculum. Both are necessary for life and 

work, and each strengthens the other. But they are not the same” (p.15). 

The influential Organisation for Economic Co-operation and Development [OECD] 

(2013) summarised indicative levels of information-processing skills used in nine clusters 

of occupation. Numeracy was defined as the “ability to access, use, interpret and 

communicate mathematical information and ideas in order to engage in and manage the 

mathematical demands of a range of situations in adult life” (p. 59). Numeracy skills were 

said to apply at all levels of occupation and to increase with the demand of reading skills 

required. The numeracy demands of the school work place were not specifically identified. 

In a recent project 12 secondary school mathematics teachers spent time in various 

Australian businesses to explore in some depth the nature and scope of the quantitative 

skills needed and used by workers in different settings (The Australian Association of 

Mathematics Teachers and the Australian Industry Group, 2014). The project “was 

designed to look at the requirements for mathematical skills and understanding in the 

modern workplace and to develop a clearer picture of the matches and mismatches 

between current mathematics (curriculum, teaching methods and resources) and the 

quantitative skills required” (p. 11). Space constraints prevent inclusion here of a summary 

of the project’s main findings and recommendations. Intriguingly, none of the teachers was 

allocated the work place seemingly best known to him/herself, that is a school, and given 

the task to identify and clarify the quantitative skills required in this setting. While much 

emphasis has been placed on the numeracy skills linked to teaching mathematics or to meet 

the numeracy demands of other disciplines in the classroom (e.g., Geiger, Forgasz, & 

Goos, 2015), little attention has been given to the numeracy demands of the school work 

place per se, that is, work not directly linked to classroom teaching but necessary to 

function as a teaching professional. Pre-service teachers’ views about the 

mathematical/quantitative demands in everyday life and on their role as teachers were 

examined in the pilot study reported here.  

In this paper we focus primarily on pre-service teachers’ perceptions of applications 

which are part of their teaching responsibilities but may be outside their subject teaching 

areas. A specific example to probe their “ability to access, use, interpret and communicate 

mathematical information” (OECD, 2013, p. 59) was included in the survey. We presented 

performance data from The National Assessment Program – Literacy and Numeracy 

[NAPLAN] and asked respondents to interpret the data. The NAPLAN tests are said to 

“provide information for students, parents, teachers and principals about student 

achievement which can be used to inform teaching and learning programs” (Victorian 
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Curriculum and Assessment Authority, 2015, para. 3). The sharing of test information 

constructively with both students and parents is evidently an obligation for teachers if an 

important goal of the testing regime is to be realised. The data are also intended to be used 

to check the efficacy of instructional programs in place. 

The study 

Aims 
The central aim of the study was to develop an instrument to determine teachers’ views 

of the numeracy demands on Australian teachers and their numeracy capabilities as 

captured in statements such as that of the AAMT (c. 1998) and the OECD (2013) and, in 

the first instance, to trial the instrument with a group of pre-service teachers. The research 

questions of particular interest in this paper are: 

1. What are pre-service teachers’ views about their proficiency in mathematics?  

2. What are pre-service teachers’ views about the importance of mathematics for 

teaching? 

3. Do pre-service teachers recognise mathematical demands in everyday life? 

4. Do pre-service teachers recognise mathematical demands on teachers in schools 

apart from what is taught to students? 

The instrument 
The full instrument included biographical items (e.g., gender, level of schooling able to 

teach in at the completion of the course, and if relevant – specialisation/teaching methods). 

Views about, and attitudes towards, mathematics (e.g., importance of mathematics for 

teachers, levels of confidence, etc.), and the utility of numeracy skills for teaching and for 

teachers in their workplace, the school, were also tapped.  

As well as numerical items gauging basic mathematical skills, numeracy problems 

were set in the following contexts: everyday life, informed citizenry, and the workplace 

(the school). Participants were not only asked to provide answers to numeracy items and 

items involving numerical calculations, but also to indicate their level of self-efficacy in 

the answer they gave. Most of the numerical items were in multiple-choice format; for 

others, participants had to provide answers and explain their responses. The numerical 

items were drawn from publicly available Australian grade 9 NAPLAN tests
1
 and from the 

pool of released PISA
2
 items (with permission); a few items were developed by the 

researchers. The instrument was prepared for online completion using Qualtrics 

(www.qualtrics.com). Selected items are included in the presentation of the results.  

Space constraints prevent a more detailed listing of the contents of the full instrument 

and limit inclusion of the often informative and thoughtful explanations given. 

Data gathering 
All pre-service teachers enrolled at one Australian university which offers 

undergraduate and graduate programs in teacher education were invited to participate in 

                                                
1 NAPLAN is the National Assessment Program for Literacy and Numeracy which, since 2008, has been 

administered to all Australian students in grades 3, 5, 7 and 9. 
2
 PISA is administered every three years to samples of 15 year old students in many countries around the 

world, including Australia.  
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the pilot study. The university’s guidelines for the recruitment of its students for research 

studies were adopted: advertisements were placed on selected Moodle sites with a link to 

the online instrument; lecturers in core units of study advertised the study in their classes; 

and posters and flyers were displayed within the buildings at the university campuses 

where the students were enrolled. A four week timeframe was allowed for the online 

instrument to be completed. 

The sample – contextual details 
The university from which the sample was drawn offers teacher education courses that 

would qualify teachers for early years [EY] teaching (birth to 8 years of age), primary 

(elementary) [P] teaching (grades Prep to 6), secondary [S] teaching (grades 7 to 12), as 

well as two cross-sectorial levels: EY-P (birth to grade 6) and P-S (grades P to 12).  

The sample comprised 237 students. Of these 23 (10%) opted out of the survey after 

answering only the first two or three items. These surveys were excluded from the 

analyses. Of the remaining 214 respondents who answered all or most of the items, 174 

(81%) were female and 40 (19%) were male. Just over half, 119 (56%), were aged under 

25. Of the rest, 53 (25%) were aged between 25 and 34, while 42 (20%) indicated they 

were older than 35. The gender and age distributions are in line with data provided by 

AITSL (2014) for the 2012 initial teacher education intake. That year females comprised 

76%, and 64% of the intake were aged under 25. 

Most of the respondents, 164 (78 %) of the 211 who answered the question, had 

completed their secondary schooling in Australia. Only eight among the respondents 

nominated mathematics as one of their secondary teaching specialisations.  

Results 

Pre-service Teachers and Proficiency in Mathematics 
The majority of respondents 104 (54%) considered themselves to be good or excellent 

at mathematics, 75 (39%) self-rated as being average, and 15 (8%) thought they were weak 

or below average. As reported by Forgasz, Leder, Geiger, and Kalkhoven (submitted), 

these judgements were supported by the group’s more than credible performance in solving 

the set of numerical items taken from the sources already described above.  

Pre-service Teachers’ Views about the Importance of Mathematics for Teaching 
As reported above, only eight of the group gave mathematics as their specialisation. 

Yet most respondents considered it important for teachers to be good at mathematics: 147 

(76%) agreed, 18 (9%) disagreed, and 29 (15%) were unsure. Just over half (100: 52%) 

thought they had studied enough mathematics to be a competent teacher, with the 

remainder almost equally divided between those who thought they had not (45: 23%) and 

those who were unsure (49: 21%). 

Pre-service Teachers and Mathematical Demands in Everyday Life 
Many of the respondents (200) to items relevant to this issue recognised the 

importance of mathematics and its applications in everyday life. For example, 

approximately 90% agreed that “In everyday life, understanding fractions, decimals, and 

percents is very important in our society”, considered that “given the price per square 

metre, I could estimate the cost of new carpet needed for a room” and that they “could 
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easily extract information from tables, plans, and graphs”. In contrast, only 21% agreed 

that “mathematics is communicated well in newspapers and the media”, 44% disagreed, 

and the remaining 35% indicated that they were uncertain. 

Pre-service Teachers’ Recognition of Mathematical Demands on Teachers in 
Schools apart from what is taught to Students 

1. Direct responses to the above item. Respondents were about equally divided 

between those (44%) who considered that there were mathematical demands on 

teachers apart from what is taught to students and those who were unsure (42%); 

the remaining 14% considered that there were no such demands. Those who 

acknowledged that there were numeracy demands on all teachers beyond the 

classroom touched on a number of pertinent areas in which numeracy skills are 

needed. Representative explanations for the Yes, No, and Unsure responses 

included: 

Yes: Understanding of statistics for analysis of NAPLAN results, class tests etc. 

Yes: Teachers need to possess broader/higher levels of organisational/analytical/linguistic skills 

which are entailed in mathematical abilities in order to successfully perform bureaucratic/ 

organisational responsibilities required in school settings. 

Yes: Mathematics such as class numbers, number of years teaching, salary… 

Unsure: I would say that there are mathematical demands on everybody, to some level, but whether 

teachers have more than anybody else is questionable. 

Unsure: I don't have any experience to decide 

No: I am not aware of the external mathematical demands on teachers 

No: I don't really think there are 

2. The NAPLAN-information item and pre-service teachers’ responses. The 

information below was provided on the survey preceding the NAPLAN questions: 

Here are the NAPLAN Reading and Numeracy results for Year 7 students at one Australian school 
(Aussie HS) taken from the MySchools website. The school’s results (blue) are shown together with 

‘similar schools’ (orange). 

The instructions for interpreting the graphs are provided below the graphs. 

The NAPLAN data that were provided are shown in Figure 1. Students had to interpret 

these data to answer the NAPLAN-information item questions. The specific questions 

asked about the data are used as headings for the relevant results. Because of space 

constraints, only a limited number of explanations for the answers selected are provided. 

a. In which Year did the Aussie HS Students achieve Best in Reading? 
The majority of those who answered this question (128: 89.5%) selected 2012 as their 

answer. A small number answered 2010 (9: 6.3%) or 2011 (6: 4.2%). 

b. In which Year did the Aussie HS Students achieve Best in Numeracy? 
Most (114: 81%) selected 2012. Of the others, 2 (1.4%), 12 (8.6%), 10 (7.1%), and 2 

(1.4%) selected 2008, 2010, 2011, and 2013 respectively. 

For both items most participants focussed on the mean score obtained by the school’s 

students on the test. That the difference in the mean scores between the school and 
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“similar” schools, in favour of the school, was also largest in 2012 rarely featured as a 

reason for it being selected as the year of the school’s best performance.  

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. NAPLAN-information item (devised by research team – drawn from publicly available data from 

MySchools website) 

For the Literacy item (a.), those who did not select 2012 generally gave mathematically 

irrelevant explanations such as “It is shown in the graph” and “The average achievement 

bubble is at its highest point over the selected year period”. These students did not 

demonstrate the relevant mathematical skills to interpret the graphical representation. 

In general, the Numeracy results (b.) elicited more complex explanations, not 

necessarily demonstrating mastery of the pertinent mathematics, for example: 

The orange bar reached the highest score (when also taking into account the margin of error). 

(Explanation in support of choosing 2010 as the best year of Numeracy performance)  

On the numeracy graph the school diamond was at its highest point in 2012.  However the margin of 

error was higher in this year. It was also only one of 2 years where the school performed above the 

average. (Explanation in support of choosing 2011 as the best year of Numeracy performance). 

c. Based on the Reading and Numeracy NAPLAN results, what should the 
Curriculum Co-ordinator be concerned about: Reading, Numeracy, Both 
Reading and Numeracy, Neither Reading nor Numeracy, or Unsure? 

Each of the options listed was selected by at least some of the respondents. Twelve 

(8.5%) identified Reading, 98 (69%) nominated Numeracy, Both Reading and Numeracy 
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was selected by 20 (14.1%), seven (4.9%) considered that neither was of concern, and five 

(3.5%) indicated that they were unsure. A selection of explanations for each of the 

alternatives presented serves as indicators of the sample’s proficiency in interpreting 

graphs, a skill some 90% had claimed they had mastered. 

Not all respondents provided an explanation for their interpretations but, for this item, 

too, a majority did. A representative sample of responses is shown below. 

Reading  
It seems that in reading, most students are on average unlike numeracy 

Reading has sharply declined from 2012 to 2013 - you would want to know what drove it so sharply 

down (also what was (it) about their literacy program that caused big spike in 2012) - even though it 

is still ahead of average or similar schools, the gap is much narrower in 2013 vs. 2012 with other 
similar schools. /  / Numeracy can still be improved (always room for improvement!) however 

scores are  still close to the average 

Numeracy  
Numeracy is a concern as it has dropped (in) the last two years and is now below the average for 

similar schools in the area. In Reading the Aussie HS regularly receives higher average student 

scores than similar schools and the average student scores are fairly consistent. In Numeracy the 

Aussie HS mostly had lower average scores than similar schools and student scores are also less 
consistent.  

Both Reading and Numeracy  
Schools should never just focus on one subject, all subjects are important. If the school must have 

separate teachers in order to help students understand then so be it (if this were a primary school). 

Whilst numeracy needs more help there is still room for improvement for reading 

Whilst the numeracy results were lower, neither was consistently above average. 

The results in 2012 were improving but slipped backwards in 2013.  

Neither Reading nor Numeracy 
The coordinator doesn't need a standardised test to dictate where his (sic) students are struggling  

All subjects. The question doesn't ask me if it specifically relates to just this data or for just this year 

(2012).  

Unsure 
My first instinct said that the co-ordinator needs to focus on reading because the score was so much 

better for numeracy in 2012. However on the other hand the results for numeracy are generally 

lower than the national average. So I'm inclined to say both but I'm not entirely sure.  

That the one set of information generated subtle differences in interpretation can be 

seen from the excerpts above. As expected, many of the more thoughtful, elaborated, 

responses referred to both sets of data. Yet it also appears from the responses that different 

directions for the school’s teaching and learning programs might be inferred from the data. 

The findings above suggest that the majority of the pre-service teachers in the study 

were able to interpret the data presented to them and provide appropriate supporting 

explanations. What was evident, however, was that most of the explanations were fairly 

superficial and did not reflect a full appreciation for the arguments that might be needed to 

convince others of their views. 
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Final comments 

The pilot study yielded fruitful insights into the pre-service teachers’ perceptions of the 

numeracy demands on Australian teachers. Although the sample who participated in the 

pilot study comprised students from only one university, the group’s gender and age 

distributions were similar to those reported by AITSL (2014) for the 2012 initial teacher 

education. The data reported here are particularly relevant to pre-service teachers whose 

specialisation is not in mathematics. As indicated by AAMT (c. 1998, p. 2), “in school 

education, numeracy is a fundamental component of learning, discourse and critique across 

all areas of the curriculum”. That less than half of the sample (44%) agreed that there were 

mathematical demands on teachers apart from what is taught to students is a matter of 

concern. Whether those preparing to be teachers of mathematics share this view warrants 

close scrutiny. 

Do Australian teacher education programs present pre-service teachers with examples 

which illustrate the types of numeracy demands on teachers that they will encounter when 

they work in schools? The NAPLAN item in our survey draws on fairly sophisticated 

graphical representations; the interpretation of the data requires a good understanding of 

the related mathematical concepts. The numeracy demands on teachers in schools are not 

limited to the interpretation of NAPLAN data. We are left to speculate on what AITSL will 

produce as the numeracy/mathematics test that pre-service teachers will need to pass prior 

to graduating from teacher education programs.  
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Exploring why more boys than girls continue to study higher levels of mathematics in 
senior school when there appear to be no gender differences in achievement in earlier years 
is worthy of investigation. There are potentially many reasons why this occurs including 
career aspirations, interest, and attitudes. One factor explored in this study was the gender 
composition of classes in Years 7 to 9. Data were collected from students in a single-sex 
boy’s school, a single-sex girl’s school and a coeducational school. Data revealed 
differences in attitude to mathematics with girls in the single-sex school having the most 
positive attitudes and girls in the coeducation setting having the least positive attitudes.  

At a time when there has been an explosion in the amount of data available to inform 
research and development, there is an increasing need for well-trained mathematicians and 
statisticians. However, the numbers of students continuing to study advanced levels of 
mathematics in senior secondary schooling and at the university level are declining (Office 
of Chief Scientist, 2012). There is an urgent need to arrest the decline but to do this more 
information is required about why students are choosing to discontinue their study of 
mathematics at the earliest opportunity. 

It has already been established that many students find mathematics boring and 
frustrating (Brown, Brown, & Bibby, 2008), and attitudes toward mathematics appear to 
decline for many students as they progress through school (Watt, 2004). Anxiety and 
avoidance is a persistent and growing issue in mathematics education (Ashcraft & Moore, 
2009). In addition, there appear to be gender differences in relation to attitudes to 
mathematics, self concept, and career aspirations (Martin, 2003; Watt, 2007). Research has 
a role to play in developing new understandings about these situations and investigating 
ways to improve the teaching and learning of mathematics in secondary school contexts.  

Literature Review 
Gender differences in secondary mathematics are a prominent issue that has been the 

focus of many studies, with reported differences in mathematics achievement between 
boys and girls a contentious issue. The literature has not come to a clear consensus; some 
studies have shown girls outperforming boys (e.g., Stevens, Wang, Olivarez, & Hamman, 
2007), while others find boys outperforming girls (e.g., Preckel, Goetz, Pekrun, & Kleine, 
2012). Recent research from large-scale studies such as the Trends in International 
Mathematics and Science Study (TIMSS) has found that “there were no gender differences 
in 22 of the 42 countries that tested at Year 8, including Australia”, and no gender 
differences were found within any single state or territory, including New South Wales 
(Thomson, Hillman, & Wernert, 2012, p. 20). While there are studies that undoubtedly do 
find differences between boys’ and girls’ achievement in mathematics, it appears that on a 
national level this is not the case. 

 

However, while studies focusing on gender differences in achievement are 
inconclusive, there is clearer evidence that positive attitudes, behaviours and participation 
rates in mathematics generally favour boys. Information from the Board of Studies, 
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Teaching and Educational Standards NSW (BOSTES) shows that girls are under-
represented in advanced mathematics courses. In the NSW Higher School Certificate 
courses of Extension 1 Mathematics and the higher Extension 2 Mathematics, girls 
constituted 40.0% and 35.6% of enrolments respectively in 2014 (BOSTES, 2015). 
Research has also shown that, compared to boys, girls are less likely to choose careers 
related to mathematics (Watt, 2007), feel less confident and suffer from mathematical 
anxiety in greater proportions (Ai, 2002; Hannula, 2002; Leedy, LaLonde, & Runk, 2003), 
have lower self-concept in mathematics (Kyriacou & Goulding, 2006), suffer from gender 
stereotyping where mathematics is viewed as a male domain among the general public 
(Leder & Forgasz, 2010) and among parents (Jacobs, Davis-Kean, Bleeker, Eccles, & 
Malanchuk, 2005), and also have fewer female mathematical role models as examples to 
emulate or follow (Lee & Anderson, 2014).  

The causes of the gender differences in attitudes, behaviours and participation rates are 
varied, and it is likely that any truly comprehensive explanation would require a complex 
combination of factors. Gender stereotyping is often cited as a potential cause of these 
differences, as stereotyping underpins many other background factors such as parental, 
teacher and peer attitudes, which can in turn have an effect on the attitudes, behaviours and 
participation rates of boys and girls, and there is some merit to this view (Mael, 1998). 

However, recently there has been some research investigating whether single-sex or 
coeducational schooling is a contributing factor to some of these gender differences. In an 
Irish study involving four schools, Prendergast and O'Donoghue (2014) found that the type 
of school had a statistically significant effect (p = .02) on student enjoyment of 
mathematics. The single-sex male school scored the highest, followed by the single-sex 
female school. Within the two coeducational schools, males enjoyed mathematics 
significantly more than females (p = .02). Interestingly, across the study females scored 
higher than males on diagnostic examinations, indicating that “females outperformed 
males even though they enjoyed the subject less” (Prendergast & O'Donoghue, 2014, p. 
1125). This finding seems to confirm that enjoyment of mathematics is driven by 
something other than achievement and that the gender composition of classrooms may 
have some impact. 

The Irish finding of girls in single-sex settings having more positive attitudes towards 
mathematics than girls in coeducational settings is not an isolated occurrence. A 
Zimbabwean study found that girls’ self-concept was higher in a girls-only school than in a 
coeducational school, although in this case there were no significant differences in 
achievement (Tambo, Munakandafa, Matswetu, & Munodawafa, 2011). An Australian 
study of female engineering students enrolled at the University of Technology in Sydney 
(UTS) found that female students from single-gender schools outscored their male 
counterparts on measures of self-perception of mathematical skill and ability (Tully & 
Jacobs, 2010).  

However, a new study is needed to investigate the possibility of gender composition 
(single-sex or coeducational) in junior secondary mathematics classrooms having an effect 
on students’ attitudes to mathematics in Australia. A pilot study of three schools was 
undertaken to investigate the following question:  

Does the gender composition of classrooms in Years 7 to 9 influence students’ attitudes 
towards mathematics? 
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The Study 
Three independent schools in a large metropolitan area took part in the study. School 

MF was a co-educational school, while School M and School F were a single sex boys’ 
and girls’ school respectively. This particular investigation was undertaken as part of a 
larger study that focuses on interest in mathematics in the lower secondary years. The 
study involved the completion of a written questionnaire, followed by individual 
interviews with selected students. All students in Years 7 to 9 completed the written 
questionnaire, resulting in a total of 1,229 responses. The distribution of participants by 
school, year and gender is shown in Table 1. 

Table 1 
Distribution of Participants 

School Year Males Females 
MF (Co-ed) 7 58 71 
 8 53 65 
  9  61 45 
M (Boys) 7 180 - 
 8 186 - 
 9 168 - 
F (Girls) 7 - 123 
 8 - 132 
 9 - 87 
Total  706 523 

The written questionnaire consisted of 5 items measuring the perceived interest of the 
respondent’s female carer, male carer, teacher, friends and classmates, as well as 26 Likert-
scale items (adapted from Stevens & Olivarez, 2005), in addition to open-ended questions 
and other basic demographic information provided by the participants. Eight of the 26 
Likert-scale items specifically measured attitudes towards mathematics, and analysis of 
these data form the basis of the results reported in this paper. 

Results and Discussion 
Gender differences were examined by comparing means with an independent samples 

t-test utilising SPSS software. The Likert scale consisted of five points, with a score of ‘1’ 
indicative of the respondent strongly disagreeing with the statement and a ‘5’ indicating 
strong agreement. In accordance with common statistical convention, a p-value less than 
.05 indicates a significance difference, and a p-value less than .01 indicates a strong 
significant difference. Table 2 lists the gender differences across the whole sample for the 
eight Likert-scale items measuring attitudes towards mathematics. Apart from Item 4, 
where girls displayed higher levels of anxiety when working on maths, there were no 
significant differences in attitudes across the whole sample. 

Having analysed the sample as a whole, the next step involved the examination of these 
gender differences in the coeducational School MF, and gender differences between the 
boys in School M and the girls in School F. This analysis would shed light on the 
hypothesis that the school setting (single-sex or coeducational) could have some 
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significance for the gender differences. Gender differences in School MF are presented in 
Table 3. 

Table 2 
Gender Differences Across the Whole Sample  

Item Means p-value 
1. I like maths M = 3.283 F = 3.303 .741 
2. I feel anxious when working on maths M = 2.372 F = 2.596 .001** 
3. Doing maths is one of my favourite activities M = 2.268 F = 2.231 .569 
4. I often find that the things we deal with in 

maths are really exciting 
M = 2.562 F = 2.571 .890 

5. I don't enjoy maths M = 2.672 F = 2.678 .935 
6. Maths is fun M = 2.721 F = 2.759 .595 
7. Maths is very stressful for me M = 2.690 F = 2.787 .163 
8. When I'm doing maths I feel pretty happy M = 2.580 F = 2.583 .967 

Table 3 
Gender Differences in School MF 

Item Means p-value 
1. I like maths M = 3.253 F = 2.939 .008** 
2.  I feel anxious when working on maths M = 2.320 F = 2.702 .002** 
3. Doing maths is one of my favourite activities M = 2.183 F = 1.938 .036* 
4. I often find that the things we deal with in 

maths are really exciting 
M = 2.515 F = 2.254 .021* 

5. I don't enjoy maths M = 2.852 F = 3.153 .028* 
6. Maths is fun M = 2.562 F = 2.384 .172 
7. Maths is very stressful for me M = 2.692 F = 3.045 .009** 
8. When I'm doing maths I feel pretty happy M = 2.432 F = 2.213 .064 

As can be seen in Table 3, there were significant gender differences in six of the eight 
Likert-scale items measuring attitudes towards mathematics, and in each case, girls had 
more negative attitudes than boys. Girls were more likely to feel anxious when working on 
maths, were more likely to say that they did not enjoy maths and found it stressful, and 
they were less likely to find maths exciting, likeable, or name it as one of their favourite 
activities. It is clear that in School MF there was a tendency for boys to have more positive 
attitudes towards mathematics than girls. The investigation then compared the boys of 
School M and the girls of School F in Table 4. 

It should be noted here that in presenting the data as means, we are ignoring student 
individual differences (Mael, 1998). For each item, the range was from ‘strongly disagree’ 
or ‘1’ to ‘strongly agree’ or ‘5’ for both males and females for all items. This suggests that 
in any large group of students, there is the potential for at least some students to have 
extremely positive or negative beliefs and feelings about mathematics. Another noteworthy 
point is that overall, the attitudes of students in the study were not as positive as we would 
have liked. Few students chose ‘strongly agree’ for the items 'I like maths' or ‘Maths is 
fun’. 
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Table 4 
Gender Differences Between School M and School F 

Item Means p-value 
1. I like maths M = 3.292 F = 3.494 .005** 
2. I feel anxious when working on maths M = 2.389 F = 2.541 .059 
3. Doing maths is one of my favourite activities M = 2.295 F = 2.383 .268 
4. I often find that the things we deal with in 

maths are really exciting 
M = 2.577 F = 2.736 .035* 

5. I don't enjoy maths M = 2.614 F = 2.431 .031* 
6. Maths is fun M = 2.772 F = 2.953 .032* 
7. Maths is very stressful for me M = 2.690 F = 2.652 .640 
8. When I'm doing maths I feel pretty happy M = 2.628 F = 2.776 .039* 

In Table 4, five out of the eight Likert-scale items have gender differences and in all 5 
cases they favour the girls, who have more positive attitudes towards mathematics than the 
boys. This is a strong reversal to the results of Table 3. There were few gender differences 
across the whole sample (Table 2) because of the combination of the opposing results of 
Tables 3 and 4.  

The remaining items in the written questionnaire were then analysed to determine if 
this pattern of gender differences held true for the rest of the questionnaire. In School MF, 
18 of the 26 Likert-scale items were found to have significant differences (p < .05) 
between boys and girls and in every case the differences favoured the boys in terms of 
more positive attitudes towards mathematics. For the single-sex settings, School M and 
School F, nine of the 26 Likert-scale items were found to have significant differences 
between boys and girls, and in every case the differences favoured the girls in terms of 
more positive attitudes towards mathematics. 

The sheer clarity of these results was striking and required more comparisons to be 
made to further establish these findings. When comparing the boys of the coeducational 
School MF to the boys in single-sex School M, only three statistically significant 
differences were found in the 26 items, with all three favouring the boys in the single-sex 
School M. Comparisons of the girls in School MF to the girls in School F predictably 
favoured School F by an overwhelming margin. Therefore it appears that in order of most 
positive attitudes to least positive attitudes, the order of cohorts is: single-sex girls, single-
sex boys, coeducational boys, coeducational girls. It must be said that the two middle 
groups of boys are reasonably similar, and the main disparities lie between the first and 
second cohort, and the third and fourth. 

At this stage, it would be disingenuous to attribute these striking gender differences 
solely to the single-sex or coeducational nature of the schools involved. No two schools are 
alike and there are doubtless many other factors that may contribute to these disparities. 
However, all three schools are in a similar metropolitan region, and in the National 
Assessment Program - Literacy and Numeracy (NAPLAN), which is the national testing 
scheme in Australia and occurs in the high school years of 7 and 9, numeracy scores were 
comparable as shown in Table 5 below. Scores have been given within a 10-point range to 
protect the identities of the schools involved.  

361



Table 5 
Numeracy Scores in NAPLAN Testing 2013 

School Year 7 Year 9 
MF (coeducational) 570-580 630-640 
M (single-sex boys) 620-630 690-700 
F (single-sex girls) 620-630 670-680 

The single-sex schools were very similar in NAPLAN scores, with the boys’ school 
having a slight edge in performance in Year 9, even though the girls’ school generally had 
more positive attitudes towards mathematics. The coeducational School MF’s NAPLAN 
scores were somewhat lower than either of the single-sex schools, which raises a potential 
hypothesis for future studies: since these two higher-performing single-sex schools have 
fewer gender disparities in attitudes toward mathematics (and where disparities exist, they 
favour the girls), is the gender disparity in attitudes toward mathematics a particular issue 
for girls in lower-performing schools? 

Given that the academic performance in NAPLAN does not strictly predict the findings 
on attitudes toward mathematics - if it did, one would expect the boys’ school to be slightly 
ahead of the girls’ school on attitudes, which was earlier seen not to be the case - it does 
appear that academic performance is an insufficient explanation in and of itself for the 
gender disparities. Therefore there is still some credence for the study’s original hypothesis 
that the coeducational or single-sex nature of schooling has some effect on the gender 
differences in student attitudes towards mathematics. 

One final avenue of investigation was to analyse the five perceived interest items 
where respondents were asked to rate the level of interest in mathematics of their female 
carer, male carer, teacher, friends, and classmates. If there were significant differences in 
these items across the schools that matched the pattern of gender disparities, then there is 
the possibility that it is these differences that could be responsible for the gender 
disparities, rather than the schooling system. 

Table 5 
Means of Perceived Interest Items Across Schools 

Group School MF 
Girls 

School MF 
Boys 

School M 
(Boys) 

School F 
(Girls) 

Female carer 2.350 2.114 2.399 2.631 
Male carer 3.059 2.820 3.016 3.172 
Teacher 3.637 3.730 3.853 3.875 
Friends 1.787 2.037 1.863 1.924 
Classmates 2.092 2.346 2.284 2.551 

At first glance, the means listed in Table 5 have a better correlation with the attitudes 
displayed, as it follows the stated order of single-sex girls and single-sex boys followed by 
the coeducational groups. However, upon closer inspection, it is not immediately clear how 
the perceived interest items could have generated the gender disparity in the coeducational 
school, as the School MF girls’ female and male carers are significantly more interested in 
mathematics than the School MF boys (p=.037 and p=.047 respectively), despite the more 
positive attitudes of the School MF boys towards mathematics than the School MF girls. 
Examination of the remaining three perceived interest items proves equally problematic; 
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the similarity of teacher interest in School M and School F despite the clear attitudinal 
differences between these schools discounts the teacher as a potential source of gender 
disparities, while the higher scores in the friends and classmates items of the School MF 
boys over the School M boys despite their attitudinal similarities (and slight favouring of 
School M) discounts these as potential causes. 

Conclusions and Implications 
In this study, attitudes towards mathematics were clearly divided into three distinct 

groups. The most positive group was the single-sex girls’ school, followed by the single-
sex boys’ school and the coeducational school. The differences between each of these 
groups were statistically significant. When the coeducational school was split into two 
further divisions of girls and boys, it was found that the coeducational boys were similar to 
(albeit slightly more negative than) the single-sex boys, while the coeducational girls had 
significantly more negative attitudes than the coeducational boys. When the sample was 
taken as a whole, boys and girls had very similar attitudes towards mathematics. For the 
girls involved in this study, students in single-sex settings resulted in much more 
favourable attitudes towards mathematics than those in coeducational settings. 

The potential exists for other factors to have caused these phenomena rather than the 
gender of the school setting. However, academic achievement in the form of NAPLAN 
scores, as well as the perceived interest of key people of influence (female and male carers, 
teachers, friends and classmates) could not accurately explain the gender disparities that 
were found. The correlations were not strong and suffered from some aberrant cases. 
Therefore, the potential for school setting to have affected the attitudes towards 
mathematics of boys and girls cannot be discounted. 

Care must be taken when interpreting these results, as a study involving three schools 
is unsuitable for broad generalisations regarding single sex or coeducational settings. 
However, these results are in strong agreement with other international studies 
(Prendergast & O'Donoghue, 2014; Tambo et al., 2011) as well as related studies in 
Australia (Tully & Jacobs, 2010). The robust sample sizes within each school also lend 
validity to the findings, even if the number of schools involved was comparatively small.  

The suggestion that gender differences in attitudes to mathematics may be more 
pronounced in coeducational schools than single-sex schools raises the larger issue of 
gender stereotyping and the possible impacts of school setting. It may be that in a 
coeducational school, students are more likely to conform to gender stereotypes, whereas 
in single-sex schools there is more freedom for students to not ‘live up to’ gendered 
expectations. This has implications for the way in which educators and other stakeholders 
might address problems associated with negative attitudes towards mathematics. For 
example, some coeducational schools have implemented single-sex classrooms for 
mathematics as a strategy to address boys’ underachievement (Jackson, 2002) but it may 
be a useful strategy to address girls’ negative attitudes to mathematics. Further research in 
this area could provide fruitful for a greater understanding of the challenges and possible 
solutions of gender differences in attitudes to mathematics. 
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Geometric competences of students have sparked great concern in Taiwan since the release 

of last TIMMS assessment. Geometric argumentation is viewed as to play an important role 
to enhance the competences of geometry and reasoning. This study adopts Toulmin’s (2003) 

model to develop such indicators, including naming, supporting ideas, and transformation 

reasoning. It is expected that further research will provide empirical evidence in these 

indicators to apply to topics in mathematics other than geometry. 

Introduction 

Taiwan has participated in several international assessments since 2000 and although 

Taiwanese grade 4 students are ranked top 4 in the Trends in International Mathematics 

and Science Study (TIMMS) in comparison with 62 other countries, results reveal some 

weaknesses of students in particular areas of mathematics. More specifically, TIMMS 

results suggest that grade 4 students are weaker in geometry and reasoning when compared 

with their performances in other mathematical topics (Mullis, Martin, Foy, & Arora, 2012).  

These learning problems may be caused by the curriculum and teaching instructions. 

National Council of Teachers of Mathematics (2000) indicates that in many countries the 

curriculum in geometry overemphasises the naming shapes and ignores the relationships 

between geometric properties. This may result in Taiwanese students being successful 

when it comes to memorise each shape’s name and its specific geometric property 

correctly, yet less able to use geometric properties to identify or categorise shapes. Most 

eastern Asian countries (Taiwan, Hong Kong, Japan, Korea, and China) are ranked in the 

top 10 in TIMMS, but these countries have each specific teaching instruction (Li & 

Shimizu, 2009). Taiwanese primary teachers prefer to use the direct instruction (Chiang & 

Stacey, 2013) instead of cooperative learning in teaching mathematics (Mullis et al., 2012). 

In mathematics classes, students are used to repeating several tests and are trained to solve 

various types of problems in order to get higher scores in Taiwan. To score higher points, 

Taiwanese teachers may focus on students’ cognitive skills in problem solving and ignore 

how students think mathematically. Some Taiwanese educators have noticed the 

consequences after participating in these international assessments and have put effort into 

reforming the educational system in Taiwan (Yang & Lin, 2015). 

Although the educational reform is a controversial issue in Taiwan, research shows that 

educators have tried to improve students’ weaknesses in learning mathematics (Yang & 

Lin, 2015). Since 2000, Argumentation in Taiwan has been shown to have several 

functions that could lead students to improve their competences in problem solving and 

communication in mathematics (Horng, 2004). The underlying nature of these 

competences is reasoning and the competence of reasoning is an essential one to support 

students to learn mathematics (Horng, 2004). Moreover, Lin and Cheng (2003) also state 

that the core competence of geometry is argumentation and learning geometry is tightly 

linked to learning argumentation in Taiwan. Therefore, we assume that reinforcing the use 

of argumentation in mathematics classroom may play an important role for improving 

students’ mathematical competences in terms of reasoning and geometry.  
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Argumentation is one useful tool to help students improve their competences of 

reasoning and geometry for class teachers. Students’ oral or written discourse is able to 

reflect on what they think and how they solve problems. Vanderhye and Zmijewski 

Demers (2007) also claim that class teachers are able to utilise students’ mathematical 

conversation to understand their thinking. Although there are some tools that are used to 

assess students’ argumentation (Healy & Hoyles, 1999; Lin & Cheng, 2003), they do not 

emphasise students’ cognitive abilities. In this study, we will develop a theoretical 

framework to assess students’ geometric argumentation from the cognitive perspective. In 

the following sections, we will identify the definition of geometric argumentation and 

develop the theoretical framework with indicators in greater detail.  

The Definition of Geometric Argumentation 

Mathematical argumentation is related to mathematical concepts and reasoning 

abilities in students’ discourse. Durand-Guerrier, Boero, Douek, Epp, and Tanguay (2012) 

define mathematical argumentation as either a written or oral discourse and the discourse 

links between premises and a conclusion through reasoning. The processes of reasoning 

combines mathematical rules with plausible statements and the plausible statements are 

formed by knowledge that is valid (Durand-Guerrier et al., 2012). Discourse is one kind of 

communication and students should discuss with each other. According to this definition, 

Krummheuer (2000, 2007) admits that argumentation is one type of social interaction and 

students’ understanding is constructed through social interaction. Social interaction has 

been recognised as improving students’ learning since students’ ideas will be justified and 

clarified with their classmates (Wood, 1999). From this perspective, although Durand-

Guerrier et al. (2012) regard argumentation as a process, we hold a different perspective. In 

the next section, we will discuss the differences with several reasons. 

Students’ oral or written discourses can take various types of formats and proof is one 

specific format which has to use deductive reasoning in argumentation (Aberdein, 2005; 

Durand-Guerrier et al., 2012). Although there are some similarities between argumentation 

and proof for mathematics educators (Durand-Guerrier et al., 2012), we have to point out 

that both argumentation and proof can take different shapes when considering primary 

students. We can distinguish between argumentation and proof from three perspectives: 

types of reasoning; pedagogical meaning; and formats. From the first perspective, while 

students are able to use inductive, deductive, and abductive reasoning in argumentation 

(Douek, 1999), students are only allowed to use deductive reasoning in proof (Ayalon & 

Even, 2008). From a pedagogical perspective, the purpose of argumentation is to cultivate 

students’ thinking and engage students’ understanding (National Council of Teachers of 

Mathematics, 2000; Wood, 1999) while proof aims at, amongst others, providing means 

for mathematicians to discuss the validity of mathematics results and communicate with 

each other (Department of Elementary Education, 2008). Finally, while students use their 

daily language to explain their thoughts in argumentation (Wood, 1999), they are expected 

to use formal mathematical language to reason and explain their ideas logically (Ayalon & 

Even, 2008). For these reasons, we conclude that argumentation is different from proof and 

both argumentation and proof play two different but important roles at the primary level. 

In summary, geometric argumentation in this study refers to the activity that occurs 

when students (in our case mainly primary students) employ geometric concepts or 

properties to form plausible statements in order to link premises and a conclusion through 

their daily language. There is a theoretical framework with three indicators that are 

essential to analyse students’ geometric argumentation: naming, supporting ideas, and 
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transformation reasoning.  We will explain the theoretical framework and three indicators 

in greater detail. 

Constructing a Theoretical Framework for Assessing Students’ Geometric 

Argumentation 

The theoretical framework is originally from the definition of geometric argumentation 

and there are three indicators that are developed from Toulmin’s (2003) model in this 

framework. Toulmin’s model is a structure of argumentation (Aberdein, 2005) and 

identifies some specific elements in argumentation (Toulmin, 2003). In the following 

sections, we will introduce the relationships between the definition of geometric 

argumentation and Toulmin’s model, and describe three indicators. 

The Relationship between the Definition of Geometric Argumentation and 
Toulmin’s Model to Develop the Theoretical Framework 

As stated previously, geometric argumentation refers to an oral or written discourse to 

link between premises and a conclusion with some geometric properties reasons. The 

theoretical framework in this study refers to a conceptual structure and the structure means 

that each element in the structure has some relationships with other elements. These 

elements are developed by Toulmin’s model and their meanings come from the definition 

of geometric argumentation in this study.  

The structure of the theoretical framework is originally from Toulmin’s model, but we 

modify and simplify some elements in mathematics education settings (Krummheuer, 

1995). Toulmin’s model is a structure of argumentation and is used to argue others’ claims 

(Hitchcock & Verheij, 2006). Since Toulmin’s model does not only focus on mathematical 

communication, the definitions of elements in Toulmin’s model are general statements. In 

Toulmin’s model, the meaning of data refers to facts and information that students know; 

warrants represent evidence that is used to support their conclusion; qualifiers have no 

clear definition, but the function of qualifiers is to justify whether evidence is correct or 

not; backing is defined as theories that are to challenge evidence which people give; claims 

refer to drawing a conclusion from data, and rebuttals are other claims to criticise the 

conclusion (Toulmin, 2003).  

Although Toulmin’s original model encompasses six elements; namely, data, claim, 

warrant, backing, qualifier, and rebuttal (Toulmin, 2003), Krummheuer (1995) states that 

researchers tend to ignore the elements of rebuttals and qualifiers when they analyse 

students’ argumentation, which may come from the definition of argumentation itself. The 

function of rebuttals is to justify and clarify students’ thinking. Krummheuer (1995, 2000, 

2007) regards students’ argumentation as a product and rebuttals play a role to help 

students produce an appropriate response. Inglis, Mejia-Ramos, and Simpson (2007) also 

claim that although qualifiers have no psychological value, but can help students think 

logically. Both rebuttals and qualifiers are to improve students’ argumentation, and have 

pedagogical meanings. Thus, both rebuttals and qualifiers seem to have pedagogical value 

when it comes to improving students’ argumentation and we argue that these two elements 

should also be considered when modelling argumentation from a mathematics education 

perspective. Adopting Toulmin’s work, Aberdein (2005) defines these four terms clearly: 

Data refers to the information given in a mathematical problem such as mathematical 

concepts and geometric properties. Students use this information to reach a conclusion. 

Claim means that students use the above-mentioned information to reach a conclusion.  
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Backing and warrant have different meanings when adopted in mathematics education. 

The meaning of backing refers to a mathematical theory and warrants represent evidence 

(Aberdein, 2005). Both of them are often called reasoning and the process of reasoning 

itself combines both backing with warrants (Prusak, Hershkowitz, & Schwarz, 2012). 

Supported by the above-mentioned research, we hypothesise that using argumentation 

enhances students’ geometric concepts and reasoning, but Toulmin’s model is limited in 

that although it introduces a theoretical framework to describe the role of argumentation, it 

just illustrates a structure of argumentation. For this reason, this study uses the structure to 

develop some indicators with the definition of geometric argumentation to assess students’ 

geometric argumentation.  

We adopt Toulmin’s model and identify elements in the model in the definition of 

mathematical argumentation in this study: premises refer to what Toulmin calls data, 

mathematical rules refer to backing, plausible statements can be viewed as warrants, and 

conclusions refer to claims in mathematics. Therefore, within the mathematics education 

setting, geometric argumentation could be viewed as students’ use of geometric properties 

or geometric concepts to link the relationships between premises and a conclusion through 

their oral or written explanations. Figure 1 shows the relationships between the definition 

of geometric argumentation and Toulmin’s model. 

 

Figure 1. The relationships between the definition of geometric argumentation and Toulmin’s (2003) model 

Three Theoretical Indicators to Assess Students’ Geometric Argumentation 
As stated earlier, there are several existing frameworks designed to evaluate students’ 

mathematical argumentation and each framework provides different information to 

mathematics educators. Healy and Hoyles (1999) investigated how secondary students 

construct a mathematical proof and analysed the proofs from two different perspectives: by 

analysing forms of arguments used and by attributing a score for correctness. There are 

four categories to distinguish students’ proof which are the outcome of the two 

perspectives: “No basis for the construction of a correct proof, No deductions but relevant 

information presented, Partial proof, and Complete proof” (Healy & Hoyles, 1999, p.19). 

In a similar study, Lin and his colleagues adapted the categories from Healy and Hoyles to 

evaluate secondary students’ arguments in Taiwan and developed four levels: “intuitive 

response, improper argument, incomplete argument and acceptable proof” (Lin & Cheng, 

2003). In our view, these two frameworks do not seem suitable to be used as is, in a 

primary school setting. While both frameworks are useful to analyse students’ 

argumentation, they may not reflect on students’ learning problem in argumentation from 

the cognitive perspective, especially in the process of reasoning. Furthermore, both 
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frameworks emphasise the concepts of proof for secondary students and may be not useful 

for primary students’ argumentation (cf. our earlier discussion about the distinction 

between proof and argumentation). On another level, students’ argumentation analysed by 

both frameworks is categorical data and categorical data is used to reflect on the types of 

students’ argumentation. The aim of this framework is expected to understand students’ 

geometric argumentation, especially in their cognitive competences, such as reasoning. For 

these reasons, we will develop three indicators to assess primary students’ geometric 

argumentation in order to solve these problems in this study. 

Reasoning is one essential component in argumentation (Mercier, 2011), and the 

indicators have to reflect students’ competence in reasoning. There is one kind of writing 

style that is called argumentative writing, and a core competence of argumentative writing 

is reasoning (Reznitskaya, Kuo, Glina, & Anderson, 2009). Reasoning is the core 

competence in both geometric argumentation and argumentative writing. Argumentative 

writing has two scales to analyse students’ works: the analytic and holistic scales 

(Reznitskaya et al., 2009). The former one lists several indicators and each indicator has 

different scales, and the later one is to rate students’ writing holistically. Reznitskaya et al. 

(2009) develop five indicators, which are called the analytic scales, to evaluate students’ 

argumentative writing, including fluency, flexibility, alternative, focus, form. Both fluency 

and flexibility are related to how students employ their ideas and alternative means 

whether students are able to give the opposite perspective to justify their ideas. Focus 

represents that students are able to utilise their ideas and form means that the structure in 

students’ writing is complete. These five indicators are divided into two parts: content 

(fluency, flexibility, and alternative) and organisation (focus and form). However, 

mathematical argumentation is one kind of discourse and has no regular format. Thus, the 

dimension of organisation can be ignored.  

On the other hand, the holistic scales have several points that combine with many 

criteria at one point. The scales are complex and students who get the same point may have 

different performances. The scales at each level are related to several factors, such as 

students’ writing structure, supporting evidence, reasoning abilities, and giving opposite 

evidence. Each of these factors does not have the same criteria to assess. It may be difficult 

to reflect on the cognitive competences of geometric argumentation in this study. Hence, 

we adapt the analytic scales to develop three indicators: naming, supporting ideas, and 

transformation reasoning. 

Naming. The indicator of naming relates to students’ ability in identify the name of 

geometric shapes correctly. The indicator has two subscales: premises and conclusions. 

The subscale of premises means whether students are able to gather correct information 

from what they were taught and what a task is given. Premises have an important position 

in argumentation and they will influence other components of Toulmin’s model. On the 

other hand, the subscale of conclusions means whether students are able to make a 

conclusion correctly. However, students have to do the first step correctly since the first 

step can be justified and needs to be correct in mathematical argumentation (Aberdein, 

2005). For example, students have to choose correct shapes (premises) and name them 

correctly (conclusions) or they will do invalid reasoning in the sort task of geometric 

shapes.  

Supporting ideas. The indicator of supporting ideas relates to students’ ability of 

employing an appropriate geometric property in order to link premises and a conclusion. 

The scale in this indicator is affected by the indicator of naming. Even if students give 
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complete and correct geometric properties, but the premises are incorrect, students cannot 

get any point in this indicator.  

Transformation reasoning. As we previously discussed, reasoning plays a significant 

role in argumentation, thus the need to incorporate this indicator in the assessment of 

students’ argumentation. The term of transformation reasoning has been developed by 

Simon (1996) as: 

The mental or physical enactment of an operation or set of operations on an object or set of objects 

that allows one to envision the transformations that these objects undergo and the set of results of 

these operations. Central to transformational reasoning is the ability to consider, not a static state, 

but a dynamic process by which a new state or a continuum of states are generated. (p. 201) 

According to this definition, transformation reasoning is one kind of reasoning, which 

may be seen as in between inductive and deductive reasoning. Primary students learn 

geometric concepts through their visual cues and operations (Duval, 1998) and 

transformation reasoning is that students use visual cues and operations to reason. Based 

on this perspective, we define the indicator of transformation reasoning that students are 

able to provide what they operate, measure, and see and convert their actions into 

geometric concepts. Therefore, students have to provide their actions (evidence) and 

connect their actions to geometric concepts (theoretical reason). The indicators of 

transformation reasoning and supporting ideas influence each other: their actions 

determine how students employ what geometric property or using which geometric 

property decides how students confirm their ideas. Figure 2 shows the relationships among 

three indicators, the definition of geometric argumentation and Toulmin’s model. 

 

Figure 2 The relationships among the indicators, the definition of geometric argumentation and Toulmin’s 

model 

Discussion and Conclusion 

Three indicators have been introduced in these sections, but how to use these indicators 

may be questioned by researchers. However, we do not develop the specific scales to 

assess students’ geometric argumentation in each indicator and here are some reasons: first, 

there are several geometric activities that are related to geometric argumentation. Each 

activity has some pedagogical purposes and teachers or researchers should develop scales 

based on their purpose. Second, the scales are related to the curriculum design. The 

curriculum in different countries has different perspectives for educating students. While 

the curriculum in Eastern countries has a content orientation, Western countries adopt the 
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creative approach. Therefore, the criteria of the scales should reflect their curriculum 

design. For both reasons, we encourage researchers to develop scales to reflect the students’ 

learning problem in geometric argumentation. 

The assessment tools have two points that should be of concern: one is that the tools 

are handy to understand students’ cognitive competences in geometric argumentation for 

the practical purpose, and the other is that the tools have empirical evidence to support 

their use for the academic purpose. We cannot deny that there exist several scales, schemes, 

or rubrics to evaluate students’ thinking and reasoning in argumentation. The theoretical 

framework in this study emphasises students’ cognitive competences and points out three 

indicators to assess. Researchers are able to use this framework to understand students’ 

learning problem and whether argumentation can improve students’ weakness in 

mathematics in Taiwan. On the other hand, we still have to be concerned about the 

academic purpose. Although the indicators may be appropriate to assess students’ 

cognitive competences in geometric argumentation, these indicators lack empirical 

evidence such as validity and reliability. Both validity and reliability support researchers 

and class teachers to use assessment tools confidentially. Hence, researchers should put 

effort into constructing validity and reliability in these indicators and these three indicators 

have theoretical evidence to put them into practice.  

In summary, this study adapts different theoretical perspectives and these perspectives 

converge into one framework. It may be easy to use these three indicators for researchers, 

yet they still have empirical data to support.  In the future, it still has a long way to go to 

construct the theoretical framework in geometric argumentation and we expect that the 

framework can be applied into other mathematical argumentation. 
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This position paper discusses the role of open access research data within mathematics 
education, a relatively new initiative across the wider research community. International 
and national policy documents are explored and examples from both the scientific and 
social science paradigms of mathematical sciences and mathematics education respectively 
are provided. Within these examples, some of the more well-known concerns associated 
with making data open and accessible are acknowledged and debated. 

This paper is to provide insights into a research mandate that will become increasingly 
relevant to mathematics education researchers; namely, the obligation to ensure research 
data and findings are made public. The paper describes the international context, from both 
policy and practice perspectives, drawing on specific examples from mathematical 
sciences and mathematics education within Australia and beyond. The intent of the paper is 
to establish a critical analysis of current practices. 

Within Australia, government funding for research is at a crossroads. There is a 
growing concern that severe cut backs will eventuate over the next few years. For the top 
scientists and academics this will be problematic as scarce funds will be even harder to 
secure. For other researchers, it could spell the end of their research programs. Within 
these politically uncertain times, simmering under the surface is the question, what will 
research look like in the future? Who and how will research be funded? In conjunction, 
there is the an increased awareness that more and more research data are being collected 
and stored, more often than not in digital forms. Universities around Australia (and indeed 
the world) are increasingly dealing with a data deluge (Borgman, 2012), with the storage, 
curation and cost issues associated with large data repositories yet to be fully realised. The 
philosophies behind such repositories are that data are manageable, connected, accessible, 
and discoverable. In effect, making the data as open as possible for re-use and re-analysis. 
The paper provides an overview of open research data both internationally and nationally 
and describes examples from both the scientific paradigm—mathematical sciences; and the 
social science paradigm—mathematics education. The distinctions are made to highlight 
the differences between the two paradigms in the advancement of open research data. 
Some of the concerns regarding social science data being made available via open access 
are considered. 

International and National Research Policy Perspectives 
The capacity to retrieve and share research data is not a new phenomenon. In the years 

1996-1998, key stakeholders working on the Human Genome Project (HGP) developed the 
Bermuda Principles. This was a set of principles that stated the sharing of DNA sequencing 
information developed from the project should be publicly and freely available within 24 
hours of being collected. The release of data pre-publication was ground-breaking across 
most research fields (Contreras, 2011). Indeed, the Bermuda Principles set the scene for 
other fields of research to consider benefits of releasing data sets, not necessarily pre-
publication of results, but certainly in conjunction with publication (see for example the 

373

2015. In M. Marshman, V. Geiger, & A. Bennison (Eds.). Mathematics education in the margins
(Proceedings of the 38th annual conference of the Mathematics Education Research Group of Australasia),
pp. 373–380. Sunshine Coast: MERGA.



Logan 

 

2003 Report Sharing Data from Large-scale Biological Research Projects: A System of 
Tripartite Responsibility, commonly known as the Fort Lauderdale agreement). In 2007, 
the Organisation for Economic Co-operation and Development (OECD) (2007) developed 
a report outlining guidelines and principals for accessing and sharing data produced by 
government-funded research. They argued that:  

access to research data increases the returns from public investment in this area; reinforces open 
scientific inquiry; encourages diversity of studies and opinion; promotes new areas of work and 
enables the exploration of topics not envisioned by the initial investigators (p. 3). 

It was from this point on that the international research community’s awareness was 
heightened. Within the United Kingdom and United States, research funding bodies such 
as the Economic and Social Research Council (ESRC, 2010), the Wellcome Trust (2010) 
(UK) and the National Science Foundation (NSF, 2010) (USA) have documented policies 
stating data management plans and provisions for the sharing of data must be submitted 
with grant applications, that these sections are subject to review and will be influential in 
the decision to award the funding. The European Union (European Commission, 2013) 
also identified the need for policies on open access data within its major research and 
innovation program called Horizon 2020. All publications and data generated through this 
funding must comply with their guidelines for open access. 

From the Australian perspective, the Australian Code for the Responsible Conduct of 
Research (Australian Government, 2007) was published outlining the principles and 
practices of researchers and institutions when conducting research. Section 2 in this 
document outlined management of data and primary materials. In summary, it highlighted 
the need to retain data for verification purposes and appropriate access for the wider 
research community. Around the same time, changes started appearing in the Australian 
Research Council’s (ARC) Discovery Project funding rules for 2008 (Australian 
Government, 2006) where a section was added (1.4.5. Dissemination of research outputs, 
p. 13) regarding the dissemination of data and outputs: 

The ARC therefore encourages researchers to consider the benefits of depositing their data and any 
publications arising from a research project in an appropriate subject and/or institutional repository 
wherever such a repository is available to the researcher(s). If a researcher is not intending to 
deposit the data from a project in a repository within a six-month period, he/she should include the 
reasons in the project’s Final Report. 

This general statement has remained relatively consistent throughout the Discovery 
Project funding rules since 2008 and presently, for the funding rules for 2016 Discovery 
Projects, the statements read:  

A11.5.1 All ARC-funded research projects must comply with the ARC Open Access Policy on the 
dissemination of research findings, which is available at www.arc.gov.au. In accordance with this 
policy, any publications arising from a Project must be deposited into an open access institutional 
repository within a twelve month period from the date of publication. 

A11.5.2 Researchers and institutions have an obligation to care for and maintain research data in 
accordance with the Australian Code for the Responsible Conduct of Research (2007). The ARC 
considers data management planning an important part of the responsible conduct of research and 
strongly encourages the depositing of data arising from a Project in an appropriate publically 
accessible subject and/or institutional repository. (Australian Government, 2014, p. 19) 

The ARC Open Access Policy (Australian Government, 2013a) specifically relates to 
publications being placed in open access repositories. This is mandatory. However, the 
interesting change is the separation of publications and data, with researchers being 
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strongly encouraged to deposit data into repositories. This highlights the increased 
importance placed on the accessibility of research data to the wider community. 

In late 2013 (Australian Government, 2013b), the ARC released the Discovery 
Projects—Instructions to applicants for funding commencing in 2015. This document 
generally provides advice to applicants on dealing with the relevant systems and explaining 
what each section of the proposal should contain. For the first time, that document 
identified that the project description (Part C) is required to have a heading titled 
Management of Data. This stated that all proposals must “outline plans for the 
management of data produced as a result of the proposed research, including but not 
limited to storage, access and re-use arrangements” (Australian Government, 2013, p. 15). 
Through this inclusion, the ARC is effectively making data management and data re-use an 
assessable component of the proposal, in a similar vein to the UK and USA systems. As 
Borgman (2012) commented in relation to the NSF policy on data management, “ the NSF 
has accelerated the conversation about data sharing among stakeholders in publicly funded 
research” (p. 1061). The separation of publications and data in the ARC funding rules and 
the inclusion of an assessable component related specifically to data management in the 
proposal emphases the growing awareness from a political perspective that the data 
generated by public funding is becoming increasingly valuable and needs to be made 
accessible. 

Data Repositories 
There are a myriad of data repositories situated globally, with almost every university 

having some form of searchable digital repository. This does not take into account 
government funded resources or independent enterprises. Hence, the main priority over the 
past few years has been the consolidation of, and access, to all the various data 
repositories. The UK Data Archive (http://www.data-archive.ac.uk/) provides access to 
social science and humanities data repositories and across Europe and the USA, 
re3data.org is a registry of data repositories. These registries provide access to a wide 
variety of data repositories internationally. 

Within Australia, since 2004 previous and current federal governments have invested 
approximately $2.5 billion through the National Collaborative Research Infrastructure 
Strategy (NCRIS) funding scheme to support the infrastructure required to consolidate and 
coordinate research across Australia (Lowe, 2015). This has included various aspects of 
big data collections. Table 1 outlines some of the projects undertaken in relation to the 
consolidation of data. 

This paper will focus on the Australian National Data Service (ANDS) and Research 
Data Australia as the national registry of research data within Australia.  

The main aim of ANDS is to create: 
a cohesive national collection of research resources and a richer data environment that will: 

• Make better use of Australia’s research outputs 

• Enable Australian researchers to easily publish, discover, access and use data 

• Enable new and more efficient research (ANDS, n.d.).  

Among other responsibilities, ANDS developed and currently manages Research Data 
Australia, a searchable registry of data. This registry provides access to a large number of 
research data, projects, documents, people, institutions and groups. It has been designed 
utilising the following categories: Collections; Parties; Activities; and Services. Collections 
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are research datasets or collections of research materials. Parties are researchers or research 
organisations that create or maintain research data sets or collections. Activities are 
projects or programs that create research data sets and collections. Services are the services 
that support the creation and use of research data sets and collections. Entries are 
categorised accordingly and there are linking nodes among these categories. With regard to 
access, there are three levels of access identified within Research Data Australia: Open; 
Conditional; and Restricted. Open access is defined as online data that can be 
electronically accessed free of charge with no conditions imposed on the user. Conditional 
access is seen as online or offline data that can be accessed free of charge, providing 
certain conditions are met (e.g., registration is required to access data online). Restricted 
access is online or offline data where access to the data is heavily restricted. 

Table 1.  
A Sample of Projects Undertaken Through NCRIS Funding to Support Data Consolidation 

Projects Description 
National Computing Infrastructure and 
Supercomputing Centre 

High-end supercomputing services to 
researchers.  

Research Data Storage Initiative Supporting national data storage 
National eResearch Collaboration Tools and 
Resources 

Desktop-based data analysis and modelling 
tools for researchers 

Australian National Data Service (including 
Research Data Australia), National 
Research Network and Australian Access 
Federation 

Building better electronic communication, 
connectivity and collaboration networks 
between national and international research 
institutions 

Australian Data Archive and Australian 
Data Archive Social Science 

Collection and preservation of digital 
research data 

Note: Adapted from Lowe (2015).  

The information within Research Data Australia is supposed to represent all fields of 
research within Australia, so in order to understand how mathematics education is situated, 
a comparison between a scientific paradigm, mathematical sciences and a social science 
paradigm, mathematics education is presented.  

Open Research Data in Two Paradigms 
Within mathematics education, and education more generally, there is an increasing 

awareness of data storage and re-use. However, compared to the mathematical sciences, 
education appears to be well behind in their understanding of, and participation in, making 
research data more open. To demonstrate this, a brief comparison is presented between the 
scientific paradigm and the social science paradigm. A search was conducted of Research 
Data Australia to determine the number of entries under mathematical sciences and 
Education. As described above, entries are represented by collections, parties, activities, or 
services. The entries are also collated under subjects according to the ANZSRC Field of 
Research (FoR) classification. It was through these subject classifications that the search 
was initially conducted. It should be noted that if the entry was not attached to a specific 
FoR, it does not show up in these classifications, but may be identifiable through other 
keywords searches. As such, subsequent keyword searches were conducted to identify the 
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number of collections, parties, activities, and services related to the keywords. These 
keyword searches also enabled filtering to identify those entries with open data access. 

Scientific Paradigm: Mathematical Sciences 
The Mathematical Sciences is the 01 classification under the ANZSRC FoR. It includes 

research areas such as Applied Mathematics, Statistics, and Pure Mathematics. A search at 
the two-digit level revealed 12,435 entries linked to this FoR. A keyword search of 
mathematical sciences revealed more than 85,000 entries, as categorised in Table 2. 

Table 2. 
Number of Entries Identified by Keyword Search of “Mathematical Sciences” and Open 
Data Licence in Research Data Australia by Category  

Category Mathematical Sciences Open Data Licence 
Collections 57,273 19,999 
Parties 2,129 — 
Activities 25,495 160 
Services 120 — 

That is a large number of open data licences, so what does that data actually look like. 
The data in these fields of research are more often than not quantitative and may contain 
complex systems of numbers and text and spatial information. Generally, this data relates 
to environmental, biological, or other physical phenomena as opposed to human subjects. 
It could be argued that much of this type of data is objective and factually based. 

Many areas in these sciences have established data archiving and sharing practices, 
with some academic journals even making it a condition of publication that data be 
deposited into a publicly accessible database or provided as appendices for others to access 
(Borgman, 2012). However, this is not the case for the social sciences. 

Social Science Paradigm: Mathematics Education 
Education is the 13 classification under the ANZSRC FoR and includes Education 

Systems, Curriculum and Pedagogy, and Specialist Studies in Education. Under the two-
digit code, 280 entries are identified. This is an underwhelming amount and there is a large 
difference in the number of entries between the two subject codes at this level. A keyword 
search for mathematics education revealed 73 entries as categorised in Table 3. None of 
the entries provided open data licences; however, almost all of the collections indicated an 
available data set. It is acknowledged that mathematics education is a much more 
specialised field compared to the general classification of mathematical sciences; however, 
even at the two-digit level, the differences are stark.  

The data sets linked to those collections were classified as conditional or restricted 
access, which required contacting the chief investigator or the research group/institution to 
negotiate terms and conditions of use. For example, the research team at the International 
Centre for Classroom Research at the University of Melbourne have listed all their data 
sets from the International Learner Perspective Study. However, access must be negotiated 
with the Centre.  

Without an openly available data set to compare with the mathematical sciences, the 
following section draws on the literature to better understand what mathematics education 
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data might look like and highlights some of the common issues associated with openly 
sharing this type of data.  
Table 3. 
Number of Entries Identified by Keyword Search of “Mathematics Education” and Data 
Sets in Research Data Australia by Category 

Category Mathematics Education Data Sets 
Collections 45 44 
Parties 18 — 
Activities 10 — 
Services 0 — 
 

Understanding Mathematics Education Data 
Mathematics education research data comes in varied forms. Similar to other social 

science research and depending upon methodology, it can include surveys, interviews, 
focus groups, tests, classroom observations, policies and other documentation, and various 
types of digital media such as audio and video recordings. Much of the data collected 
within mathematics education is rich qualitative data; however, quantitative data is also 
widely collected. It could be argued that this type of data is subjective insomuch as it 
specifically relates to human endeavour and behaviour. 

There has been much research attention afforded to the storage, archiving and re-use of 
qualitative data (Bishop, 2012; Cheshire, 2009; Cheshire, Broom, & Emmison, 2009; 
Corti, 2012; Fielding, 2004; Hammersley, 1997; Mauther & Parry, 2009). 
Overwhelmingly, the debate revolves around four main areas as identified by Cheshire 
(2009):  

Broadly, these concerns revolve around issues of research ethics, specifically informed consent and 
participant confidentiality; data security and access; intellectual property; and the enhanced insight 
into meaning that is gained from being involved in the data collection enterprise and which is 
subsequently lost in any secondary analysis. (p. 27) 

These four issues will be discussed briefly to highlight the nature of the debate and identify 
any steps that have been taken to alleviate some of these issues.  

Ethics, Security, and Access 
The ethical issues with storing and re-using data from human participants tend to focus 

on the type of informed consent provided at the beginning of data collection and the need 
to maintain confidentially. Previously, participants were told that after a certain period of 
time their data would be destroyed and that only members of the research team would have 
access to it. Hence, the majority of research conducted under those ethics will never be 
able to be re-used outside of the research team. Those terms have changed and now 
participants need to be informed about how their data will be kept and that other 
researchers may have access to the de-identified data. There are real possibilities that 
participation in research from the Education sector may decline because of these 
requirements. Certainly when researching sensitive areas, such as different cultures, often 
the participants only consent because their words, information or data will only be heard or 
seen by the research team, and often it has taken years of developing trust to get to even 
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that point (Cheshire, 2009). Coinciding with this is the levels of security and access that 
others have to the data sets. Much of this can be decided upon by the researcher. As was 
demonstrated in the example above, many of the mathematics education data sets in 
Research Data Australian are restricted access, meaning that any form of re-use is 
negotiated with the owner of the data. ANDS recently published a guide to publishing 
sensitive data (Olesen, 2014). This outlines some of the steps that can be taken to make 
sensitive data more open and accessible through data repositories. 

Intellectual Property 
The majority of research projects that actually get funded are a result of the reputation 

and knowledge and skills of the chief investigator and the research team. Not only does the 
idea have to be good and the methodology sound, the researchers must be deemed fit to 
carry out the project. In some circumstances, the collection of the data comes at a personal 
cost also. Hence, it is little wonder that many researchers covet their data. However, the 
data itself actually belong to the researcher’s institution and upon retirement or leaving, 
that data remains the property of that institution.  

Context  
Research conducted with human participants and about the characteristics of those 

participants is contextually based. Without context, much of the data is sometimes 
rendered meaningless and often very hard to interpret. Bishop (2012) identified that “for 
qualitative methodology, a key issue is context, as data are deemed inseparable from the 
context in which they are generated” (p. 345). In order to store data and make it 
appropriate for re-use, often very detailed descriptions of the context of data collection will 
be required along with data collection instruments and the data itself.  

Implications Moving Forward 
Given the current political climate and the requirement for ARC funded projects to 

have their data deposited into a repository, conversations need to begin within the 
mathematics education community about data storage and open data access. The relatively 
low number of mathematics education entries into Research Data Australia may be 
indicative of the culture of our research environment, but it may also highlight the 
difficulty of having a data set that can be easily stored and made accessible. Despite the 
advances in technology that have allowed such data repositories to exist and function, it 
could be the case that much of the data collected in mathematics education is done so in 
non-digital form and hence time, money and equipment are needed to make it repository 
ready. Alternatively, it could be the case that consent for such storage and access was not 
sought or not granted by the participants. Regardless of the reasons, research funding is 
limited and looking into the future, data repositories may be the only viable source of data 
available to conduct research.  
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This article presents a snapshot of the mathematical competencies of children aged four to 
five years in Australian early childhood education settings, as perceived by their educators. 
Data are presented from a nationally-representative sample of 6511 children participating in 
the Longitudinal Study of Australian Children (LSAC). The results reveal that children are 
seen to possess a number of mathematical competencies at 4-5 years, with the majority of 
children displaying interest in mathematics. Moreover, differences were noted with respect 
to the different program types in which the children participated. These results are 
discussed in relation to previous research, and implications for future research, policy and 
practice are presented. 

Children who enter primary school with high levels of mathematical knowledge 
maintain these high levels of mathematical skill throughout, at least, their primary school 
education (Baroody, 2000; Klibanoff, 2006). Despite this, early childhood mathematics 
education remains a developing area of research with work yet to be done in terms of 
identifying young children’s mathematical competencies (Peter-Koop & Scherer, 2012). 
Doig, McCrae and Rowe (2003) have suggested several reasons for the importance of 
understanding children’s mathematical development in the years prior to school, including 
the increasing number of children participating in early childhood programs and growing 
recognition of the importance of mathematics in general. Furthermore, De Lange (2008) 
has suggested that in the years prior to commencing formal education, young children have 
a curiosity about scientific phenomena—including mathematics—that, for many, seems to 
dissipate as they enter and continue formal education. 

An opportunity to explore young children’s mathematical competencies has been 
afforded through the Longitudinal Study of Australian Children (LSAC) (Sanson, 
Nicholson, Ungerer, Zubrick, Wilson et al., 2002). LSAC utilises a cross-sequential design 
to follow two cohorts of children: a Birth cohort of approximately 5000 children aged 
between 6 and 12 months; and a Kindergarten cohort of approximately 5000 children aged 
between 4 years 6 months and 5 years. This study focuses on children from the combined 
Birth and Kindergarten cohorts of LSAC when they were aged four to five years and in 
particular the mathematical competencies of those attending a formal early childhood 
education program. The overarching research question guiding this study is: What are the 
mathematical competencies of 4-5 year old Australian children who attend formal early 
childhood education programs?  Consideration is also given to the related question: Are 
there differences in mathematical competencies across prior-to-school and school sectors; 
and if so, what are they?  
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Background 
In this section we provide a brief review of extant research pertaining to the 

mathematical skills possessed by young children, and the impact of different early 
childhood program types on the development of children’s mathematical skills. 

Young Children’s Mathematical Skills 
A number of studies have demonstrated that children begin developing mathematical 

skills from a very young age. In a study of 1003 Norwegian children aged between 30 and 
33 months, Reikerås, Løge, and Knivsberg (2012) found that the toddlers showed 
mathematical competencies in all areas observed (encompassing number and counting, 
geometry and problem solving). Similarly, Björklund’s (2008) study of children aged 
between 13 and 45 months demonstrated that toddlers interact with concepts of dimensions 
or proportions, location, extent, succession and numerosity, and use a range of strategies to 
express their understanding. The seminal Australian study, the Early Numeracy Research 
Project (see for example, Clarke, Clarke, & Cheeseman, 2006) investigated the 
mathematical knowledge of over 1400 children in their first year of primary school. An 
important finding from the study was that much of the content which formed the 
mathematics curriculum for the first year of school was already understood clearly by 
many children on arrival at primary school (Clarke, Clarke, & Cheeseman, 2006), a finding 
echoed in several other studies, both in Australia (e.g. Gervasoni & Perry, 2013; 
MacDonald, 2010) and internationally (e.g. Aubrey, 1993; Wright, 1994). 

Of course, there will be substantial variance in the mathematical competencies children 
develop prior to school (Peter-Koop & Kollhoff, 2015), and both standardised tests and 
experimental tasks reveal marked individual differences in children’s mathematical 
knowledge by the time children enter preschool (Levine, Suriyakham, Rowe, Huttenlocher, 
& Gunderson, 2010). Given the compelling research pertaining to the relationship between 
mathematics at the time of school entry and later school achievement (Levine et al., 2010), 
it is important to ascertain the mathematical competencies of children in the early years in 
order to understand the foundation on which subsequent mathematics education should 
build. 

Impact of Program Type on Mathematical Opportunities and Skills 
In Australia, children aged 4-5 years will typically participate in either prior-to-school 

programs or school programs. The prior-to-school programs on offer are many and varied, 
and differ in the different states and territories. However, the program types can be 
generalised as including centre-based care (long day care or occasional care), stand-alone 
preschools, supported play groups, family day care, and early intervention services. 
School-based programs are similarly complex and diverse. In all states and territories, 
however, children commence school with a pre-Year 1 program, though it is termed 
“Kindergarten” in some jurisdictions (e.g. NSW) and a “Preparatory” year in others (e.g. 
Victoria). 

 At the time the data in this study were collected (2004-2008), each state and 
territory was responsible for providing curricula and policy documents for use in the 
various education sectors. The prior-to-school sector was the least regulated in terms of 
curricula frameworks. However, a common feature was a lack of explicit focus on the 
teaching of mathematics in the early childhood sector. On the other hand, mathematics has 
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been a part of the formal primary school curricula from the first year of school, with each 
state and territory guided by its own mathematics syllabus. 

Clearly, the curricula and policy frameworks utilised in the different settings will have 
some impact upon the extent to which mathematics is an explicit focus of the educational 
program on offer, and it can reasonably be assumed that explicit teaching of mathematics 
is likely to occur more frequently in school settings. However, there are other factors 
beside curricula which will influence children’s opportunities to explore mathematics in 
early years education settings. A study of mathematics in the childcare context by Graham, 
Nash, and Paul (1997) has shown that children’s experiences in childcare vary greatly, 
with differences in the physical set-up, schedule, age grouping, teacher-student ratio, 
teaching styles, and beliefs about child development. However, a common feature of the 
childcare settings investigated was the minimal amount of mathematics instruction in these 
settings.  

Method 

Sample 
The sample utilized both cohorts (Kindergarten and Birth) of LSAC. Collectively this 

consisted of 9369 children aged from 4.2 to 5.7 years (M = 4.8 years, SD = 0.2) of whom 
51.1% were male. A substantial number of the full sample (n = 2716), however, did not 
attend a formal early childhood education program. In addition, teachers of 142 children 
failed to provide data for their students. Consequently the sample on which this analysis is 
based comprises 6511 children with similar age and gender characteristics as the full 
sample.  

Program Type 
These children attended a range of early childhood education programs and these are 

shown in Table 1, which also reports the mean age of children in each group. As is seen 
from the table, more than half of the children (53.7%) participated in preschool programs, 
which operate only during school hours and terms, and where children may attend half-
days or limited sessions a week. Almost a quarter (22.8%) attended centre-based programs 
which operate at least eight hours a day, five days a week and most weeks of the year. Less 
than one fifth (17.6%) attended pre-Year 1 school programs, which are full-time, school-
based programs. A small proportion attended other programs including early intervention 
programs, or participated in multi-age classrooms. As is also seen, children attending pre-
Year 1 school programs were on average 4 months older than those attending preschool 
and centre-based programs.  

Table 1 
Participation in Early Childhood Programs (N = 6511) 

Program type Frequency % Mean age (months) 
Centre based childcare program 1483 22.8 57 
Preschool program 3495 53.7 57 
Pre-Year 1 school program 1149 17.6 61 
Other    124   1.9 59 
Not stated    260   4.0  
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Indicators of Mathematical Competencies 
Analysis of children’s mathematical competencies was based on the mathematical 

skills scale (Social Development Canada, 2005), which was included in the teacher 
questionnaires. One significant limitation of the LSAC study design is that no opportunity 
was given to parents and/or other caregivers, or the children themselves, to provide a 
response to these six items. As such, the data reported in this article are formed on the basis 
of early childhood teachers’ judgements of children’s competence in relation to the 
following items:  

1. ability to sort and classify;  
2. ability to count objects;  
3. ability to count to 20;  
4. ability to recognise numbers; 
5.  ability to do simple addition; and  
6. interest in numbers.  

These were phrased as questions allowing a “Yes” or “No” response, with the final 
item asked from a negative perspective. Clearly, these items do not address all 
mathematical competencies a young child may possess and indeed, privilege number 
concepts above all other mathematical concepts. Nevertheless they do provide insight into 
some of the mathematical competencies 4- and 5-year-old children possess, as perceived 
by their educators. 

Analysis Plan 
Descriptive statistics were used to answer the overarching question in this study. These 

were estimated, however, through the use of a series of logistic regression models: One for 
each competency. These models also allowed for the later testing of program type on 
children’s mathematical competency, whilst controlling for the influence of their ages. 
Given the statistical power associated with the sample size, the statistical significance of 
regression coefficients was assessed with a Bayesian information criterion (BIC), with 
values exceeding ten considered to be “very strong” effects (Pampel, 2000, p. 31). In order 
to account for the complex sampling design used with LSAC, all estimates and their 
standard errors were calculated using the R-package “Survey” (Lumley, 2012). 

Results 
The estimated proportions of children, who according to their teachers possessed the 

given mathematical competencies, are shown in Table 2. As is seen, most children were 
able to sort and classify, and count objects. Far fewer, however, were able to recognise 
numbers and undertake simple addition. Variations in these competencies, however, may 
have been due to differences in age and the program type that children were attending. In 
order to control for these factors, program-type (a four-level factor) and age (in months) 
centred on the mean, were regressed onto children’s mathematical competencies; a series 
of dichotomous variables indicating whether the child had or had not met the relevant 
competency. The results of these models are shown in Table 3, which reports estimates of 
the influence of age and program type on the probability that a child will meet the given 
competency. More specifically, these estimates relate directly to the logit transformation 
(natural logarithm of the odds ratio) of this probability. In each model, the influence of 
program-type is relative to those children in centre-based programs. The specification of 
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these models is shown in Equation 1, where  is the probability that a child will meet the 
relevant mathematical competency. 

 1  ------(1) 

Table 2 
Proportion of Students Meeting Each Competency 

Competency Overall 
(%) 

Able to sort and classify 96 

Able to count objects 94 

Able to count to 20 62 

Able to recognize numbers 72 

Able to do simple addition 32 

Uninterested in numbers   2 

Table 3 
Results of Logistic Regression Models  

Competency Intercept 
( ) 

Age 
( ) 

Preschool 
( ) 

Pre-Year 1 
( ) 

Other 
( ) 

Able to sort and classify 2.59 0.01 0.36 -0.03 -0.79 

Able to count objects -1.52 0.07 0.25 0.16 -0.71 

Able to count to 20 -5.24 0.10 -0.42 -0.19 -0.49 

Able to recognize numbers -3.84 0.08 -0.12 0.29 -0.12 

Able to do simple addition -6.39 0.09 -0.19 0.67 0.28 

Uninterested in numbers -3.34 -0.01 -0.07 -0.20 0.78 

Note: emboldened coefficients report BIC>10. 

As is seen from Table 3, age has a significant influence on children’s ability to count to 
20, recognize number, and to do simple addition.  The odds ratios corresponding to each of 
these effects are 1.10, 1.08, and 1.09 respectively, suggesting that an increase in age of one 
month relative to the mean age (57.6 months) will produce small, but significant increases 
in the likelihood of gaining these competencies. When controlling for age, children 
attending preschools were less likely to be able to count to 20 than children attending 
centre-based programs. The corresponding odds ratio for this effect is 0.66, suggesting that 
preschool attendees are two thirds as likely to gain this competency as those attending 
centre-based programs.  In addition, children attending a pre-Year 1 program were more 
likely to be able to do simple addition than those attending the centre-based programs. The 
corresponding odds-ratio for this effect is 1.95, suggesting that these children are nearly 
twice as likely to meet this competency as those attending centre-based programs.  

Discussion 
As reported in Table 2, the children in this study demonstrated a high level of 

competence on the majority of the items. This is consistent with international research 
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showing that children develop a range of mathematical understandings in the years prior to 
starting school (Reikerås et al., 2012; Clarke et al., 2006). 

The years subsequent to the collection of the LSAC data has seen the implementation 
of Australia’s first national schooling curriculum, known as the Australian Curriculum 
(incorporating the specific Australian Curriculum: Mathematics) (Australian Curriculum, 
Assessment and Reporting Authority [ACARA], 2014). The Australian Curriculum: 
Mathematics has content grouped into three areas: number and algebra; measurement and 
geometry; and statistics and probability (ACARA, 2014). A mapping exercise has been 
undertaken to examine the alignment of the competencies demonstrated in this study with 
the current expectations of children in the early years of primary school. This exercise has 
revealed some points of concern. For example, the Australian Curriculum: Mathematics 
mandates that simple addition is not taught until Year 1, yet one third of the LSAC 
children were perceived by their educators to be already doing this, either in their prior-to-
school year or first year of school. Sorting and classifying, counting (including to 20) and 
number recognition are stated as content to be taught in the Foundation year; however; the 
majority of children in this study are already demonstrating competence in these areas. 
This is consistent with the findings of other Australian studies (Gervasoni & Perry, 2013; 
MacDonald, 2010), indicating that there is growing evidence that the early years 
mathematics curriculum is misaligned with children’s existing competencies. Of concern is 
that this lack of challenge might result in children becoming disinterested in mathematics 
as they progress through the schooling years. 

It is important to note that according to their teachers 98% of the LSAC children 
showed interest in numbers at 4-5 years. This is heartening because studies show a decline 
in levels of mathematics over the entire school period (e.g. Fredricks & Eccles, 2002). If 
children engage in meaningful and enjoyable mathematics education in the early childhood 
years, they are much more likely to appreciate and continue to engage in later mathematics 
education (Linder, Powers-Costello, & Stegelin, 2011). 

Children attending preschools were less likely to be able to count to 20 than children 
attending centre-based programs. This is somewhat counter to the common perception that 
preschools provide “higher quality” education programs and hence are more likely to 
produce better outcomes (Marriner, 2013). It may be the case that preschool programs 
focus on developing skills beyond simple rote counting, whereas the mathematics in 
centre-based care is typically limited to activities such as counting and identifying shapes 
(Cohrssen, Church, Ishimine, & Tayler, 2013).  

Children attending pre-Year 1 programs were more likely to be able to do simple 
addition than those attending the centre-based programs. On the one hand, it could be 
argued that this makes sense, given an explicit focus on mathematics education (as 
expressed through formal curricula) in school settings. Of note, though, is the point that 
simple addition typically does not feature in the formal curriculum for the first year of 
school; rather, it typically appears as content for teaching in Year 1 (children’s second year 
at school). This suggests that not only is the first year of school curriculum failing to 
recognise the competencies children bring with them from prior-to-school settings, this 
lack of recognition is maintained as children progress to their second year of formal 
schooling. 

Limitations and Opportunities for Further Research 
The analysis has been undertaken within the limits of the LSAC study design, 

including its measures. Although the mathematical skills scale may be viewed as limited, 
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and there may be more appropriate measures elsewhere, the analysis could only include 
data from the existing study. However, this highlights the importance of future research 
which takes a broader view of mathematical competence and is more inclusive of other 
conceptual domains in mathematics.  

A further limitation is that mathematical competencies were based on educators’ 
judgements only and indeed was restricted to children enrolled in formal early childhood 
programs. There is much research which indicates powerful mathematical ideas are 
developed in home and community settings (MacDonald, 2012). Consequently further 
research in all early childhood settings, and using multiple sources, is required.  

Conclusion and Implications 
This article has presented evidence to suggest that young children are perceived as 

competent by their educators in several aspects of mathematics, as assessed within the 
scope of the LSAC data gathering. However, given that data regarding children’s 
mathematical competencies was only collected from the age of 4-5 years, this begs the 
question: What competencies do children possess at younger ages? Consistent with Peter-
Koop and Scherer’s (2012) call for further research, it seems clear that there is much work 
yet to be done in identifying the mathematical competencies developed by young children. 
Much of the extant research and existing assessment tools specifically target preschool-age 
children (i.e. 4-5 year old children)—as exemplified in the LSAC study—with relatively 
little research on the mathematical development of younger children (Mousley & Perry, 
2009).  As Doig et al. (2003) state, it appears that the development of an assessment 
instrument that gives due emphasis to the full range of young children’s mathematics is 
long overdue. Indeed, this call for further research persists a decade later, with Peter-Koop 
and Scherer (2012) arguing that research leading to the development of a detailed 
competency model that goes beyond number and integrates the different content areas of 
mathematics is still needed. 
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Teacher knowledge, including Pedagogical Content Knowledge (PCK), continues to be the 
focus of research, with the general consensus being that PCK impacts upon teaching and 
learning. Much of the current research has focused on pre-service teachers and practicing 
primary teachers, with few studies focused on studying senior secondary teachers’ PCK. 
Even rarer are studies which examine PCK from students’ perspectives. This study 
investigates the nature of PCK as experienced in a lesson by a class of senior secondary 
mathematics students. The findings indicated that there were a number of PCK elements 
incorporated in the lesson and that these were noticed by the students.  

Introduction 
Effective mathematics teaching requires knowledge of mathematical content, 

knowledge of students’ thinking, and knowledge of how to represent the content so that it 
makes sense to others (Hill, Ball, & Schilling, 2008). There has been substantial research 
into identifying and characterising the constituent parts of teacher knowledge including 
pedagogical content knowledge (PCK) (e.g., Chick, Baker, Pham, & Cheng, 2006; Krauss 
et al., 2008). PCK is knowledge about the way subject matter is transformed from the 
knowledge held by the teacher into the content of instruction. Shulman described PCK as 
an intricate blend of content and pedagogy that encompasses all that is needed to teach a 
subject or topic in a way that makes it comprehensible to others (1986).  

It is generally accepted within the mathematics education community that PCK impacts 
upon teaching and learning (e.g., Ball, Lubienski, & Mewborn, 2001; Krauss et al., 2008). 
Most research into PCK has tended to focus on pre-service and practicing teachers in the 
context of primary mathematics (e.g., Rowland, Huckstep, & Thwaites, 2005) but 
comparatively few studies have examined PCK for teaching secondary mathematics 
(Matthews, 2013). Furthermore there has been little research into how multiple sources of 
evidence of PCK may inform us about the nature of this aspect of teacher knowledge. This 
paper focuses on investigating PCK within the context of a senior mathematics classroom 
by exploring the following research questions: What aspects of PCK does a teacher of 
senior secondary mathematics demonstrate in a lesson? To what extent are these aspects 
perceived by students as being helpful to their learning?  

Review of Literature 
Several frameworks have been developed to conceptualise the multi-faceted nature of 

mathematics teacher knowledge, including PCK (e.g., Ball, Thames, & Phelps, 2008). The 
domain map for Mathematics Knowledge for Teaching developed by Ball and colleagues 
delineates the boundaries of different categories of teacher knowledge and is widely cited 
in the literature on mathematics teacher knowledge. Some scholars however, have 
questioned if it is possible, particularly in practice, to precisely demarcate subject matter 
knowledge and pedagogical content knowledge in the context of teaching (e.g., Marks, 
1990).  

The framework for analysing PCK in mathematics teaching developed by Chick and 
her colleagues (e.g., Chick et al., 2006) gives a detailed inventory describing evidence for 
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identifying key components of PCK within three broad categories. These include “clearly 
PCK”, “content knowledge in a pedagogy context” and “pedagogical knowledge in a 
content context” and represent the varying degrees to which content and pedagogy are 
intertwined without rigid delineation. Space prevents the inclusion of the entire framework 
but brief descriptions of some key PCK elements are given in Table 1. Some PCK 
elements relate to teachers’ knowledge of students’ existing conceptions about 
mathematical concepts, and others relate to knowledge of how to transform mathematics 
knowledge to facilitate learning (e.g., Deconstructing Content to Key Components).  

Table 1.  
A Framework for Pedagogical Content Knowledge. (Based on the framework in Chick and 
colleagues, 2006) 

PCK Category Evident when the teacher … 
Clearly PCK  
Teaching strategies  – 
general 

Discusses or uses general strategies or approaches for 
teaching a mathematical skill or concept. 

Student thinking Discusses or responds to possible students’ ways of thinking 
about a concept, or recognises typical levels of understanding. 

Student Thinking  – 
Misconceptions 

Discusses or addresses typical/likely student misconceptions 
about mathematics concepts. 

Cognitive Demands of 
Task 

Identifies aspects of the task that affects its complexity. 

Knowledge of Examples Uses an example that highlights a concept or procedure 
Content Knowledge in a Pedagogical Context 
Deconstructing Content 
to Key Components  

Identifies critical mathematical components within a concept 
that are fundamental for understanding and applying that 
concept 

Procedural Knowledge Displays skills for solving mathematical problems 
(conceptual understanding need not be evident)  

Methods of Solution Demonstrates a method for solving a mathematical problem 
Pedagogical Knowledge in a Content Context 
Assessment Approaches Discusses or designs tasks, activities or interactions that 

assess learning outcomes 
 

The framework enables close inspection of teachers’ PCK by applying it to data such 
as interview transcripts, written responses to items about teaching and learning 
mathematics content, and actual teaching episodes (Chick et al., 2006). As such, it provides 
an appropriate theoretical framework for the study discussed in this paper. Overlap among 
facets is also plausible. For instance, in discussing a method for solving a problem a 
teacher may show Procedural Knowledge as well as demonstrate evidence of having 
Deconstructed Content into Key Components (Chick et al., 2006). 

Teachers often use examples in their classroom in order to illustrate key principles. The 
Chick et al. framework highlights examples as a facet of PCK. Other scholars (e.g., Krauss 
et al., 2008; Zodik & Zaslavsky, 2008) identify examples as integral to learning and 
teaching as they represent powerful learning opportunities for students. Examples refer to a 
particular case from a larger class from which one can reason and generalize (Zodik & 
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Zaslavsky, 2008). In fact it is not the specific example or even the answer that is the most 
important but the general principle illuminated by the example (Chick, 2009). In senior 
secondary mathematics, examples form a large part of classroom instruction; they were a 
feature of the lesson studied for this paper. 

Methodology 
This paper uses data from a larger study and explores aspects of PCK from the 

perspectives of a teacher, his students, and the researcher by examining one lesson in 
detail. A Grade 11/12 Mathematics Methods class from a large metropolitan secondary 
college in Tasmania participated. Mathematics Methods is one of the most demanding 
mathematics courses offered in Tasmanian schools. It is assessed by internal unit tests and 
a final external examination; the major topics are function study, differential and integral 
calculus, and statistics. Data presented in this paper focus on two examples involving 
optimisation, a practical application of differential calculus.  

The participants were Mr Jones, a teacher of Mathematics Methods during 2014, and 
his 16-18-year-old students. Mr Jones has been a teacher of secondary mathematics for 25 
years, including seven years at the senior secondary level. Of the 18 students enrolled in 
Mr Jones’ class, 15 (six females and nine males) contributed data by participating in the 
focus group interview and/or completing a short answer survey. Teacher and student 
names are pseudonyms in this paper. 

Data were collected during one lesson on applications of differential calculus. The 100-
minute lesson focused on optimisation. The lesson was observed, video-recorded, and 
partially transcribed. At the end of the lesson a short-answer survey was completed by 
participating students, eliciting responses about the types of explanations and strategies 
that assisted them with their learning. A semi-structured audio-recorded focus group 
interview was also conducted, with five participants for 15 minutes, where students were 
asked to comment on aspects of the lesson that were particularly helpful for their learning. 
Mr Jones also participated in a 20 minute interview after the lesson. These approaches 
yielded three data sources for examining PCK: the researcher’s notes on the lesson and 
accompanying video, student perspectives, and the teacher interview.  

Data from the lesson observation, interviews, and surveys were transcribed and aligned 
with one of several teaching events in the lesson (e.g., the presentation of a solution to a 
particular example, the process of differentiating a function). Teacher actions during the 
class, student comments, and teacher interview comments were examined to see if they 
matched any of the PCK lesson descriptors (see right hand column of Table 1). The 
transcripts were read independently by each author, to ensure consistency. The multiple 
data sources linked to each lesson event were then examined for commonalities in PCK 
type. Of particular interest was the extent to which the multiple sources of evidence of 
PCK corroborated each other and what insights this provided about the nature of PCK.  

Results and Discussion 
This section begins with a brief overview of the lesson, followed by the presentation of 

results from multiple data sources linked to particular events in the lesson. Results are 
arranged in sections based on these lesson events. The teaching events described in each 
section have been classified using the categories from the Chick et al. framework for PCK 
(see Table 1). In some cases categories are grouped or paired (e.g., knowledge of 
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examples/knowledge of assessment) to reflect situations where different aspects of PCK 
were clearly intertwined.  

Lesson overview 
Mr Jones began the lesson by providing an overview of the remaining content to be 

covered in differential calculus before the end of unit test in the following week. He 
forewarned the students that it would be “a frantic lesson” as this was the last lesson 
allocated to applications of differential calculus. 

The instructional phase of the lesson focused on two optimisation (also called 
maximum and minimum) problems: “the bushwalker problem” (see Figure 1) and “the 
distance problem” (see Figure 2). Optimisation problems are the key focus of applications 
of differential calculus in the Mathematics Methods course, and involve practical situations 
in which students are required to minimize or maximize a quantity. The bushwalker and 
the distance problems involved obtaining a particular function and calculating its minimum 
value using calculus. Mr Jones demonstrated each example on the whiteboard starting with 
the bushwalker problem, modelling the written mathematical steps and explaining the 
process. At the conclusion of the presentation of the two examples students worked on 
similar problems. 

A bushwalker can walk at 5 km/h through clear land and 3 
km/h through bushland. If she has to get from point A to 
point B following a route indicated in the diagram on the 
right, find the value of x so that the route is covered in the 
minimum time.    (Note: time = )                                

 Figure 1. The bushwalker problem (Hodgson, 2013) 

Find the minimum distance from the 
straight line with equation y = x – 4 to the 
point (1,1). 

 

 Figure 2. The distance example (Hodgson, 2013) 

Lesson Events 
Developing the functions. Mr Jones highlighted the development of the functions in 

each example, which he identified in the lesson as a key challenge in solving optimisation 
problems (Cognitive Demand of Task).  He carefully unpacked the examples and drew 
attention to variables that would be crucial for the development of the appropriate function 
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(Deconstructing Mathematics into Key Components). For example, in the bushwalker 
problem, Mr Jones emphasised that distance x (see Figure 1) may not be labelled in an 
exam situation “and you would need to come up with it yourself; that this is a crucial 
missing distance” (Deconstructing Mathematics into Key Components). Similarly, for the 
distance problem Mr Jones emphasised the idea that the point Q(x, y) must be expressed in 
terms of x only, that is (x, x-4), in order to develop a distance function with respect to x 
(Cognitive Demand of Task). Later in the post-lesson interview Mr Jones commented that 
“often some kids don’t realise when and why they need to express one variable in terms of 
another even if it seems quite obvious” (Knowledge of Students Thinking – 
Misconceptions). While the students did not comment specifically on obtaining the 
functions, there was some evidence that they valued the way Mr Jones emphasised critical 
aspects of the examples: “It was helpful the way he used the board and some diagrams to 
show how to do certain things” (James; survey). Similarly, Alan commented during the 
focus-group interview: “His diagrams were, like, clearly set out … to show the different 
things; it makes it clearer in your mind”. 

Selection of examples. Mr Jones introduced the lesson by explaining to students why he 
had specifically chosen the bushwalker and the distance problems (Knowledge of 
Examples) 

We’ve spent a lot of time on area and volume problems but I don’t want you to think that “that’s it” 
for applications of calculus. It’s probably the focus of my two problems today is to show you some 
of those other applications. All the function unknown ones we’ve done so far have been area and 
volume ones but there are other types that could pop up in the exam. (in-class comment) 

He also highlighted the distance problem as a typical question for the non-calculator 
section of the examination, given that its “nice neat” answer could be obtained without the 
aid of the CAS calculator (Knowledge of Examples/Knowledge of Assessment). 

Remember how I said that “function unknown” problems are more calculator than non-calculator? 
Well, have we needed our calculator for this one yet? No we haven’t, so that’s why I wanted to do 
this one today, because it’s the classic example of one that could be in the non-calculator section of 
the exam … because a lot of the other ones we’ve done have applied to realistic situations which 
don’t end up being nice neat figures like the square root of eight, they could end up being something 
like 2.9564323… (in-class comment) 

Mr Jones elaborated further on his choice of examples in the post-lesson interview. 
I wanted to give them an example of one that didn’t require use of the calculator at all, because the 
nature of our course is that there is a calculator and a non-calculator section of the exam. So that 
was an important example because, I mean, I don’t want to get too caught up in the exam, but in 
reality I have to be faithful to anticipating what sort of questions come up. (interview) 

The interview data provided some further insight into Mr Jones’ enacted Knowledge of 
Examples/Knowledge of Assessment in terms of the impact a high stakes examination has 
on teaching decisions, including the selection of examples.  In one of his interview 
responses, Mr Jones expressed a tension between teaching the mathematics per se and 
teaching to the examination. The source of this tension was not discussed in the interview. 
While several students commented on the usefulness of the chosen examples, only one 
response mentioned the examination explicitly.  

The most helpful thing was when we went through the different types of questions on minimums 
and maximums. It helped me learn what types of questions I can expect on exams and tests. 
(Elizabeth; survey) 
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Highlighting a general method of solution. A common teaching strategy often used by 
Mr Jones was to encourage students to recognise the key processes involved in solving 
optimisation problems by directing their thinking through questioning (Teaching 
Strategies/Deconstructing Knowledge into Key Components).  

Mr Jones:  Because we are looking for a minimum, what are we going to have to find eventually 
somewhere in this question? [class response: the derivative]. Yes, and then we make the derivative 
equal to? [class response: zero]. Good and then solve for? [Class response: x]. Good. And that 
should be an automatic reaction when we see the word “minimum” or “maximum”; [it] should be 
our trigger to say “right, that’s our process”. (Teaching Strategies/Deconstructing Content into Key 
Components/Method of Solution). 

Further evidence of the teacher’s knowledge of deconstructing ideas was apparent during 
the post lesson interview, particularly in relation to Mr Jones’ emphasis on identifying the 
key steps involved in solving optimisation problems (Method of Solution/Deconstructing 
Content to Key Components).  

Mr Jones: This year I’ve probably identified key words in the question and making sure that they 
understand what the process is. When you are teaching a topic like that, these are the key steps 
you’ve got to do. So give them the framework I suppose and hopefully they can apply that 
framework to understanding other situations. This year I’ve really concentrated on that.  

One student’s response appeared to align closely with Mr Jones’ focus on 
deconstructing the key components of the problem to provide a general method of solution: 
“The examples on the board helped me recognise when to do what (e.g., “when to look for 
a minimum or maximum and making d´(x) = 0”). (Lucy; survey). Other students tended to 
comment on specific aspects of the examples, such as the use of the distance formula in the 
distance example: “The example on the board finding minimum/maximum distance 
between points using the distance formula”. 

Close examination of evidence of PCK observed by the researcher and discussed by Mr 
Jones suggested that the deconstruction of the mathematics was limited to standard 
differentiation approaches. For example, a visual representation of the minimum values for 
each example could have been obtained using the CAS calculator, even though the 
examples had been selected specifically to be solved without the aid of technology. It 
would have been interesting to find out Mr Jones’ reasons for omitting the graphs of the 
functions in each example, however this was not sought during data collection. 

Algebraic skills. Mr Jones guided the class through the differentiation of the respective 
functions for each example step-by-step (Procedural Knowledge). Again he involved the 
students by asking strategic questions as demonstrated in the following lesson transcript 
based on the distance problem (Procedural Knowledge/Teaching Strategies). Note that Mr 
Jones referred to the surd and power forms of the distance function as d(x) = 
√2x 12x 26  and d(x) = (2 12 26   respectively. 

Mr Jones: Before I can get the derivative of this function [points to the surd form of d(x)]. What 
form do I need to put it in Jessie? It’s in surd form at the moment. 

Jessie: Power form. 

Mr Jones: That’s right power form [rewrites the function d(x) in power form].  Ok so to find the 

t a half and then we multiply by what Ryan? 

derivative d’(x), what comes out the front Angela? 

Angela: Umm a half 

 Mr Jones: That’s righ

Ryan: Oh umm the derivative of the bracket. 
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Mr Jones: Yes. The derivative of the bracket which is (4x – 12) and then multiplied by … what’s the 

e brackets to the power of negative a half. 

 to yield: 

last bit Harry? 

Harry: Umm th

Mr Jones: Yes good [completes the differentiation process

 d’(x) =  x (4x-12) x(2 12 26 ]. Are we all right with that,? There’s your process. OK, 
 the numerator, andso we’ve got 4x – 12 in  in the denominator we’ve got the 2. Remember that your 

negative-a-half [points to the expression (2 12 26  moves to the denominator so we 
have d’(x) = . Now tell me if I’ve done too many steps at once there? OK, so the  

(4x – 2) and the 2 have stayed where they w ket to the negative-a-half has gone 
underneath. Th  changed it from the power of a half to the square root. 

There was also evidence that the students’ noticed and valued Mr Jones expli
stioning about mathematical processes as suggested in Christopher’s survey respon

ere and the brac
en I’ve just

cit 
que se: 
“Th

mm I don’t know 

Dur ep 
pro ). 

 in it, like when there 
. 

Thr  to 
solv

The results depict aspects of a senior secondary mathematics teacher’s PCK based on 
evidence from three main data sources. The Chick et al. (2006) PCK framework provided a 
set 

e whiteboard examples were the most helpful. He engaged everyone in the class and  
you had to pay attention as he asked people for different values and numbers” (Teaching 
Strategies). 

A similarly explicit approach was used to solve the bushwalker example. During the 
post-lesson interview Mr Jones also commented on his ongoing focus on consolidating 
students’ algebraic skills (Procedural Knowledge/Teaching Strategy). 

Even at this (almost) final lesson on differential calculus there might be gaps in their basic skills… 
Umm you might have noticed I asked a number of times what do we do when we have a square 
root, they know by now, they’ve got to convert it to a power, drum, drum, drum. U
if that’s effective or not but yeah. (Mr Jones; interview). 

ing the focus-group interview several students highlighted Mr Jones’ step-by-st
cedures as being particularly helpful (Procedural Knowledge
Angela: When he did the steps on the board I could just look back to see how to do it. 

Tom: Yes, helpful for differentiating square roots with more than one thing
was x squared plus 2x and then the square root of all that and you had to differentiate it

Danny: If you’ve copied one of his [Mr Jones’] examples down and you’re at home and you get sort 
of one like it you can sort of match things up. You try and follow the same procedure with the 
different numbers and that can help you through. 

ee students also commented that the step-by-step explanations helped them to learn
e the “harder” optimisation problems: “His [Mr Jones’] step-by-step examples were 

very useful for the harder questions. It helped me to learn how to do the harder function 
unknown questions” (Dylan, survey). Similarly Emma commented that “The worked 
examples on the board with consistent pausing to further explain steps helped me gain an 
understanding of the work” (survey). 

Conclusions 

of filters through which to examine elements of PCK that were observed or noticed and 
discussed by the teacher and students. The most prominent PCK categories identified in the 
data from the lesson were Teaching Strategies, Student Thinking, Cognitive Demand of 
Task, Knowledge of Examples, Method of Solution, Procedural Knowledge, and 
Deconstructing Content into Key Components (see Table 1). Broadly speaking, some 
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 the researcher and also discussed by Mr Jones and the students. 
For

Ball, D., Lubienski, S., & Mewborn, D. (2001 ching mathematics: The unsolved problem of 
teachers’ mathematical knowledge. In V. , Handbook of research on teaching (Vol. 4, 

Hill

categories tended to relate to an awareness of students’ thinking about mathematical skills 
and concepts, and others focused on the mathematics itself and how it is transformed to 
make it comprehensible to others. Furthermore, these categories were often inextricably 
linked. For example, Mr Jones demonstrated both Procedural Knowledge and Knowledge 
of Student Thinking – Misconceptions during the differentiation of the distance function 
d(x) in that he was attentive to potential difficulties students may experience at each stage 
of the solution process.  

The multiple sources of data tended to corroborate each other where particular lesson 
events were observed by

 example, Mr Jones’ step-by-step approach to solving the problems was particularly 
noticed and valued by the students. Similarly the use of questions to guide students’ 
thinking about skills or ideas during the process of solving the problems was clearly 
observed by the researcher and mentioned by some students. Although the study is limited 
in that it was one account of a senior secondary mathematics lesson, it does provide insight 
into the nature of Mr Jones’ PCK and its impact on students. Further studies that 
investigate PCK across different senior secondary mathematics topics and with different 
senior mathematics teachers would also add to the limited research in this area, and reveal 
if there are common aspects of PCK evident in teachers’ work at this level.  
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Developing mathematical inquiry practices requires that teachers are explicit about 

classroom norms that support these practices. In this study, we asked: How can a teacher 
scaffold the development of norms and practices in mathematical inquiry over time? 

Analysis of classroom video over a year showed that the teacher constantly diagnosed 

classroom norms and responsively used strategies to improve them. By the end of the year, 
there was evidence of inquiry norms and practices independent of the teacher’s presence.  

In contrast to mathematics classrooms that focus on memorisation and reproduction of 

procedures, inquiry-based classrooms value building a climate of intellectual challenge 

(Goos, 2004). “Rather than rely on the teacher as an unquestioned authority, students in 

[inquiry-based] classrooms are expected to propose and defend mathematical ideas and 

conjectures and to respond thoughtfully to the mathematical arguments of their peers” (p. 

259). In this study, mathematical inquiry is taken to be the process of addressing ill-

structured tasks using mathematical evidence. Ill-structured tasks are those in which the 

problem statement and/or solution pathway contain ambiguities that need to be negotiated 

(Reitman, 1965). For example, children may address questions such as “What makes the 

best map?” (Fry, 2013) where the word “best” requires negotiation. 

Although an inquiry approach has been promoted by the mathematics education 

community, it has been slow to take hold. A number of challenges exist for both teachers 

and students in addressing ill-structured questions. The challenge addressed in this paper is 

that of developing classroom norms for inquiry. The goal is to understand how a teacher 

experienced in teaching mathematical inquiry managed to use scaffolding to establish and 

develop classroom norms of mathematical inquiry with her students over a year. In order to 

gain insight into this scaffolding process, our research question was: How can a teacher 
scaffold the development of norms and practices in mathematical inquiry over time? 

Scaffolding Norms and Practices of Mathematical Inquiry 

Scaffolding is traditionally described as a support provided by a teacher or more able 

peer to assist a student to solve a problem that they would not normally be able to solve on 

their own. Work by Smit, van Eerde, and Bakker (2013) goes beyond the conventional 

one-on-one teacher-student interaction to investigate scaffolding within a whole class 

context. A focus on scaffolding classroom talk becomes a key component for classroom-

based inquiry because of its emphasis on collaboration (Quintana et al., 2004) and the need 

for making thinking visible (Linn, 2000). Researchers have cautioned against using the 

scaffolding metaphor as if it were “a technique that can be applied in every situation in the 

same way” (van de Pol, Volman, & Beishuizen, 2010, p. 272). Scaffolding has often been 

studied as in the moment interactions between teacher and pupil/student (Anghileri, 2006; 

van de Pol et al., 2010). However, for enacting and studying the scaffolding of longer-term 
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processes such as establishing of norms, there is a need to understand scaffolding that 

would account for this time dimension (cf. Mercer, 2008).  

Goos (2004) argues that norms of participation in a mathematical inquiry classroom are 

based on assumptions that mathematical thinking is an act of sense-making and that 

mathematical inquiry relies on habits of reflection and self-monitoring. However, students 

struggle with having a “taken-as-shared sense of when it is appropriate to contribute” and 

“the actual process by which students contribute” (Yackel & Cobb, 1996, p. 461, emphasis 

in original). The teacher and students’ practices are therefore inter-linked. Under Goos’ 

assumptions, the teacher could model for students what these practices look like and 

encourage them to take some ownership for developing mathematical solutions. In doing 

so, students need to be willing to take risks, for example by sharing incomplete ideas. If the 

teacher consistently judged student contributions as correct or incorrect, students would be 

less likely to contribute partial or emerging ideas. To encourage risk-taking, the teacher 

could withhold judgement on students’ suggestions and elicit comments and critique from 

peers. Goos suggested that students would then more likely begin to offer conjectures and 

critique without teacher prompting. Other practices from literature on classroom talk and 

collaboration include the need for active listening, explaining and justifying to peers and 

building on others’ ideas (McCrone, 2005; Mercer, 1996). The literature also points to the 

continuous work required by the teacher to establish classroom norms (Yackel & Cobb, 

1996); in this paper we explore how these norms can be scaffolded over a school year. 

Methodology 

Participants and Data  
The data presented in this paper come from a three year project on argumentation in 

primary mathematics and statistics. This paper focuses on data from one teacher Kaye 

Bluett (pseudonym) and her 26 Year 4 students (9-10 years old). The students represented 

a range of performance levels, with several students receiving additional learning support. 

Each student had a laptop or iPad with these devices used in many of the lessons. Kaye 

was an experienced teacher who taught mathematical inquiry for a number of years. 

The focus of data was on the collective development (Towers, Martin & Heater, 2013) 

of norms and practices of inquiry and consisted primarily of semi-structured interviews 

with the teacher and videotaped lessons over eight months. In the interviews, Kaye was 

asked about her intentions for developing students’ norms and practices, to reflect on 

progress and to discuss plans for the following term. Video data were collected in four 

units designed or modified by the teacher: 

Term 1: Problem solving. Students solved closed multi-step problems, individually 

first, shared in pairs, then discussed solutions in class. (Three lessons videotaped, March) 

Term 2: What is the best route for a ‘walking school bus’? Students collected and 

analysed data on how far they lived from school, then designed a route for a walking 

school bus (www.walkingschoolbus.org). (Three lessons videotaped, June.) 

Term 3: How far does a paper airplane fly? Students built a paper airplane from 

instructions and worked in groups to determine how far their planes typically flew. (Six 

lessons were videotaped, August.) 

Term 4: How long does it take to read a book? Students designed a method to collect 

data on the time it took to read part of a book and then inferred how long it would typically 

take to read an entire book. (Five lessons videotaped, November.) 
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Data Analysis 
Data went through non-linear phases of analysis adapted from Powell, Franscisco and 

Maher (2003), although described here sequentially. In the first phase, logs were created of 

each audio and video file to catalogue content. Timestamps and/or screen shots assisted 

with visualisation of class discussion and small group work. Sections with potentially rich 

excerpts were flagged, with emphasis placed on identifying excerpts in which the teacher 

explicitly scaffolded classroom norms and practices, students attempted to apply these 

practices, or missed opportunities were noted. In the second phase, flagged episodes were 

transcribed and annotated to note how the particular episode illustrated an example or 

outcome of scaffolding. In the third phase, each episode was reviewed again in reverse 

order (last video first and first video last) to seek traces of how later examples of classroom 

discussion practices were developed. This was important to seek the beginnings of and 

follow up on the results of teacher’s intentions, diagnoses and specific actions to promote 

inquiry norms. Insights were tagged with phrases to assist with identifying emerging 

threads through the data. The audio files and videos were reviewed again in their entirety 

to seek further examples that may not have been obvious previously. Finally, a few 

episodes were selected to succinctly illustrate norms being developed or practiced.  

Results 

We start with a classroom episode in which students were functioning well in their 

developing mathematical inquiry practices, independently from the teacher. Following, the 

development of these practices was tracked from the start of the year to observe how the 

teacher slowly scaffolded this development through particular teaching strategies. 

Term 4: Established Norms 
A key goal of scaffolding is to be able to hand over responsibility to learners. We begin 

with an episode near the end of the school year when students were finalising their 

solutions to answer the inquiry question, What is the typical time it takes for a Year 4 
student to read a book? The children had learned formal and informal statistical terms such 

as centre, typical, spread, shape, gap, and “clump” (but not their calculations)—notions 

that go beyond what is usually taught in Australian Year 4 classrooms. Students prepared a 

draft poster of their inquiry solution to give to another group to critique. The teacher 

rotated between groups but had not yet arrived at this group, so one may consider these 

students as working independently. In the episode below, Wes and Shane offered feedback 

to Jake, Jonah and Emma. 

Wes: For your table I was maybe wondering like you could write like, be a bit more specific, like 

time to read a chapter and then like … [calculating] total time reading the book in minutes or 

something. Because I don’t really know what you’re talking about. 

Jake: I don’t even get it (what we wrote)! Total time? What’s the total time? (Mocking themselves 

for not showing this information on their poster.) 

Wes: … On your diagram here I really like how you made your answers [data] into colours and 
put it on [a graph], it really is easier [to read] now. … Um, what’s like the pattern in your 

data? [Jake: um. (thinking)] Like range, spread. 

Jonah: There. (Points at graph)  

Shane: Put some borders in between the – (he can’t think of the word “clump”) 

Wes And you’ve got it really nicely set out. 

399



Makar, Bakker, and Ben-Zvi 
 

 

Shane: Yeah it’s really nice, but put … barriers where most of the data is … because I can’t see 

where it’s bunched. (24:17, Classroom video 24 November 2014) 

Wes and Shane provided the second group with feedback on how they could improve 

the presentation of their solution to the inquiry. Wes’ language was tentative and respectful 

in telling the group that there wasn’t enough detail to “know what you’re talking about”. 

The boys took the risk to challenge the detail shown by the second group, implying that it 

was a normal practice. Jake’s jovial response suggested he did not find Wes’ feedback as a 

personal criticism; and queried how his group could have missed such important 

information (how they calculated how long it took to read a book). The feedback given by 

Wes and Shane was non-trivial and genuinely provided the second group with ways to 

improve their final results. They also gave positive feedback on what the second group had 

done well, recognising the importance of both kinds of feedback. The students used terms 

they had learnt to describe distributions (range, spread, clump) and ways to show an 

interval to estimate the answer (borders or barriers around “where most of the data is” to 

show “where it’s bunched”). 

These episodes showed one group’s exchange as they worked independently to provide 

genuinely useful feedback to one another. We argue that this exchange provides evidence 

that the group was tacitly demonstrating a number of inquiry norms such as active 

listening, justifying and explaining to peers, sharing incomplete ideas, building on the 

ideas of others, and questioning and challenging ideas. There was no teacher present 

during this exchange, suggesting that these students were practicing these skills 

independently (a wireless mic was next to them with the researcher filming from several 

feet away; the students were used to her presence). We are not claiming that all students 

demonstrated this level of exchange, and clearly Emma’s voice was absent from this 

particular exchange. However, nearly all groups were observed to be functioning in a 

similar fashion independently, with the teacher rotating between groups.  

Term 1: How the Scaffolding Process Started 
The children did not arrive at the start of the year with fluency with these norms. In 

order to answer our research question, we return to the first term (March 2014). Given our 

focus on long-term scaffolding, we highlight the teacher’s strategies to foster inquiry 

norms among the children. In an interview before the first lesson, Kaye explained her 

intentions for beginning to develop the classroom norms and practices.  

I guess it is with classroom culture – it’s got to be a model. It’s got to be having ways, being creative 

in ways to ensure everyone is working collaboratively, that everyone is having their say, that 

everybody’s opinions are feeling valued. … Having those strategies when things are not working … 

[means] you can come and specifically target those elements. (10:35, Interview 7 March 2014) 

One strategy that Kaye used to develop classroom norms was to create posters that 

would help build a language around practices she was expecting. For example one laid out 

her expectations for quality “classroom talk” with roles for the listener (“Active listeners 

reflect on others’ ideas”), speaker (“clear audible speakers”) and group members (“active 

contributors”). Another poster reminded students that there was more than one way to 

solve a problem; everyone was expected to think; all ideas were valued; and ideas could be 

questioned or challenged respectfully. From these models, the teacher regularly 

acknowledged positive behaviours when she saw them. This simple act was intended to 

reinforce these behaviours as valued so that students would adopt them independently. In 

the following episode, Kaye Bluett explained to students what it meant to be an “Active 

Listener”. She elaborated on the responsibilities of both the speaker and the listener from 
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the classroom posters. By providing them with language for their behaviours, “Active 

Listeners” could become part of the classroom discourse to articulate these expectations. 

Mrs Bluett: When we have quality classroom talk in this room, it needs all of you to be active 
listeners. And I’m looking around the room and I’m seeing some really active listeners. 

They’re giving me that body language, they’re looking at me and you’re taking in what 

I’m saying. … Now today I had two or three groups on the floor working brilliantly at 

classroom talk. So congratulations to those six people. In fact something Bill did, (to 

Bill) you might want to share with everybody, what did you and your partner do for 

classroom talk?  

Bill: Sat beside each other, and um, gives you more of an idea of the story. 

Mrs Bluett: Yes, so they were sharing. And … instead of Bill sitting facing his partner, he and his 

partner actually sat side-by-side. … So when Jonah was reading, Bill could hear what 
he was saying but he could also see what he was saying. So he was actively listening, 

he was giving himself every opportunity to question what Jonah was saying and [be] an 

active contributor. (0:41, Classroom video 12 March) 

Using students as examples to reinforce what she valued was a regular occurrence in 

Mrs Bluett’s class. The teacher frequently used phrases such as “I like the way that 

students are…” as a way to scaffold the norms she was expecting. In doing so, she was 

diagnosing and responding to students in the moment. To further empower students 

towards an ownership of these behaviours (shifting them towards independence) she had 

the students themselves explain what they did. Once Bill told the class what he and Jonah 

were doing, Mrs Bluett re-expressed Bill’s words to develop and improve students’ 

language of the norms. Thus re-stating is another strategy for scaffolding by diagnosing 

and responding to students’ expressions of their behaviours. Her exemplification of Bill 

and Jonah went beyond their visible actions to highlight implications of these actions; it 

was not the specific actions she wanted students to copy, but the intentions of the actions.  

Following this exchange, students moved into pairs to share their work on a problem 

posed to the class. Kaye felt that developing initial norms of working, speaking and 

listening collaboratively would be more effective with a series of problems that were 

shorter in duration and less open-ended. They were told to share their individual solution to 

their assigned partner and were expected to practice active listening. Most groups had 

difficulty; for example, groups sat face-to-face with students reporting “at” one another, 

but not listening. The teacher rotated between groups and stopped the class occasionally as 

they were working to remind them what they were to be doing and to include a mild level 

of accountability. Norms require long-term development with ongoing support; therefore, 

students initially needed to be reminded regularly of expectations.  

In their first attempt, students demonstrated the challenges of developing “active 

listening”; their attempts did not yet try to make meaning of the speaker’s intent, as would 

be expected in an inquiry classroom. However, these initial attempts were important. First, 

they legitimised the practice of listening to peers, which is not typically a norm in 

mathematics classrooms. Second, they provided a starting point from which the teacher 

could diagnose and respond to their progress over time. As expected, norms do not develop 

quickly but require a concerted effort by the teacher throughout the year. The explicit 

nature of the teacher’s talk and her actions in Term 1 were important as students: were 

introduced to what norms were expected using explicit frameworks, discussed how they 

were to engage in norms through teacher modelling and co-construction, and developed 
these norms through practice and valuing by the teacher. These strategies, only some of 

which are mentioned here, did not end with the close of Term 1, however they sometimes 

became tacit as they moved from ideas into practices. 
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Term 2: Intermediate phase of scaffolding inquiry norms 
Developing norms in a classroom which practices mathematical inquiry takes a 

substantial commitment from the teacher to scaffold students (Yackel & Cobb, 1996). A 

focus was on giving students repeated experiences during the year to practice norms. 

Maintaining and developing norms is a different pedagogical skill than initiating them. 

Kaye now wanted students to begin to practise more advanced skills such as building on 

others’ ideas and taking intellectual risks by sharing incomplete ideas, which require 

students to be already somewhat proficient at active listening. In one lesson, students were 

making sense of data each had generated about themselves about how far they lived from 

school. The teacher took the class outside to create a physical dot plot of their collective 

data. Kaye had a number of skills and concepts she hoped to develop in this lesson, 

including extending students’ initial strategy of organising the data into two groups and 

further improving their inquiry norms. In the excerpt below, we focus on scaffolding Kaye 

used to promote her students to adopt talk around generating ideas. Students were seated in 

two groups organised by Chloe: students who live less than 5 km from school and students 

who live more than 5 km from school.  

Mrs Bluett: What is the typical distance that students [in this class] live from school? If I look at 

the way that Chloe has organised our data can we answer that question now?  

Chloe: Yes. (pause) Not exactly.  

Mrs Bluett: If I ask people how far they live from school, what would I expect the answer to be 
from what we’ve just seen here? Jinny? (24:08, Classroom video 17 Jun 2014) 

In an inquiry classroom, ideas are public rather than personally owned. Mrs Bluett 

acknowledged Chloe’s contribution as a starting point and used the inquiry question to 

prompt students to challenge and/or build on Chloe’s initial idea. Chloe herself then cast 

doubt on her idea. Rather than answer, Mrs. Bluett’s sought others to respond. 

Jinny: Maybe we should put the groups into 0.1 or 1 [km] sets. If we mix them altogether [in 

just two groups] it will be harder to organise.  
Mrs Bluett: All right at the moment, can I say that students in [this class] typically live less than 

five kilometres from the school? [Jinny: No.] (To the class) Could I say that? 

  (Mostly students initially respond yes, but then expressed some disagreement) 

Chloe: Yes you could!  

Mrs Bluett:  …Why could I say it? (25:31) 

Jinny suggested that it may be better to organise them into smaller categories by tenths 

or whole kilometre distances rather than two large groups. The teacher rephrased the 

overarching question, prompting students to decide if the current arrangement in two 

groups would allow them to answer this question or if Jinny’s suggestion should be 

considered. There was an expectation that students justify their answers, so rather than just 

acknowledge Jinny and Chloe’s responses, she pushed the class to explain the reasoning.  

Chris: Because there’s more people in this [<5km] group. 

Mrs Bluett: Because there’s a whole lot of people here. … So I can say students [in our class] 
typically live less than five kms from the school. But Jinny is saying that I can make 

my answer better. Jinny wants us to make the answer better by doing what? (26:06) 

The teacher had created an environment where students were encouraged to think and 

reason without worrying whether their answer was correct or complete. This invitation to 

“think aloud” as ideas are formed can encourage students to take risks to share their 

incomplete ideas. By acknowledging that Chloe’s idea was an improvement over 

unorganised data, Mrs Bluett affirmed that this did answer the question; but suggested that 
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an answer to the question was not enough. She returned to Jinny’s contribution to model 

what it meant to build on others’ ideas and pushed students to explain why Jinny’s 

statement improved on the current solution of putting students into two groups. 

Whole class discussions like this were not happenstance. Mrs Bluett explicitly worked 

to extend students’ developing practices to become norms by (1) giving them opportunities 

in context to use the practices which they had adopted, such as active listening, explaining 

and justifying to peers and expecting there to be more than one way to do a problem; and 

(2) modelling, co-constructing and reinforcing what appeared to be more advanced 

practices, such as sharing incomplete ideas, respectfully challenging suggestions and 

building on the ideas of others, all of which required greater intellectual risk-taking.  

The scaffolding the teacher undertook to move them forward required her to reflect on 

the progress they had made, then develop focused strategies to improve students’ work. 

Kaye discussed this lesson in an interview at the end of the unit: 

They all had how far they live from school and we were all in a big group, "Okay, how are we going to 

make sense of this data? … [And then] somebody came up with, "We could split them into kilometre 

groups and we could go from 1 to 11." … I need to see more of this risk-taking. I need to see more of 

sharing of ideas and then building and working it through. (5:02) … [Next semester I plan] just pulling 
back a little bit, so that we can start letting them perhaps meet a few of the challenges and hit a few more 

walls. (12:25, Interview 27 June 2014) 

In the interview, Kaye noted that students still needed work in intellectual risk-taking. She 

saw the need to elicit more independence from students in the inquiry by “pulling back a 

little bit”, allowing them to “hit a few more walls”.  

Summary 
At the end of the year, Kaye reflected on the progress students had made in response to 

the scaffolding during the year. 

The whole purpose of what we’ve been building on all year has been you know, taking kids right from 

that very first stage of having no real notion of what it means to talk with each other and through all the 

different inquiries we’ve been doing, to bring us to this. (0:14) … That constant scaffold to try and, 

making sure that they’re on the right page and to try and move forward. … It doesn’t matter what we’re 

doing. ... I think it’s just a culture that’s developed (12:41, Interview 3 Dec 2014) 

In order to build towards the independence observed in the excerpt at the beginning of the 

paper, there was a long road of explicit scaffolding undertaken by the teacher. Her 

commitment of a “constant scaffold” regardless of what they were doing (i.e., daily and 

across subject areas) was critical for developing mathematical inquiry norms in her 

classroom. 

Discussion 

In this paper we addressed the question: How can a teacher scaffold the development of 
norms and practices in mathematical inquiry over time? In answer to this question we first 

illustrated students’ inquiry practices and norms late in the year, and then analysed the 

scaffolding process from Term 1 onwards. In line with our view on scaffolding as entailing 

frequent diagnoses, responsive actions and gradual handover to independence, we focused 

our analysis on the teacher’s diagnoses and intentions of how to respond to what she had 

observed. These strategies included the use of posters with expectations, frequent 

reminders of the norms, positive feedback, and many opportunities to enact practices.  

The analysis suggests that the meaningful and long-term scaffolding process helped to 

foster the practices the teacher chose to develop. The teacher’s scaffolding responded to 
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Yackel and Cobb’s (1996) challenge of the taken-as-shared mechanics of norms: both how 

to respond and when it is appropriate to do so. Kaye Bluett’s strategies were meaningful 

rather than formulaic in that it was not the strategies themselves, but the norms she chose 

to develop which was the focus of her energies. In term 1, for example, instead of telling 

students to engage in active listening, she aimed to persuade them of its utility by 

introducing the reasoning behind active listening and creating contexts in which active 

listening made sense. Students’ successes were validated, which encouraged their 

adoption. Later in the year, students showed greater comfort with these practices which 

facilitated the introduction and development of more advanced norms. The time between 

the excerpts in term 1 and term 4 was nearly nine months, a non-trivial amount of time.  

As a case study, our analysis is considered a proof of principle: It is possible to achieve 

this, and our results illustrate some key ingredients of this teacher’s approach. However, 

case studies have limited generalisability. Working across a diversity of classrooms or on 

larger scale would therefore be an important topic for future research. 

Acknowledgement 

This research was funded by the Australian Research Council (DP120100690). The 

authors wish to thank Sue for her insights in teaching and Janine for her timely support 

during analysis of the data. 

References 

Anghileri, J. (2006). Scaffolding practices that enhance mathematics learning. Journal of Mathematics 
Teacher Education, 9(1), 33–52. 

Fry, K. (2013). Students ‘holding’ the moment: learning mathematics in an inquiry mathematics classroom. 

Mathematics education: Yesterday, today and tomorrow (Proceedings of the 36th Annual Conference of 

the Mathematics Education Research Group of Australasia, Melbourne, Vol. 1, pp. 306-313). MERGA. 

Goos, M. (2004). Learning mathematics in a classroom community of inquiry. Journal for research in 
mathematics education, 35(4), 258-291. 

Linn, M. C. (2000). Designing the knowledge integration environment. International Journal of Science 
Education, 22(8), 781-796. 

McCrone, S. S. (2005). The Development of Mathematical Discussions: An Investigation in a Fifth-Grade 

Classroom. Mathematical Thinking and Learning, 7(2), 111-133. 

Mercer, N. (1996). The quality of talk in children's collaborative activity in the classroom. Learning and 
instruction, 6(4), 359-377. 

Mercer, N. (2008). The seeds of time: Why classroom dialogue needs a temporal analysis. Journal of the 
Learning Sciences, 17(1), 33-59. 

Powell, A. B., Francisco, J. M., & Maher, C. A. (2003). An analytical model for studying the development of 

learners’ mathematical ideas and reasoning using videotape data. The Journal of Mathematical Behavior, 
22(4), 405-435. 

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G, Kyza, E., Edelson, D., & 

Soloway, E. (2004). A scaffolding design framework for software to support science inquiry. The 
Journal of the Learning Sciences, 13(3), 337-386. 

Reitman, W. R. (1965). Cognition and thought: an information processing approach. Oxford UK: Wiley. 

Smit, J., & van Eerde, D. (2013). What counts as evidence for the long-term realisation of whole-class 

scaffolding? Learning, Culture and Social Interaction, 2(1), 22-31. 

Smit, J., AA van Eerde, H., & Bakker, A. (2013). A conceptualisation of whole‐class scaffolding. British 
Educational Research Journal, 39(5), 817-834. 

Towers, J., Martin, L. C., & Heater, B. (2013). Teaching and learning mathematics in the collective. The 
Journal of Mathematical Behavior, 32(3), 424-433. 

van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A decade of 

research. Educational Psychology Review, 22(3), 271-296. 

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. 

Journal for Research in Mathematics Education, 27(4), 458-77. 

404



Middle Years Students Influencing Local Policy 

Margaret Marshman 
University of the Sunshine Coast 

<mmarshma@usc.edu.au> 

Middle Years students often do not see mathematics as useful. Authentic and real 
mathematics tasks and artefacts are frequently advocated as arresting this situation. 
However, often such experiences are contrived and lack authenticity. This paper reports on 
how a group of Middle Years students used mathematics and technology to engage in a real 
community issue, of the need for a teenage safe space, to inform local Council policy. Data 
were collected for this case study via journal observations and reflections, semi-structured 
interviews, samples of students’ work and videos of students working. The data were 
analysed by identifying the main themes that were connected with designing and locating 
the space and focused on the stages of the statistical investigation cycle used. How this 
impacted students’ beliefs about the usefulness and value of mathematics is discussed.  

Science and mathematics knowledge and skills are important for our increasingly 
technological and information-rich society. However, many middle years students opt out 
of mathematics and science as soon as they can. The review of literature by Tytler, 
Osborne, Williams, Tytler, Cripps, & Clark (2008) found substantial evidence that before 
students are 14 years old, they decide that they do not wish to pursue mathematics and 
science careers and are reluctant to change their minds. A new pedagogy is required to 
change students’ perceptions about the value and relevance of mathematics and science. 

Background 
To cater for and nurture academic excellence in Middle Years students there is a need 

to design curriculum that involves them in authentic, meaningful activities with a real 
purpose. At the core is the view that to meet the intellectual needs of students in the 21st 
century they need to be given opportunities not only to consume knowledge but also to 
produce new knowledge that will benefit others. 

The theoretical framework of this paper is located in the Knowledge Producing 
Schools (KPS) (Bigum & Rowan, 2009) pedagogical approach, in combination with the 
statistical investigation cycle (Wild & Pfannkuch, 1999). KPS is a variant of project-based 
learning where students work in teams to formulate and solve a problem or issue in their 
local community that is important to them. They are encouraged to formulate and model 
solutions to the problems on which they are working. Typically this might involve 
improving something in their local environment, solving a local problem, or designing and 
delivering a product for their local community that makes a difference. These activities: 
“produce some kind of product – be it a discussion, a story, a plan, a project or a product – 
that can be externally validated and which thus forms a bridge between school and not-
school.” (McGrath & Rowan, 2012, p.69) 

In the KPS approach, the classrooms/schools become the organising base for learning 
but are not the only sites at which knowledge work takes place. The teacher is no longer 
the ultimate authority on the knowledge produced. Students draw on relevant expertise (not 
necessarily school personal) as required by the problem. The outputs are prepared for 
community groups who value what is produced and students develop new and interesting 
relationships with the local community and a broad set of experts. In this way, work results 
in ‘products’ that approximate, as closely as possible, expert productions in approach and 
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quality. For KPS to be successfully managed, the teacher must be willing and able to 
establish partnerships beyond the school. They need to be able to source the necessary 
expertise to ensure intellectual rigor and genuine feedback. The teacher also needs the 
courage to take a risk and step back and allow the students and community experts to drive 
the process.  Student engagement has been shown to increase when the students determine 
how they will achieve the goal (McGrath & Rowan, 2012). 

The KPS framework proposes the following: students are positioned as the producers 
rather than consumers of knowledge and produce products with a genuine purpose and 
value beyond school assessment regimes; students are actively engaged and have a real 
world audience; all students and all forms of knowledge are valued; the audience facilitates 
a connection to the broader community which is involved in the actual learning process; 
and that the experience creates positive relationships between diverse children and 
knowledge, and between diverse children and the community. (McGrath & Rowan, 2012). 

The statistical investigation cycle of problem, plan, data, analysis and conclusion (Wild 
& Pfannkuch, 1999) is used by statisticians and has been adapted for use by school 
students by Census@School in New Zealand (Figure 1). The first step in the cycle is to 
define the problem which includes understanding the context and how to approach the 
question. The plan stage includes: deciding what and how to measure; the design of the 
study; how to record and collect data. The data are then collected, managed and cleaned 
before the analysis where the data is sorted, tables and graphs are created, patterns are 
identified and a hypothesis is generated. The final stage is the conclusion which includes 
interpreting the findings to draw conclusions, communicating these appropriately and 
perhaps generating new ideas. This may also mean that it is necessary to go through the 
cycle again. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 1. The statistical investigative cycle (census@school, n.d.)  

Combining the KPS framework with the statistical investigation cycle provides a new 
mathematical pedagogical approach that suited the work undertaken with Middle Years 
students in this study. 

The Study 
This study brought together a group of twenty-seven Middle Years students (from 

Years Five to Nine) who were identified as Gifted and Talented, on the basis of their 
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general intellectual ability, specific academic aptitude, creative or productive thinking, 
leadership, or visual or performing arts skills. This provided a diverse group of participants 
with different talents and expertise, and a range of ages. The students called themselves 
Project Beyond Limits (PBL). Generally the students met weekly for about four hours, half 
in school time and half after school. They worked regularly with a teacher from the school 
and the researcher, a mathematician/mathematics educator, with input from the Council’s 
Community Youth Development Officers (Youth Officers), a third year design student and 
the Youth Activity Space (YAS) Project Manager from the Council. 

The Project 
The brief for the PBL was to plan and design a project that would reflect their 

collective talents. The students decided that they wanted to create a teenage-safe space that 
was teenage safe, and also family friendly, would include multicultural artwork that 
represented the community, and had a landscaping and design element. They wanted 
seating and barbeques to encourage a wide range of people to use the park as a meeting 
place and to make a visible difference in their local community.  

To bring this project to life the students approached the local Council to seek 
permission to build their teenage safe space. It was at this point that the project lifted from 
being real-life, to being authentic, as before Council was a plan to build a Youth Activity 
Space.  

Methodology 
Researching the work of the PBL adopted a case study design. Data were collected by: 

• regular journal observations and analytical, critical reflections throughout the 
project by the researcher, who attended most sessions, and included discussions 
with the teacher; 

• audiotaped interviews with students and the Community Youth Development 
Officer and the project manager; 

• copies and photographs of student work; 
• videos of some sessions while students were planning their strategy to petition 

Council. 
The data collected in this project were analysed by identifying the main themes and 

issues that emerged, connected with designing and locating the space, looking for the 
‘working mathematically’ moments and in particular the use of the statistical investigation 
cycle (Wild & Pfannkuch, 1999). The research question was, ‘How did these students work 
mathematically as they solved their community problem to develop a teenage-safe space?’ 

Results and Discussion 
This section focuses on the how the students used mathematics to communicate to the 

Council their preferences for the location and function of the YAS. Results are presented 
as stages in the statistical investigation cycle: problem, plan, data, analysis and conclusion.  

Problem 
Having identified two possible locations the Council needed to engage in public 

consultation. The chosen location was close to the community business centre and was 
perceived to be a safe public area due to the high frequency of passing adult pedestrians. 
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The business leaders were concerned about losing a car park and believed that it would 
attract an undesirable element to the area. Some staff from the school were concerned that 
being close to the school it would encourage truanting. However, staff who lived in the 
area believed the development of the site as a teenage-safe space would lead to a positive 
outcome for local young people. This location then became the students’ problem. How 
could they plan a design concept, collect and present data that demonstrated the chosen 
location could enable students to feel safe and welcome? 

Plan 
For the planning stage, the Youth Officers worked with the students to decide how they 

would determine what the local young people wanted. The usual Council methods 
included: talking to young people in parks and shopping centres consulting with specific 
youth organisations, programs and services; conducting online surveys and discussion 
forums via Facebook and blogs; and marketing with posters, flyers and school newsletters. 
The students were concerned that they had no knowledge of, or input into, any of these 
consultation processes previously so they believed that these processes excluded a large 
proportion of ‘everyday’ young people. Consequently, they decided to personally hand a 
survey to every student in the two schools (later changed to every student in Year Five to 
Year Twelve). The students believed that this would give a much better representation of 
the views of young people aged up to seventeen or eighteen. This then was how they 
would collect their data. 

The Council’s main focus for the space was for a skate park as both locations adjoined 
other parks. However, students did not feel safe in either of these parks so they needed to 
design their surveys to enlist the support of other young people to ensure they would feel 
safe in the chosen location. One of the Youth Officers worked with the students to design 
the survey. (the other was transferred to another project.) The Council had assigned the 
bulk of the money for a skate park, but this was not the students’ top priority. This meant 
the survey needed to include questions that reflected their aims. This was determining what 
to measure. 

It proved challenging to design questions that could be easily answered by ticking a 
box but allowed their aims to be included without the questionnaire containing leading 
questions and therefore having experimenter bias. Students needed to consider what was 
included in the other major skate parks in the region that they had visited, for example, 
amenities, drink fountains, playgrounds, seating, barbeques etc. and how their aim of a 
teenager-safe space would be included. After writing the survey they waited a week and 
then answered it themselves. This led to further refinement of the survey as one student 
said, “I don’t know what the question is asking. It made sense last week.” Further changes 
were made when students were asked whether it would be possible to argue for their aims 
using responses from the survey. 

This provided ‘Ah ha’ moments for many students about what is involved in writing survey 
questions and how rewording questions made a difference to the way it is answered. This was 
highlighted by the comment, “Is it always this hard to write a survey?” (Researcher reflecting on 
student responses). 

The survey was trialled with a couple of classes before the final version was decided upon. 
The Youth Officer’s reflections on this process of designing the survey included: 

My role as development officer was to ensure young people had a voice in the process. … ensure 
they understood their roles and responsibilities … I knew the type of questions Council would want 
to know, the data they would be able to crunch … meaningful data, relevant data. 
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Researcher: But the questions weren’t in quite the direction you thought they would go. 

The Youth Officer: No … they are the experts in what young people want. … Young people had 
identified what they wanted in the space … a space inclusive of all young people … Council wanted 
a recreation space … young people wanted more than that - the social aspect. … I think it just came 
out. 

The questions the students used to draw out their ideas are shown in Figure 2 with the 
response choices which included the safety issue overtly in question 2, and then covertly in 
question 6 with the possible inclusion of facilities such as children’s play area, fitness 
equipment, picnic/barbeque/eating area, tables and seating and a stage for entertainment 
which would also appeal to adults. This inclusion of adults was important as an adult 
presence would discourage anti-social behaviour. Therefore students could collect data to 
inform the policy for a teenage-safe space that was inclusive of the whole community.  

Figure 2. A sample of questions from the survey.  

To achieve the largest response rate, with the recording and collecting, the surveys 
were handed out either on year level parades, or in class for the younger students. This was 
a logistical challenge for all involved and at times it was difficult for the teacher to 
maintain students’ motivation. Groups of students spoke on year level assemblies or to 
individual classes about the survey, and then hand out and collect the completed surveys. 
Students impressed on their peers that by completing the survey they were having a voice 
in the decision-making. Eight hundred and thirty-six students completed the surveys. 

Data 
Data management included collating and presenting their data. Having prepared in 

advance Kerry, (Year Nine), led the discussion on how the surveys would be analysed. She 
discussed which graph would be the most appropriate and whether for some questions the 
mean, the median or the mode was the most appropriate measure to use. This was an 
interesting discussion as the students debated which type of graph would give a clearer 
picture and better support their argument as well as which measure of central tendency to 
use. The fact that much of the data was not numerical caused confusion for some students 
who just wanted to ‘calculate the average’. This then became an opportunity to build some 
mathematical understanding about what these measures really meant, why you need more 
than one and which one to use in which situation. 
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Some students had drawn graphs using Excel but none had used it to collate data. The 
CYDO described how Excel was frequently used by the Council to collate surveys from 
public consultation and helped the students to set up a template to enter their data. Students 
were given responsibility for entering class sets of data into the template for analysis. 

Analysis 
To help students understand their data, the teacher gave some stimulus questions for 

each student to explore the data they had entered. This included: “What was the relevance 
of questions 2 to 6? Which location do the students prefer? What were the top two reasons 
for selecting this location? What was the most common way your students would use the 
… Youth Activity Space? What are the four most important features that are wanted in the 
new … Youth Activity Space?” This was a valuable activity for all the students who began 
to understand the reasons for the choice of data and all students had some experience 
analysing the data. For example, they were actively discouraged from counting the number 
of zeroes and ones in their spreadsheet and were instructed to use ‘Countif’ and/or ‘Sum’. 
The students were then given a copy of two previous Council reports, as an indication of 
what was expected, and asked to allocate themselves to either the report writing or report 
analysing team. After spending many months waiting for the Council to make a decision 
on possible locations, the Council now wanted the public consultation to happen fairly 
quickly. The writing group developed an outline of ‘report inclusions’ and who was 
responsible for each section. This was sorting the data in preparation for communicating 
their findings. The teacher worked with the writing group and the researcher worked with 
the maths group.  

The maths group divided the questions between smaller groups. Each group 
determined what type of graph would best represent the responses from their question, 
created it using Excel, analysed the graphs and presented those findings. This usually 
meant converting data to percentages either using a calculator or formulae in Excel. For 
these students who had never used Excel in class there was a lot of mathematical exploring 
and learning happening as they were looking to produce mathematically correct, persuasive 
results rather than the colourfully presented graphs they had initially wanted to use. 

Four students worked on the demographic analysis, Matt (Year Nine), Tim (Year 
Eight), and Jim and Callum (Year Six). The survey had collected data on age groups, 
gender, and which suburb the students lived in. Once the graphs were drawn, the 
researcher asked whether their sample was representative of young people living in the 
area. Following this discussion the demographic group visited the Australian Bureau of 
Statistics website to collect data about where young people in the region lived to determine 
whether the school population was similar to the total population. They calculated the 
percentage of young people who responded to the survey compared with the total 
population of young people aged 5 to 19 that lived in each suburb in the region. This 
provided an “Ah ha” moment for Matt: 

 I worked on the demographic analysis. One of the things I learnt was how to work with 
percentages. How to calculate them from just ordinary numbers. 

This is an interesting statement made by a high achieving Year Nine student who has 
been ‘doing’ percentages since Year Six. Students find percentages notoriously difficult 
(Hãwera & Taylor, 2011). This is due in part to the need for the learner to make 
connections between fractions, decimals, ratios and proportions (Reys, Lindquist, 
Lambdin, & Smith, 2007) and the need to consider the percentages in the context they are 
working in (White & Mitchelmore, 2005). 
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Tim also commented that the demographic analysis had improved his mathematics and 
computer skills.  

While doing the report for the Council I extended my knowledge of doing both maths and computer 
skills. PBL also helped me with my team work and my time management. 

 Jed in Year Six was excited about the usefulness of the mathematics he was doing. 
 I enjoyed PBL because we actually got to do something useful in the community instead of just 
doing maths sitting in the classroom. We could actually go out there and design a skate park, 
something awesome. 

Conclusion 
For the conclusion of the statistical investigation cycle the students wrote a report and 

presented it to the local Council. Students needed to interpret their data, draw conclusions 
and communicate these findings to the Council. For John it was linking mathematics with 
the real world has helped to deepen his knowledge of and appreciation for the usefulness of 
mathematics: 

 Being part of Project Beyond Limits has let us work together outside school time. This has 
extended our skills beyond core subjects using the real world.  

Figure 3 shows a small section of how one student (John) communicated his findings on 
how the students would use the YAC. 

This concludes that the students of ... High School and … State School surveyed would prefer to use 
the new ... Youth Activity Space for meeting and hanging out because almost half of the students 
selected this as their preference for question 5.” 

Figure 3. Part of the report showing how the students would use the YAS. (NSHS and NSS, 2012) 

The project manager from the Council was very supportive of the students’ efforts 
writing: 

The students provided much support and information that aided in the successful site relocation … 
the students and teachers involved played a vital role in the success of this project. The community 
would not have this outcome without the assistance of the Project Beyond Limits Team.  

He believed that it was the students’ report that swayed the Council to accept the young 
people's choice of location:  

[T]he collective information that the students provided in their report was used as additional 
evidence to further support a report that was compiled internally … the students report strengthened 
the argument for the endorsement. The critical aspects of the report that were used were the number 
of people surveyed and the outcomes of the survey, for and against the relocation. 

The Council minutes of the meeting indicated that the motion was passed thirteen to 
one and that one member raised a point of order that was upheld regarding people speaking 
out of turn (Sunshine Coast Council, 2013). This reflects the fiery nature of the meeting 
and the conflict between the young people and the Business Alliance. 

Conclusions 
This paper discussed how a group of students used mathematics to communicate the 

desires of the young people in the community to the decision makers in Council, 
influencing local policy. As the students worked through the statistical investigation cycle 
they identified their problem, planned an approach that included designing a survey, 
collected data by surveying the students in their schools, collated and analysed the results 
of the survey, and concluded by writing a report which they presented to Council. The 
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report highlighted the young people’s desire for a teenager-safe space that was inclusive of 
all members of their local community. Utilising a KPS pedagogical approach, the 
classroom teacher from one of the schools enlisted support from a Council Youth Officer 
and a mathematician/mathematics educator from the local university to work with these 
students. Through this project these students saw the value and usefulness of mathematics 
as they developed their knowledge and skills of a number of mathematical concepts 
including percentages, mean, median, mode, graphing, writing survey questions, and 
analysing statistical data. The value of this KPS pedagogy was highlighted by a high 
achieving Year 9 student who learnt “how to work with percentages. How to calculate 
them from just ordinary numbers.” It had taken this project for him to develop a deep 
understanding of percentages rather than his previous procedural understanding. 

The students were proud of their efforts to make a difference in their local community 
and the mathematical, statistical, computing and social skills and understandings they 
learnt along the way. Jack in Year 8 summarised this with: 

During PBL I have learnt many skills like, how to work in a team with many people from different 
age groups. This has helped learn how to use other people’s skills. It is also very good and I learnt 
many things on the computer, such as graphing and how to analyse certain questions like in the 
report that we did and it’s a very fun experience and I’ve learnt many things. 
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Recent research findings indicate that using multiple metaphors in multimodal learning 

experiences are effective teaching approaches in early years mathematics. Using a social 
semiotic lens this paper reports on eight early years teachers’ perceptions of this approach 

whilst engaging in a small collaborative professional learning group. This group focussed 

on observing video footage of one teacher implementing multiple metaphors such as the 

number line and using multimodalities such as gesture, drawings and concrete materials in 

her classroom. Analysis of the data revealed variations in the teachers’ perceptions of this 

particular teaching approach. 

In 2013 the researcher and author of this paper conducted a small scale study to explore 

a West Australian teacher’s use of multiple metaphors in an early years classroom.  In that 

study, with careful scaffolding by the teacher and in paired learning experiences, the 

teacher facilitated the children to engage with multiple metaphors such as motion on a path 

(number line) and parts of a whole (ten frames) (Mildenhall, 2014). This study is a sequel 

to the 2013 research; it involved the researcher gathering perceptions of the 2013 research 

from the teacher researcher, 6 pre-primary teachers (teaching children aged 5-6) and 2 

kindergarten teachers (teaching children aged 4-5), 2 numeracy coordinators and 1 primary 

principal, who comprised a collaborative research group. The researcher’s purpose in this 

study was to explore how the members of the research group perceived this teaching 

approach and whether they thought it would be appropriate in their particular context.  

Conceptual Framework 

The researcher used social semiotic theory as a theoretical lens as this research is 

focussing on how teachers use these various multimodal representational forms, such as 

language, gesture, symbols and objects, as semiotic resources from which students could 

generate meaning (Lemke, 1990). Multimodality can be defined as the modes of learning  

that are intertwined across sensory modalities (O'Halleron, 2011). Although semiotics was 

traditionally associated with linguistics (Lemke, 1990), mathematics education has 

broadened its definition to encompass the complexity and inherent multimodality of the 

classrooms (Arzarello 2006; Lakoff & Núñez, 2000; O'Halloran, 2005; Radford, 2003). It 

is now becoming apparent that modalities such as bodily movement and gesture are 

integral parts of the learning process (Radford, 2003).  

Multiple Metaphors 

 Recently the value of metaphor as an important mathematical learning tool has also 

been observed (Lakoff & Núñez, 2000).  In order to understand what a metaphor is, it is 

useful to consider the following statement “these metaphors, which map inferential 

structure of a source domain on to a target domain, allow us to conceive abstract concepts 

in terms of more concrete concepts” (Núñez, Motz, & Teuscher, 2006, p. 133). Lakoff and 

Nunez (2000) claimed that there are four main metaphors used when teaching number and 

arithmetic which “allow us to ground our understanding of arithmetic in our prior 
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understanding of extremely commonplace physical activities” p. 54. Young children need 

to be engaged in learning experiences that use metaphors such as the number line as this 

metaphor does not appear to be intuitive to children (Edmonds-Wathan, 2012). 

 Using multiple representations and metaphors has been suggested as an effective 

strategy by Griffin (2004). Griffin stated that by exposing children to multiple 

representations of a number in one activity children can gradually come to the ways that 

they are equivalent. Bills (2003) found that often children talked about mathematics using 

the metaphors they are familiar with and he asserted that children could be impeded if they 

have not been exposed to multiple metaphors. Ainsworth, Bibby and Wood (2009) do 

point out that as multi representational environments can be difficult for children and a 

single representation can result in more successful outcomes. They concede that this 

success is only possible “if the design of the represented world ensures that this one 

representation encapsulates all the necessary information” (2009, p. 59). As it is more 

likely that each mathematical metaphor would have limits and it logically leads to the 

perspective that there is value in providing students with multiple metaphors in order to 

develop their mathematics. 

Purpose and Research Questions 

 As noted above the researcher’s purpose in this study was to gather and analyse 

teachers’ perceptions of the research (including trialling it in their own contexts) conducted 

by the researcher in 2013. The researcher approached several schools to recruit members 

for a small evaluation teacher professional learning community. These recorded 

perceptions would inform mathematics educators if it was possible to replicate the 2013 

findings in a different context and inform the researchers’ future research. The research 

question for this study was:  

 What are the early years teachers' perceptions of a teaching approach that focuses 

on the pre-primary teachers using a multi- semiotic approach? 

Methodology 

A case study was selected as the methodological approach for this study because it was 

ideally suited for collecting multiple sources of data  in a rich context (Yin, 2009). A case 

study is a bounded system (Yin, 2009) and the case was the professional learning 

community. In qualitative research it is important that participant voices are prominent 

(Hatch, 2002; Patton, 2002). As this study focussed on teacher perceptions it was important 

to design the  study so that the teachers’ voices were heard (Patton, 2002) but acknowledge 

that these voices were perceptions of the subject matter. The main method for the data 

collection was a focus group discussion (Kruger, 2009). This method is appropriate for 

providing insights into the matter under investigation: the teachers’ perceptions of the 

multi-semiotic approach in regards to their own personal context (Rabiee, 2004). It is 

important to declare that the researcher had a bias in that she believed in the value of a 

multi-semiotic approach to teaching.   

Research Participants 
 Purposeful sampling was used to recruit early years teachers (teaching children aged 4 

to 6) from schools that were from a variety of socio-economic backgrounds. The 

invitations, using email, were to government and non-government schools. From the 

school teachers who replied, stating that they were interested, two were from independent 
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schools and one worked in a government school (the same school as the 

teacher/researcher). Two of the schools had previously worked with the researcher using 

multiple metaphors and multimodalities and one interested contact, who was the school 

numeracy coordinator, had no previous contact with the university.   

 These teachers then invited other early years teachers from their own schools and 

together they formed this community. At the first community meeting, members examined 

the findings from the previous research project “Semiotic resources in the kindergarten 

classroom” and particularly the highlights video package. 

 The highlights video package from the 2013 study showed a teacher in a low 

socioeconomic school using multiple metaphors where she focused on the use of the ten 

frame and the number line and discrete objects to teach effective counting, more or less 

than 5, and the addition of two single digit numbers. After this initial meeting the teachers 

implemented the use of the ten frame and number line in their own classrooms and 

reflected on this. The group then met regularly to share their reflections on their teaching. 

 Because the data gathering technique employed in this research study was dependent 

on a manageable group discussion, the ideal number of participants for the study was 

considered to be approximately 8-10 (Kruger, 2009).  As it happened, the research group 

comprised of 11 participants, but during the four meetings there were some absences due 

to illness or other commitments so the attendance at the meetings ranged from 8 

participants to 11.  

Data Gathering Techniques 
Data gathered in this study included: 1) teacher journals and work samples, 2) research 

field notes from regular meetings, including the research participants’ own notes made 

whilst trialling the suggested approach, and 3) full transcripts from the audio recordings of 

the focus group meetings. The researcher was the facilitator of the research group and she 

explicitly assured participants that her aim in the research was to trial and develop this 

multiple metaphor and multimodal approach in different contexts, and therefore, 

everyone’s opinion was to be respected.  

Data Analysis 
In line with the research question, the reflections of the participants were focussed on 

their perceptions of a multi-metaphor and multimodal teaching approach. Using NVivo10, 

the researcher entered all of the data into the software package. Although the study had a 

particular focus and was therefore somewhat deductive (Bitektine, 2008), at this stage a 

grounded theory approach was used to explore what the data revealed about teacher 

perceptions. The researcher conducted initial coding (Charmaz, 2014; Glaser, 1978), which 

involved reading the full transcripts from the focus group interviews, teacher journals and 

student work samples, and looking for the participants’ viewpoints from a sentence, a 

paragraph or a picture (De Wever, Schellens, Valke, & Van Keer, 2006). In this way the 

researcher aimed to understand and represent the participants stand points. 

After this was completed, the researcher commenced the second phase in the coding 

process: focussed coding (Charmaz, 2014). This involved recoding the initial codes to 

identify important themes pertaining to the teachers’ perception of this particular approach 

to teaching early years mathematics and these are shown in the findings as focussed 

code/theme. 
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Findings and Discussion 

The analysis and coding of the comments offered by each of the participants in the 

study revealed three major themes that were specifically focused on how the teachers 

perceived a multi-metaphoric and multi-semiotic approach.  

Focused Code /Theme 1:  Perception that Using a Multi-Metaphoric Approach was 
Valuable 

Four of the teachers chose to incorporate multiple metaphors into their teaching. Three 

of those teachers, Polly, Diane and Brenda were able to explain how they had used all three 

metaphors of parts of a whole (the ten frame), points on a line (the number line) and the 

discrete objects in one activity (Figure 1). These teachers appeared to understand the 

importance of exploring the concepts deeply and perceived it to be a successful approach. 

They were able to identify that, just because children could articulate a mathematical idea 

using one metaphor, this didn’t necessarily mean that they could articulate it in another.  

The fourth teacher, Toni, incorporated all three initially but this adoption slightly waned as 

time progressed (the reason for this will be discussed later). The four teachers also had 

mentoring support in the school, such as the teacher/researcher in the 2013, or a numeracy 

support teacher who had worked as a research assistant on the 2013 research and this 

appeared to support the implementation as Toni stated “When I watched the videos 

because we watched them with Natalie (the mentor) I got a bit excited because I thought 

I've been doing some of this” (Figure 1). 

 Two of the strong adopters of the multiple metaphors also began to consider how their 

teaching could be multi-modal using gestures. Donna stated she used “hands to show 

bigger than/ smaller than” (Figure 1). 
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Figure 1. Example of codes in focussed code/theme 1.   

Theme 2:  Factors that Impeded the Adoption of Using Multiple Metaphors in Early 
Years Teaching 

Five of the teachers, Caris, Elle, Gemma, Lucy and Toni had some reservations about 

using multiple metaphors. Whereas all of the teachers perceived that the use of these tools 

separately had some value, and Toni was initially very enthusiastic about multiple 

metaphors, in their reflections four of the teachers (Caris, Elle, Lucy, and Toni) appeared 

to view that if children could solve the problem using one metaphor there was no reason to 

explore the same problem using a different metaphor (three of those teachers came from 

the school without the strong mentoring support). Interestingly, it did appear that in one 

class, even when the teacher (Lucy) focused on just using the ten frame, which “really 

came in handy as a different way of explaining the addition process “(Figure 2), some 

children chose to seek the number line out and use it as well as the ten frame suggested to 

them. The biggest factor that appeared to impede the adoption of this approach by three of 

the teachers was the use of a mathematics textbook scheme in their pre-primary classroom. 

Initial codes Samples of quotes 

Teachers found value 

in teaching across 
three metaphors  

 So we had the sock we had to count with and we used the ten 

frames and on the number line we used a frog. 

They had four different items in ice cream containers … and I 

showed them how to use the other hand to scoop into the cup …We 

used the ten frame … and they quite liked it. I would just say “so 

what is 7” and they would say back “it is five and two” and we used 
the number line. 

Mentoring in school 

supported multi-

metaphor approach 

I did the same as Julie … I set it up very much the way Julie set it 

up 

That's alright I'm Toni, forgot my bits for this. When I watched the 

videos because we watched them with Natalie (the mentor) I got a 

bit excited because I thought I've been doing some of this 

Children found it a 

challenge to transfer 

from one metaphor 

to another 

It’s funny the children that I thought had got it when they'd drawn 

these beautiful tens frames because they were getting it and then 

when I was talking about it on the number line they weren't getting 

it. 

So he scooped out approximately 12 counters. He then counted 1 to 

1 correspondence up to 12 … then asked could he find that same 

number on a number line … So I had a number line, so he then 

pointed to the 1 and the 2 on the number line at the start so I praised 

him for finding the two numbers and then I said that was number 1 

and 2 not number 12 which I'm sure was very confusing. 

Metaphorical 

gestures were used in 

a multi-modal 

approach 

Sweeping my finger along the ten frame to show direction 

I was more aware of the language I was using, how I used my body 
language and gestures to communicate 

Hands to show bigger than/ smaller than 
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Lucy outlined that the textbook led the teachers’ pedagogical approaches rather than 

allowing them to make independent pedagogical decisions (Figure 2). One of the teacher’s 

planning documents indicated that their text book scheme did not incorporate any multi-

semiotic approaches and it may have encouraged the pencil and paper activities to be done 

quite separately from other more concrete activities.   

Codes Samples of quotes 

Focus on solving 

problems 

The ten frame really came in handy as a different way of 

explaining the addition process. 

In terms of the number line I basically just used that more again 

as a tool to assist with reversals. 

So we did it on the number line and they ended up actually not 

using the number line and they were quite enamoured with using 

the lines to count. 

Textbook approach 

followed 

Yeah yep so some of them are reversing their numbers still and 

stuff but yeah I mean the tally bit is hard and we were talking 

about that because with our i maths program we don't really 

focus on that until term 3/4. 

I think that I think I mentioned before we do the iMaths program 

in pre-primary and in particular this term the ten frames have 

really assisted us because obviously like, you get the text book 

and we always go through the text book  

Figure 2. Example of codes in focussed code/theme 2. 

Theme 3: Using Multiple Metaphors to Develop an Awareness of Pattern and 
Structure of Computational Strategies 

Using the resources of the ten frame, the number line and the discrete objects, some of 

the teachers commented that the children were able to reason mathematically and use the 

resources to match their thinking. Some students were at the foundational stage of the 

Australian Curriculum (Australian Curriculum Assessment and Reporting Authority, 2011) 

and were using counting discrete objects as their only strategy. As children developed, and 

began to identify the concept that the number could be partitioned, the teachers reported 

that the children began to use different computational strategies. Toni noticed that her 

children used “counting on” as the first strategy the children implemented (Figure 3) which 

corresponded with the literature (Sarama & Clements, 2004). 

The pre-primary teachers who did not use this multiple metaphor perspective did not 

mention this type of interaction with their children. Their main focus was on the concept of 

“altogether” which was limiting children to only think of addition as “counting all”. They 

used a textbook “iMaths” that was aligned to the Australian Curriculum and at the 

“Foundation” stage there is only a requirement to model addition, which the teachers had 

implemented. This suggests that following the Australian Curriculum too prescriptively 

may prevent the children’s potential from being realised. 
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Figure 3. Example of codes in focussed code/theme 3.   

Conclusions 

It is not possible to generalise from this small scale study. In this study and particular 

context, three of the teachers were strong adopters of a multiple metaphor approach (using 

the ten frame and number line in the same learning experience) into their practice and these 

were the teachers who also had the mentoring support in their individual school. The 

teachers who only had access to the focus group sessions, without mentoring support in 

school, had the lowest level of adoption. The latter group of teachers also used a school 

textbook scheme and this, which did not include a multiple metaphor approach in its texts, 

appeared to impede the implementation of the approach.  

The four teachers who were reluctant to use multiple metaphors did mention that once 

children could solve the mathematical problems using one metaphor i.e., the ten frame, 

they did not extend the learning experience by exploring the same mathematical concept 

using a different metaphor. This approach was the one recommended by the text book that 

they followed. In a climate where there is not one clear approach to teaching mathematics, 

it is understandable that teachers rely on published textbooks and their suggested 

approaches (Shoenfeld, 2004). Future research is now planned by the researcher to create a 

collaborative research study with a Year 2 teacher to explore how to implement this 

multiple metaphor and multi-modal approach with slightly older primary school children 

and this will be reported on at a later date.  

Codes Samples of quotes 

Learning to 

count 

effectively 

Then they had a strategy if they don't know what it looks like, everybody 

knows what 1 looks like, so they start at 1 and then they count on and 

when they get to 8 oh that's what it looks like and then they record the 

number.  

Toni: And then what I did with a few kids was get them to put it on the 

number line 5 and then adding 4 I get this number here. 

Paula: Oh great yeah so you did actually count on on the number line. 

Toni: And they were doing the back to zero, and going 1,2,3,4,5; 

Developed 

mental 

strategies 

such as 

counting on, 

doubles  

We added them together - one used the counting on method the other used 

the number line 

We’d used this tens frame. I had to demonstrate that you fill the top in first 

and I said, because we've got two colours red and yellow, and I said you 

have to use the same colour at the top so I explained that first and it was 

funny how some children, especially with 6 they want to do 3 and 3 

ah, number line and counting on and my way of being able to identify ... 

count on when she did the others she said I used the counting on strategy, 

tally marks, drawing a picture and then writing the number sentence 

Partitioning  Understand that numbers are made up of 2 or more parts, reinforcing the 

concept of part, part , whole. 
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The aim of this study was to determine the role of semiotics in assisting young Indigenous 

students to engage with and identify the general structure of growing patterns. The 
theoretical perspective of semiotics underpinned the study. Data are drawn from two Year 3 

students, including analysis of pretest questions and two conjecture-driven lessons. Results 

indicate that particular semiotic signs (iconic signs) contribute to how young Indigenous 

students attend to, and identify the structure of growing patterns.  

In Indigenous contexts a deficit perspective with regard to students’ capability to learn 

persists, and impacts on the types of mathematics they experience in their classrooms 

(Warren, Cooper, & Baturo, 2010). Teachers continue to hold “low expectations for 

Indigenous students and perceptions that the gap in educational outcomes… [are] 

somehow normal” (Purdie et al., 2011, p.4). Thus it is conjectured that in these contexts 

there are limited opportunities for Indigenous students to engage in higher levels of 

mathematical thinking, such as generalising mathematical structures. The ability to 

generalise is an important aspect of algebraic thinking, and is the key to success in higher 

levels of mathematics (Lee, 1996). The development of this ability occurs as early as Year 

2, and leads to a deeper understanding of mathematical structures (Blanton & Kaput, 2011; 

Cooper & Warren, 2011). In addition, the exploration of numberless situations, such as 

growing patterns provides an opportunity for young students to engage in powerful 

schemes of thinking (Carpenter, Franke and Levi, 2003).  

Past research indicates that young non-Indigenous students are capable of generalising 

growing patterns (Blanton & Kaput, 2005; Leung, Krauthausen & Rivera, 2012; Warren, 

2005), however, little is known about (a) Indigenous students’ capability to generalise 

growing patterns, and (b) what types of tasks help Indigenous students to generalise. The 

focus of this paper is to explore how pattern task development, and the use of semiotics 

can enhance and support the engagement of young Indigenous students’ in early algebraic 

thinking. In particular, the research question, how does semiotics assist young Australian 

Indigenous students to engage with and identify the general structure of growing patterns?  

Literature 

Growing patterns are characterised by the relationship between elements, which 

increase or decrease by a constant difference. In developing understanding of a growing 

pattern structure, students are asked to form the functional relationship between the terms 

in the pattern and their position. That is, they are asked to reconsider growing patterns as 

functions (covariational thinking – the generalisable relationship between the term and its 

position), rather than as a variation of one data set (recursive thinking – relationship 

between successive terms within the pattern itself) (Warren, 2005).  

Findings from past research indicates that the way in which growing patterns are 

presented and taught potentially limits students’ awareness and accessibility to the 

generalisable structure of the pattern (Küchemann, 2010; Moss & McNab, 2011). Often the 

growing patterns presented to students are abstract representations, displayed as drawn 
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geometric shapes (e.g., circles drawn to make a T shape), and consist of the first three or 

four pattern terms. The position of each term is rarely displayed in the drawn 

representation. Students engaging with growing patterns in this way often identify the 

recursive pattern rule, as their attention is not attracted to the two variables or the co-

variable relationship between the two variables. Recent studies with young non-Indigenous 

students have confirmed the benefits of explicitly representing the underlying structure of 

the pattern and using semiotic signs to draw attention to this structure when generalising 

(e.g., Warren & Cooper, 2008; Radford, 2006).  

There have been few studies that have focused on the act of grasping a generalisation. 

Grasping a generality is to notice a commonality that holds across all terms (Cooper & 

Warren, 2011). Radford (2006) asserts that the act of grasping a generalisation rests on 

perception and interpretation. This is an active process, and is dependent on the use of 

signs (gesture, speech, concrete objects) that indicate where the perceived object is located. 

Radford’s study (2006) focused on better understanding the role of signs in students’ 

perceptive processes underpinning generalisation of number and geometric patterns.  

While the theory of semiotics has been long established, it is only recently that studies 

in the area of pattern generalisation have considered how semiotics impacts on the learning 

process (e.g., Radford, 2006; Miller, 2014; Warren & Cooper, 2008). For example, aspects 

of the various semiotic resources (gestures, language, materials) used by students and 

teachers when exploring mathematical generalisations (Radford, 2006; Miller, 2014; 

Warren & Cooper, 2008) have been delineated. The gap still remains in the research with 

respect to how semiotics assists young Indigenous students to attend to both variables in 

growing pattern representations. Hence, the theoretical construct underpinning this 

research was semiotics.  

Theoretical Framework  

Semiotic signs assist students in developing mathematical understanding (Sabena, 

Radford, & Bardini, 2005). Semiotics is the study of cultural sign processes, analogy, 

communication, and symbols. Signs (such as bodily movement, oral language, concrete 

objects) play the role of making the mathematics apparent (Radford, 2003). As the 

teaching of mathematics draws on a variety of representations and resources to assist 

students to engage with mathematical processes, semiotics provides the tools to understand 

these processes of thought, symbolisation, and communication. Semiotics has a two-fold 

role in this study. First, it informed the selection of materials used to represent the growing 

patterns, and second, it provided the lens to interpret the signs within and between all 

social interactions in the learning experiences. The semiotic terms from Saenz-Ludlow and 

Zellweger (2012) model, adapted from Peircean theory (Peirce, 1958), are adopted for this 

study. Figure 1 displays the triadic concept of sign that has been developed with the 

classifications of sign object, sign vehicle and sign interpretant (Saenz-Ludlow & 

Zellweger, 2012).  

 

 

 

 

 

Figure 1. The tridactic concept of sign with terminology adapted by Saenz-Ludlow and Zellweger, 2012. 

Sign Interpretant 
(Immediate, Dynamic, Final) Sign Object 

(Immediate, Dynamic, Real) 

SIGN 

Sign Vehicle 
(Iconic, Index, Symbol)  
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For the purpose of this paper, the focus is on sign vehicles. Sign vehicles are mediators 

between the sign objects and sign interpretant (student/teacher), and are then deduced to 

attempt to build understanding of the overall concept. The sign object can be represented 

by different sign vehicles that capture particular aspects of the object. Multiple sign 

vehicles are required, as one sign vehicle cannot encapsulate the entire object. To come to 

a complete understanding of the concept, students must be exposed to multiple and 

interrelated sign vehicles. These sign vehicles can be classified as iconic, indexical or 

symbolic (Saenz-Ludlow & Zellweger, 2012). Iconic signs exhibit a similarity to the 

subject of discourse (object); the indexical sign, like the pronoun in language, forces the 

attention to the particular object without describing it; and the symbolic sign signifies the 

object by means of an association of ideas or habitual connection (Peirce, 1958). These 

sign vehicles can be both static and dynamic (Radford, 2006; Saenz-Ludlow, 2007).  

Research Design 

A decolonised approach has been adopted with a focus on valuing, reclaiming, and 

having a foreground for Indigenous voices (Denzin & Lincoln, 2008). For this particular 

study, a relationship needed to be cultivated with Indigenous Education Officers (IEO) to 

assist with knowledge that may not be explicitly recognisable to the researcher. It was thus 

imperative to create space for critical collaborative dialogue within the study; hence the 

choice of teaching experiments to collect data. This is because teaching experiments 

provided the platform to investigate the teaching and learning interactions that support the 

development of students’ ability to generalise in students’ own setting. In effect, this brings 

the researcher and the participants into a shared space, where empowerment can occur 

(Denzin & Lincoln, 2008).  

The larger project was based on two conjecture-driven teaching experiments for the 

primary purpose of directly experiencing students’ mathematical learning and reasoning in 

relation to their construction of mathematical knowledge. A crucial aspect of the 

conjecture-driven teaching experiment is the conjecture itself. It needs to be aimed at both 

theoretical analysis and instructional innovations (Cobb, Confrey, DiSessa, Lehrer, & 

Schauble, 2003). Conjectures are based on inferences, and within mathematics education, 

these inferences may pertain to how mathematics is organised, conceptualised, or taught in 

order to reconceptualise the content and pedagogy (Confrey & Lachance, 2000). Each 

teaching experiment consisted of three 45-minute mathematics lessons, therefore six 

lessons in total. The researcher conducted the lessons in the study. Three conjectures were 

explored in each lesson, a mathematical (e.g., Exploring growing patterns where the 

structure is multiplicative (e.g., double) assists students to generate the pattern rule), 

semiotic (e.g., Providing growing patterns where the variables are embedded in the pattern 

ensures that students attend to both variables), and cultural conjecture (e.g., Exploring 

growing patterns from environmental contexts assists Indigenous students relate growing 

patterns to their prior experiences). Due to space limitations, this paper only draws from 

the first teaching experiment (teaching experiment 1), focusing on the semiotic conjectures 

from two lessons conducted with Year 2/3 Indigenous students.  

Data Collection  
The research was conducted in one Year 2/3 classroom (7-9 year olds) of an urban 

Indigenous school in North Queensland. This school was purposively selected because 

these students had not previously engaged in mathematics lessons focusing on the concept 
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of growing patterns. Additionally, a relationship was already formed with the school 

community, an important aspect of Indigenous research perspectives, and the researcher 

had worked in the classes as part of a larger mathematics research project. In total, 18 

students and 2 Indigenous Education Officers (IEOs) participated in the study. To explore 

how students engaged with the growing patterns, data-gathering strategies used in teaching 

experiment 1 were: (a) A pretest to ascertain what the students knew before the lessons; (b) 

video-recorded mathematics lessons, and (c) audio-taped interviews with the IEOs. There 

were two video cameras in each lesson, one focused on the researcher and the other on the 

students. Data reported in this paper are from two students (S1 - Aboriginal girl & S6 – 

Aboriginal boy). These students were selected, as they represent cases of mathematical 

achievement, high (S1) and low (S6) achiever in mathematics, as identified by the 

classroom teacher and IEO.  

Data Analysis 
In this study, data analysis was contemporaneous and formative during data collection. 

It informed each stage of the data collection process and assisted in refining conjectures 

(Confrey & Lachance, 2000). Pretests were analysed not only to ascertain what students 

knew, but to also determine the ways in which the students answered the questions. This 

analysis informed selection of tasks for the first lesson of teaching experiment 1. The 

analysis of the videotaped lessons formed a major component of the qualitative data 

analysis. The teaching experiments required two phases of data analysis, ongoing analysis 

and in-depth analysis. Ongoing analysis occurred at the conclusion of each lesson of the 

teaching experiment, and informed the next stage of data collection. This assisted with 

refining conjectures and hypotheses, and the development of tasks for the next lesson 

(Confrey & Lachance, 2000). Peer debriefing between the researcher, supervisor, teacher, 

and Indigenous Education Officers was conducted at this point to determine conjectures for 

the following lesson. Member checks occurred during the teaching experiments with 

students to ensure that the researcher had correctly interpreted each student’s response.  

In depth analysis occurred at the conclusion of the data-collection phase. All data were 

reanalysed using an iterative approach (Srivastava & Hopwood, 2009). Initial video-

footage were transcribed to capture students’ verbal responses and the semiotic 

interactions. Data were coded and analysed focusing on semiotic signs (iconic and 

indexical) of both the student and researcher. This entailed identifying signs that assisted 

students to engage with the growing pattern structures. Finally, the data were reanalysed 

and aligned with the cultural perspective provided from the Indigenous Education Officers 

with regard to the semiotic signs. Their input was audio-recorded and then transcribed in 

order to capture cultural interactions in the lesson.  

Findings  

The data from S1 and S6 are presented by structuring the findings according to the 

order of data collection. First, results from the pretest that served to ascertain what students 

knew prior to the commencement of the lessons, and second, the conjectures that framed 

the three lessons in teaching experiment 1 are presented. Pretest: The test comprised 10 

items. Figure 2 illustrates Student 1 and Student 6 responses to Question 3 (Copy the 

pattern) and 7 (How many possum eyes will there be if there were 10 possums hanging on 

the tree?) of Pretest 1, key questions that illustrate the differences in understanding 

between the two students, and the data that informed the development of Conjecture 1 
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(Making both variables of growing patterns visually explicit assists students to identify the 

co-variational relationship). 

 

 

 

 

 

 

 

 

 
Figure 2. S1 and S6 responses to Question 3 and 7 of Pretest 1. 

For Question 3 S1 only copied the houses in the pattern. She did not attend to both 

variables in the pattern (the houses (pattern term)) and corresponding label (pattern 

position). By contrast, S6 attended to both variables in the pattern. For Question 7 S1 and 

S6 started to work with both variables in the possum pattern. They both drew the possum 

tails and eyes. It appears that having the two variables (the possum tails and possum eyes) 

embedded in the single pattern structure (a drawing of a possum) assisted S1 and S6 to 

attend to both variables. At the conclusion of the Pretest, Indigenous Education Officers 

shared that within their context they could not identify any growing patterns that were 

appropriate for these young students to engage with. They suggested that it would be best 

for students to begin exploring patterns from a shared context (e.g., environmental 

context). They also confirmed that a hands-on approach (using concrete materials) would 

be appropriate for these students. Figure 3 presents the following patterns used in lesson 1 

(butterfly pattern), and lesson 3 (kangaroo pattern).  

 

 
 

 

 
Figure 3. Growing patterns used in teaching experiment 1. 

Lesson 1 Conjecture: Making both variables of growing patterns visually explicit 
assists students to identify the co-variational relationship. During lesson 1, while both 

variables were visually explicit (blue matchstick – pattern term, yellow counter – pattern 

quantity) and embedded in the butterfly pattern, students attended to the iconic signs 

(matchsticks and counters – iconic signs) separately. When considering a butterfly in the 

natural environment the body and wings cannot be separated. However, when using the 

concrete materials, the sign vehicles were easily separated. S1 did not split the two signs; 

S1 placed one matchstick on her desk and then immediately placed the four counters 

around that matchstick before constructing the next butterfly. S1 was able to copy and 

continue the structure identical to that presented by the researcher (see Figure 3). It was for 

these reasons that S1 was considered to have high structural awareness of the butterfly 

pattern. S6 attended to the sign vehicles separately. Other students in the class also 

attended to the pattern in this manner. First, he placed an array of matchsticks on the desk 

If I have 20 butterfly bodies how 
many butterflies would there be? 

If I had 20 kangaroo tails how 
many kangaroo ears would 
there be? 

425



Miller 
 

to represent the butterfly bodies, and then added the counters (wings) retrospectively. 

Thus, when constructing the pattern, S6 attended to the two sign vehicles (the iconic signs) 

sequentially rather than simultaneously. Whether he recognised the co-variational 

relationship between the two sign vehicles is difficult to determine. It is because of these 

actions, separating the sign vehicles, that the pattern for lesson 2 was selected (See Figure 

2). Additionally, the IEO stated that the students were confident using the number ladder, 

and they were able to ‘act out the pattern’ by standing on the ‘feet’. 

Lesson 3 Conjecture: Providing growing patterns where only two variables are 
embedded and cannot be physically separated from each other, assists students to attend to 
both variables simultaneously. S1 was now attending to both variables when working with 

the kangaroo pattern. She was able to express further predictions of the pattern using both 

the tail and the ears to communicate her understanding. S1 explained to the class that if she 

had 1 million tails she needed to double the number of tails to determine the number of 

ears. She was also able to determine the number of tails if there were 10 kangaroo ears 

(five kangaroo tails). As both variables were embedded in the kangaroo pattern, and could 

not be separated, this assisted S1 to attend to both variables when discussing the pattern. 

S6 was able to attend to both variables in the kangaroo pattern to assist him explain the 

relationship between the tails and ears. He was able to predict how many ears there would 

be if there were 100 kangaroo tails (200), and explained that he was doubling the number 

of tails to find the number of ears. 

Discussion and Conclusion 

It has been demonstrated in past research that young non-Indigenous students can 

engage in covariational thinking (Blanton & Kaput, 2005); however, this current study 

adds new knowledge to the pattern task types that assist young Indigenous students in 

‘noticing’ the relationship between two variables. Past research has highlighted an issue 

that arises from covariational thinking is the need to coordinate two data sets, and identify 

the relationship between these sets (Blanton & Kaput, 2005). Thus, in this present study 

the growing patterns selected for the tasks were deliberately chosen to ensure that this 

relationship was transparent. Results from this study provide initial evidence that iconic 

signs appear to assist students to move quickly from recursive thinking to covariational 

thinking. This was achieved by using iconic signs to highlight the two variables. 

Additionally, a recursive approach to solving growing patterns is still a major challenge for 

both young and older students (Rivera & Becker, 2009; Warren, 2005). The results of this 

present study suggest that this issue relates to the way the patterns are structured, and can 

be overcome by using iconic signs to highlight both variables in growing patterns, namely, 

the pattern number (term) and the pattern quantity. 

While it is recognised that signs play a central role in the construction of new 

knowledge (Peirce, 1958; Saenz-Ludlow, 2007), literature pertaining to how these signs 

are represented in pattern generalisation tasks is scarce. This present study begins to 

contribute to this limited research, and suggests that there are two potential ways that sign 

vehicles can be considered when constructing growing patterns: (a) embedding sign 

vehicles (possum and kangaroo pattern), and (b) splitting sign vehicles (house and butterfly 

patterns). When considering growing patterns the sign vehicles represent the two variables 

within the pattern (i.e., pattern term and pattern quantity). Embedding both sign vehicles in 

a single hands-on artefact ensures that students attend to both variables of the growing 

pattern. This aligns with past research, indicating that students were successful 

generalising patterns where both iconic signs were embedded in the single structure 
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(Blanton & Kaput, 2005; Leung, Krauthausen & Rivera, 2012; Warren, 2005). Young 

Indigenous students were supported in making connections with co-variation, as 

demonstrated by S1 in TE1 when discussing the general rule for the kangaroo pattern. It 

appeared that the use of embedded variable patterns assisted students to attend to both 

variables: that is, students needed to discuss the pattern attending to the pattern position 

(tails) and the pattern quantity (ears).  

It appears that iconic sign vehicles (e.g., concrete materials) provide opportunities for 

dynamic interactions between the student and the pattern. Findings from this study further 

nuance the importance of the role that dynamic signs play when students physically engage 

with geometric patterns to construct the general rule (Mason, 1996; Saenz-Ludlow, 2007). 

Through the use of iconic signs (butterfly bodies and butterfly wings), a geometric pattern 

created with concrete materials provides opportunities for young students to manipulate 

both variables, as they examine the pattern structure on their way to constructing 

generalisations (Cooper & Warren, 2008). This approach differs from geometric patterns 

that are traditionally depicted in textbooks (as students can not physically manipulate 

textbook pictures), and it is argued that potentially students may not engage with, or 

interpret these signs (textbook pictures), with the same intensity. It is conjectured that 

growing pattern task should be set up to have, dynamic iconic signs that represent both 

variables, so that students can physically engage with these signs. 

The contribution of this study is that growing pattern task design should mirror and 

support students use of semiotics as a thinking tool and as such one needs to consider signs 

in the representation of patterns. These tasks types have implications for both the teaching 

and learning of growing pattern generalisations. As two cases were presented, it is 

acknowledged that there are limitations for the study. Thus further research is needed to 

consider larger cohorts of both Indigenous and non-Indigenous students, to determine if 

these pattern tasks assist young students to engage in growing pattern generalisations, and 

if there is a potential hierarchy to which growing patterns should be introduced to young 

students. Finally, and most importantly, this study provides a positive story for Indigenous 

students indicating that they are capable of engaging with early algebraic thinking 

challenging deficit models of mathematics learning. 
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This paper presents findings as part of a wider study that investigated the professional 

knowledge of teachers when teaching mathematics for numeracy in the primary school 
classroom. This paper focuses on teachers in action as they taught two lessons on 

multiplication. It outlines the specific pedagogical categories the teachers used and the 

impact their knowledge had on student learning. 

Capturing the essence of teaching by studying what it is a teacher does, why they do it, 

and what effect it might have on student learning is an on-going topic of research and 

discussion (Barton, 2009).  As Barton (2009) explained, we do not currently have the 

theories, or research, to inform teachers why it is that some highly mathematically 

qualified and highly motivated teachers are unsuccessful, and why it is that the students of 

some mathematically unqualified teachers receive top results. The role of the teacher and 

the professional knowledge currently required is more complex and sophisticated, and has 

changed in response to the major societal, economic, cultural, and political changes, which 

have taken place (Hattie, 2003).  

Concern over the mathematical knowledge of primary school teachers, has been 

expressed for many years (Ball, Thames & Phelps, 2008; Ma, 2010). Linking the 

professional knowledge of teachers, to the relationship between classroom practice, and 

student understandings as a result of those practices, has thus been a focus of researchers in 

recent times (Ball et al., 2008; Chick, Baker, Pham, & Cheng, 2006; Schoenfeld, 2011). 

Much of the recent research has been founded on the work of Shulman (1986, 1987), who 

was one of the first researchers to identify the complexities associated with different 

categories of knowledge teachers require for students’ mathematics learning. Shulman 

introduced the term pedagogical content knowledge (PCK) as being of particular interest to 

teachers, as it contains a special type of knowledge which distinguishes teaching from 

other professions.   

Recent years have seen more use of the term numeracy in education (Perso, 2006). 

Often the terms mathematics, and numeracy, are used interchangeably and yet some argue 

that there is a difference in meaning (Coben, 2000; Perso, 2006). Mathematics is about the 

exploration and use of patterns and relationships in quantities, space and time, about 

representing and symbolising these ideas, and eventually learning to abstract and 

generalise (Bobis, Mulligan, & Lowrie, 2013; Ministry of Education, 2007). The 

development and conceptualisation of the term numeracy has been an important influence 

on the teaching of mathematics, and was first attributed to the United Kingdom’s Crowther 

report in 1959, where numeracy was described as the mirror image of literacy (Tout & 

Motteram, 2006). Perso (2006) argued that prior to the 1950s school mathematics focussed 

on computation and it was with introduction of computational tools, and the associated 

need for higher-order thinking skills, that the need for people to be able to transfer their 

mathematics understandings to everyday life became greater. Perso (2006) questioned 

whether in the current cultural and social context of schooling, educators are primarily 

teachers of mathematics, or teachers of mathematics for numeracy? She argued that there 
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needs to be a shift in focus from pure mathematics, to a focus on mathematics as the 

fundamental prerequisite for numeracy for all children throughout their schooling, as they 

prepare for life skills requirements beyond the classroom.  

The teaching of mathematics in schools throughout the twentieth century saw six 

identifiable phases, each with its unique emphasis: drill and practice, meaningful 

arithmetic, new maths, back to basics, problem solving, and standards and accountability 

(Lambdin & Walcott, 2007).  Each of these phases introduced what was seen as new and 

innovative practices, for that particular period of time. In more recent times education 

reforms emphasised that learners of any age will not succeed at mathematics unless they 

are taught in ways which enable them to bring their intelligence, rather than rote learning, 

into use when learning their mathematics (Skemp, 1989).  

One contributing factor often cited as part of the reason for poor mathematics 

proficiency, is the focus that was previously on developing procedural knowledge, at the 

expense of conceptual understanding (Skemp, 2006). Thus, the current standards-based 

education system supports a curriculum that emphasises concepts and meanings, rather 

than rote learning, and promotes integrated, rather than piecemeal usage of mathematical 

ideas (Howley, Larsen, Solange, Rhodes, & Howley, 2007). Ma (2010) asserted that in 

order to facilitate conceptual learning, teachers need to emphasise and promote the 

connections between, and among ideas that for non-teachers are implied. Ma described this 

as well-developed, interconnected, knowledge packages, made up of a thorough 

understanding of mathematics, having breadth, depth, connectedness, and thoroughness. 

She referred to this as profound understanding of fundamental mathematics (PUFM). She 

noted that “although the term ‘profound’ is often considered to mean intellectual depth, its 

three connotations, deep, vast and thorough are interconnected” (Ma, 2010, p. 120).  

The emphasis on teaching concepts and meanings positions mathematical knowledge 

as a social process, whereby children construct mathematical ideas from their 

understanding and experiences, of the world in which they live (Ross 2005). The ‘drill and 

practice’ of basic facts and taught routines, will not prepare children for a technological 

world. Current teaching focuses on the structure underlying numbers and number 

operations (Anghileri, 2006; Mulligan & Mitchelmore, 2009). The single most influential 

factor on student learning is the teacher (Hattie, 2003). 

Methodology  

Aim of the Study 
This main purpose of this study was to identify the strengths and weaknesses in the 

professional knowledge of primary school teachers, when teaching mathematics for 

numeracy in the multiplicative domain, and the impact these have on student learning. 

These might then be addressed in professional learning sessions, to assist in teacher 

development.  

Research Design 
A multiple-case study design was used. Multiple-case study design refers to the 

investigation of more than one participant, where the focus is both within and across the 

cases (Creswell, 2008). The ability to conduct a number of case studies may then bring 

with it a need to form some type of generalisability, which was required in this research. 
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The qualitative and quantitative data collected merged as the various data sets from the 

four case study teachers, were analysed and interpreted. 

Research Setting and Participants 
Two teachers from two schools were the four case-study teachers, who along with the 

children in their classes formed the basis of this study. School A was a full primary (Years 

1 to 8) inner city school, while School B was an urban primary school (Years 1 to 6). The 

case-study research was based around the senior classes of each school: the teacher of the 

Year 5 and 6 class (Andy), and the teacher of the Year 7 and 8 class (Anna) from School 

A, along with two teachers of Year 5 and 6 classes from School B (Beth and Bob). The 

teachers at School A taught their own class for maths, while School B grouped their classes 

by ability. Bob’s class was third in ranking (one being the top class out of the six), and 

Beth’s class fourth class in ranking.  

Research Approach  
A mixed-methods approach was employed to collect data. Mixed-methods research is 

often described as research in which the investigator collects and analyses data, integrates 

the findings, and draws inferences using both qualitative and quantitative approaches and 

methods, in a single study or programme of inquiry (Cohen, Manion & Morrison, 2000;). 

The rationale behind mixed-methods research is that more can be learned about a research 

topic if the strengths of qualitative research, are combined with the strengths of 

quantitative research, while compensating at the same time for the weaknesses of each 

(Cohen et al., 2000).  

Data Sources 
Data collection came from multiple sources including questionnaires, assessments, 

observations, and interviews. Classroom observations were the key part of data collection 

which focused primarily on the professional knowledge of teachers in action. In order to 

validate the observations of the lessons, field notes were written, photos taken, and lessons 

both audio-taped and video-recorded. This meant that the researcher could return to the 

details of the lessons and cross-check details at a later date.  

Questionnaires were administered to the teachers and their students at various times 

throughout the study. Questionnaire data were later compared to in class observations. An 

initial questionnaire was given to the teachers containing three sections: (1) teachers’ views 

about mathematics; (2) multi-choice questions around aspects of subject matter knowledge 

and (3) scenarios about the teaching of mathematics, where judgements were required in 

relation to mathematical understanding.  

This research related to the teaching of multiplication and division. Pre-unit and post-

unit assessment tasks designed by the researcher were administered to the students. The 

tasks were based on key aspects of knowledge students at Years 5 and Years 6 are 

expected to implement according to Level three of the New Zealand Curriculum (Ministry 

of Education, 2007) and the National Mathematics Standards (Ministry of Education, 

2009).  

The two lessons from each of the case-study teachers were subsequently coded for 

detailed analysis. Following transcription of lessons the qualitative data was exported into 

the computer programme NVivo 10 which was used for the coding. Coding stripes were 

used to group information about particular themes together. The basis for the coding used 
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in this research, were the categories identified on the PCK framework developed by Chick, 

Baker, Pham and Cheng, (2006), which became one of the key features in determining the 

professional knowledge of teachers of primary school mathematics.   

Results 

Pre-Unit Assessment 
Prior to teaching the multiplication and division unit of work the students were given 

nine assessment tasks to ascertain current knowledge (Figure 1). The students were asked 

to solve each problem, explain how they worked it out, and where possible draw a diagram 

to show their thinking Most of the tasks were at Levels 2 and 3 in The New Zealand 

Curriculum, and the majority of children should have been capable of correctly solving 

these (Ministry of Education, 2007; 2009).  
 

Task 1                

Mult as repeated 

addition    

4+4+4+4+4+4=24 

How would you 

write this as a 

multiplication fact? 

Task 2 

Draw a 

Diagram 

of             

3 x 5 = 

Task 3  

Division 

Partitive 

20÷4 

Task 4  

Division 

Quotitive          

20÷4 

Tasks 5 & 6   

Commutative 

Property                                                         

2 x 5 

Task 7 

Using x5 Basic 

Facts: 

I have 6 groups of 5 

cubes and know to 

write this as 6 x 5 = 

30. How could I use 

this to work out              

6 x 4 = ? 

Task 8 

Using known 

Basic Facts:        
I know that           

4 x 7 = 28. How 

can I use this to 

work out                

4 x 14 = ? 

 

Task 9 

Division 

with 

remainders: 

                               

30 apples 

into 4 equal 

sized bags 

 

Figure 1: Pre-Unit assessment task types 

The pre-assessment results showed that there were only two tasks where greater than 

fifty percent of the children in any class, were able to give a correct answer. Task 7 saw 

55% of Beth’s class give a correct answer, while 75% of Anna’s solved Task 8 correctly. 

Task 4 saw the poorest result with one child correct in two classes, two correct in one 

class, while no-one solved the problem correctly in the other class. The correct responses 

on the other tasks, ranged from 5% of Beth’s class on Task 3 (partitive division), to 40% of 

Bob’s class on Tasks 5 and 6 (understanding of commutativity). 

Multiplication Lessons Observed 
Two lessons were observed for data collection: one at the start of a six week unit on 

multiplication and division, and one at the end of the unit. All teachers began the first 

lesson by establishing the meaning of the multiplication (‘×’) symbol. In mainstream New 

Zealand classes the first number of a multiplication expression represents the multiplier 

and the second number the multiplicand. The lesson focused on use of the commutative 

property of multiplication unpacking the difference in representation between the two 

different equations, for example 5 × 3 and 3 × 5. Two teachers (Anna and Bob) became 

confused themselves when explaining the difference and this led to confusion among the 

students in their classes. The final lesson differed for each teacher, according to the 

progress the students had made throughout the unit.  

Clearly PCK  
One of the greatest weaknesses in relation to the teaching of multiplication of all the 

teachers was their curriculum knowledge. The teachers were unclear as to exactly what 

they should be teaching students at Level 3 (in Anna’s case level 4) of the curriculum. 

Stages 6 and 7 of the Number Framework (Ministry of Education, 2008a), directly align to 
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Curriculum Levels 3 and 4, and the teachers did not immediately recognise what strategies 

and knowledge the students were expected to utilise. The lesson expectations were 

consistently below national expectation, and the teachers made little attempt to probe the 

students and push them along.  

The teachers struggled to identify cognitive demands of the tasks and aspects that 

affected their complexity, from the viewpoint of their students. The main problem was the 

students’ difficulty in understanding the multiplier as the first number in the equation, and 

the multiplicand as the second number, and the significance of acquisition of this 

knowledge for the students as they moved on to more complex problems with double 

digits. 

All teachers identified a learning intention for their lesson, which began with ‘We are 

learning to…’ (referred to as the WALT). While the WALT provided a focus for each 

lesson, it also became a hindrance, as many opportune moments were missed for the 

students to bring their own thinking to their problem solving. Observations suggested there 

was a two-fold reason why the teachers maintained focus on the WALT: management of 

the children; and apprehension of coping with something mathematical that may arise, to 

which the teacher may not know the answer. So long as the WALT was at the forefront of 

the lesson, they were prepared to answer any questions that may be asked, during the 

lesson. 

The nature of the lesson depended on whether the teachers recognised the 

misconceptions the students currently held.  The initial lesson taken by Andy and Bob was 

very teacher directed. The children were given little opportunity to discuss ideas together 

and responses to questions were directed at specific students. These students generally had 

raised their hands because they knew the answer to the given question, and while incorrect 

responses were sometimes given, it was generally due to inaccurate computation rather 

than misunderstandings, or misconceptions. Beth’s students all had manipulatives available 

to them, which allowed her to visually see many of the misconceptions the students had. 

The models the students had constructed along with the discussion as the students 

explained their thinking, allowed her to recognise misunderstandings the students may 

have had. 

Content Knowledge in a Pedagogical Context 
The frequency with which the teachers were required to deconstruct content also 

aligned to the nature of the lesson. In the first lesson the teachers were very much involved 

in the problem solving with the lessons being teacher directed throughout. This meant the 

teachers were able to clarify uncertainties immediately, as they were ‘right on the spot’ to 

do so. In the latter lesson the teachers posed problems, and the students were left to solve 

them on their own more. Thus the teachers were not always in a position to be aware of 

students’ difficulties until discussions were held later in the lessons. As they deconstructed 

content the teachers discussed the relationship between repeated addition and 

multiplication, the link between repeated addition and the array model of multiplication, 

the importance of recognising patterns in mathematics, and the need to have some basic 

facts as instant recall to assist in working out other facts. 
     

There was little evidence of what was originally referred to by Ma (2010) as 

Profound Understanding of Fundamental Mathematics by any of the teachers. Lessons 

appeared to be planned and procedurally implemented and as students struggled with 

understandings, the teachers lacked the depth and breadth of knowledge required to 
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reframe questions and offer explanations in alternative ways. Seldom were connections 

made between or within ideas. While the teachers could solve problems themselves, their 

number sense was weak, and of concern.   

Pedagogical Knowledge in a Content Context 
Classroom techniques, or generic classroom practices, of raising hands to ask/answer 

questions, using manipulatives to explain thinking, and using a modelling book during 

group work, were implemented by all of the teachers. The teachers asked the students to 

share ideas with others, and discuss problems together, but this seldom occurred. The 

students ‘talked’ together, but rarely ‘discussed’ ideas or justified findings. 

Knowledge of assessment was limited by all of the teachers. Prior assessment data was 

under-utilised. The pre-unit assessment data was not used to identify gaps and weaknesses, 

which could then be incorportaed into the planning of lessons. Similarly it appeared that 

the results of other matheamtics assessment tools had not been used. 

Questioning was very much of the supportive nature and seldom did the teachers 

extend the thinking of the students. The teachers readily accepted answers given by 

students, and when a problem was answered correctly, they acknowledged the response 

and continued with the lesson. The teachers did not ask for justification of responses, and 

seldom pushed the students to the next level with questions such as, “What would happen 

if we changed…” or  “If  we changed this number (for example the multiplier), what affect 

would it have on this number (the multiplicand)?”.   

Post-Unit Assessment 
At the conclusion of teaching the multiplication and division unit of work, the students 

were given nine assessment tasks (note: Tasks 5 & 6 were combined and shown as one task 

to report data) similar to those of the pre-unit assessment (Figure 2). Of the four classes 

and eight tasks (32 counts in total) there was a percentage decline in the number of 

students who solved the problem correctly on 14 occasions, an increase of correct 

responses on 15, while 3 remained the same. The results showed that more than 50% of 

Bob and Beth’s students were correct on Task 1, with more than 50% of Anna’s students 

correct on Task 7. All other tasks saw less than 50% of the children correct with a range of 

zero on task 3 from Anna’s class, and Beth’s class on tasks 4 and 8, through to 48% correct 

on tasks 5 and 6 from Andy’s class.  

 

Task 1           

Mult as repeated 

addition    

5+5+5+5=20 

How would you 

write this as a 

multiplication 

fact?         

Task 2 

Draw a 

Diagram 

of             

3 x 6 = 

Task 3  

Division 

Partitive 

12÷3 

Task 4  

Division 

Quotitive          

12÷3 

Tasks 5 & 6   

Commutative 

Property                                                         

3 x 5 

Task 7 

Using x5 Basic 

Facts: 

I have 6 groups of 5 

cubes and know to 

write this as 6 x 5 = 

30. How could I use 

this to work out                   

6 x 6 = ? 

Task 8 

Using known 

Basic Facts:        
I know that           

3 x 10 = 30. 

How can I use 

this to work out                 

x 5 = 30? 

 

Task 9 

Division with 

remainders: 

                               

26 apples into 

4 equal sized 

bags 

 

Figure 2: Post-Unit assessment task types 

Discussion 
Overall, the results were of both considerable interest and concern. The pre-unit 

assessment results showed that generally the students were below, and in many instances 

well below, their expected levels (Ministry of Education, 2009). This should have been an 

indication to the teachers that there was a great deal of knowledge teaching required for the 
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students to understand the concepts associated with multiplication and division. The post-

unit assessment showed that little progress had taken place throughout the six weeks, with 

less than half of the tasks showing an increase in the number of students obtaining correct 

responses. The teachers had taught many of these ideas in class, and questions must be 

asked as to why the expected improvement did not occur. Some of these can be attributed 

to the students themselves, while close analysis of the teaching also highlighted gaps in 

teachers’ professional knowledge. 

The teachers’ lack of curriculum knowledge and uncertainty of exactly what is required 

of them in their teaching is of concern. Teachers must understand the requirements of the 

Curriculum Levels (Ministry of Education, 2007) and align these to the Number 

Framework Stages (Ministry of Education, 2008), and the Mathematics Standards 

expectations (Ministry of Education, 2009). The alignment needs to be instantly 

recognisable if effective decision making during a lesson is to be made. What questions to 

ask, what problems are given, how far to extend the students in their thinking, are all 

dependent on having at their fingertips an understanding of the progressions of learning.  

There were times when both the teachers and children displayed misconceptions. The 

term ‘misconception’ suggests wrong understanding of concepts. Rather than wrong 

understanding it would be more pertinent to suggest it was often a muddled, or confused, 

understanding. The teachers seldom exhibited a deep and thorough conceptual 

understanding of aspects of the mathematics they were teaching (Chick et al., 2006), 

referred to by Ma (2101) as Profound Understanding of Fundamental Mathematics 

(PUFM). This contributed to their confusion within the key mathematical concepts they 

were teaching, and the significance of consistently using correct mathematical language. 

With current teaching focusing on the structure underlying numbers and number operations 

(Anghileri, 2006; Mulligan & Mitchelmore, 2009), the teachers PUFM could be narrowed 

down to the need for a stronger understanding of number and number sense (SUN).  

While it is essential that students are aware of the learning intention of each lesson, 

teachers must take care not to let the focus over-ride the opportunity for new learning to 

occur. Opportune and teachable moments must not be overlooked, as addressing an issue 

when it arises will often mean the student will make more sense of the solution and retain 

the newfound knowledge. This does not mean taking each lesson in a totally different 

direction from the planned purpose, but if students are to remember key ideas from the 

lesson, then the learning experience must be meaningful to them.  

Problem solving and the associated skills of discussion and justification are now an 

accepted part of classroom practice. This study showed that while the students were given 

problems to solve together, they often worked as individuals within their groups, and 

struggled with the notion of challenging each other’s thinking. The students seldom 

participated in ‘friendly argumentation’. Similarly, while the teachers supported the 

students in their solution methods, there is a definite need for them to extend given ideas 

by questioning the students thinking more. This would also assist in the students 

progressing through the Number Framework stages and curriculum levels.  

Conclusion 

The mathematics classroom of today places a significant emphasis on conceptual 

understanding, and the importance of making mathematics meaningful beyond the 

classroom. This suggests that teachers are now teachers of mathematics for numeracy, 

challenging them to consider the mathematical concepts being taught as well as the 

contexts within which they are taught. The professional knowledge required by teachers is 
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complex and multi-layered, requiring ongoing attention to the many aspects of PCK 

originally mooted by Shulman, if students are to achieve, and move beyond, their expected 

levels. 
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Participation in society is increasingly dependent on educational achievement. 
Accordingly, society as a whole is committing more resources to education to prevent the 
adverse outcome of students moving through the school system only to emerge without the 
knowledge and skills that they might be expected to attain. In this paper, we explore the 
application of two models developed to prevent adverse outcomes in industrial and medical 
settings to the issues involved in providing an optimal mathematics education for all 
children.  

Introduction 
Teachers and parents may dream of optimal learning for their students and children, 

respectively, but defining what this means and putting it into practice is complex. 
Vygotsky’s (1978) Zone of Proximal Development (ZPD) suggests that a student learns 
optimally in the zone requiring guided learning which is beyond what can be accomplished 
solely by independent learning. It can be thought of as the stretch zone where students are 
being challenged but able to learn through the guidance of a more knowledgeable teacher 
or peer. When there is insufficient challenge, students will coast and if the learning 
expectations are too great then the student may crash, having been overwhelmed by the 
cognitive or affective load. 

This paper provides a theoretical discussion on the practical implications of 
determining a student’s ZPD in light of the diversity of learning and understanding even 
within one individual. Both the Swiss Cheese Model and the enhanced Hot Cheese Model 
are used to explore ‘holes’ which impact on mathematics learning from a system, 
classroom, curriculum, and student perspective. We suggest that both models have the 
potential to clarify issues involved in the assumptions made about student knowledge, and 
the role and interpretation of assessments. In particular, this paper focuses on determining 
what the base level is that a student can move forward from in his or her learning – an 
important starting point for ensuring students are learning within their ZPD.  

Models of Student Learning and Mathematical Errors 
The implication of the ZPD is that teaching and learning are effective when instruction 

is tailored to current level of understanding of the child. Care, Griffin, Zhang, and 
Hutchinson (2014) describe a project which uses assessment to identify where children are 
in their learning development in order to enable differentiated instruction. 

The Swiss Cheese Model (SCM) was introduced as a metaphor to explain how the 
combination of several factors can lead to industrial accidents in complex systems and as a 
framework for the investigation of those accidents systems (Reason, 1997). It allows for 
consideration of multiple factors that lead to adverse outcomes, rather than placing 
emphasis on the final straw. Hazards are known potential causes of problems. Defences are 
the actions taken to prevent hazards contributing to adverse outcomes. Figure 1 shows a 
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generic Swiss cheese model. Each slice of cheese represents a defence layer within the 
system, the holes in each slice of cheese represent gaps or imperfections in the defence, 
and when the holes in several slices of cheese align creating a hazard trajectory then this 
accumulation of multiple failures can result in harm. The SCM is a useful focus of 
attention for investigating unwanted outcomes in order to put in place layers of defence 
against future harm. A key feature of this model is its flexibility. The number of layers of 
defences can be adjusted to suit the situation. The SCM, despite its simplicity, has been 
widely used to draw attention to the multi-faceted nature of adverse events. In particular, it 
encourages a more holistic view through recognition of contributing factors in addition to 
the most proximate cause. 

The Hot Cheese Model (HCM) refines the SCM by including interactions between the 
defence layers of the system which are referred to as feature interactions (Li & Thimbleby, 
2014). The HCM explicitly recognises that a system of defences – the slices of cheese – is 
active and not passive nor unchanging. It is not enough to put multiple layers of defence in 
place with non-aligning holes as any new defence layer introduced may end up causing 
new errors and thus harm. Li and Thimbleby (2014) provide an interesting example of 
feature interactions. In Detroit, a monitoring camera was installed as safety device in a 
nuclear reactor. However, it fell and blocked a coolant drainage hole. The blockage 
resulted in temperatures that destroyed sensors, leaving a nuclear meltdown to go 
undetected by the reactor operators.  

From its origin in industrial accidents, the SCM has been transferred and adapted to 
other fields such as medicine, demonstrating that transfer of these ideas from one field to 
another field was not only possible but useful. Both the SCM and the HCM allow clearer 
thinking about complex situations. We will now discuss how the SCM, and also the HCM, 
can be used in the educational context. 

 

Figure 1. Generic Swiss Cheese Model (SCM) (Mack, 2014) 
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In Education, we might think of the process of education as one of obtaining 
knowledge and skills. A situation, condition, or event that might impede learning is, in this 
context, a hazard. The layers of Swiss cheese in this model are defensive layers that are put 
in place to prevent the impediments from affecting the desired outcome of learning. The 
arrow moving through the Swiss cheese represents a student’s failure to learn despite the 
defences in place. Education of a population is a large endeavour in terms of resources and 
time required from a wide range of people. Despite this, too many children leave school 
without having attained some of the basic knowledge and skills that they might reasonably 
be expected to have. In Education, this is the adverse outcome, or losses, that we consider 
below.  

It is acknowledged that measurement of outcomes is a necessary precondition to 
understanding the success and adverse effects of any process. Whether the measurement of 
outcomes is modelled as a defence layer in the SCM, or not, is dependent on the situation, 
as discussed here. Even where the measurement of outcomes is neutral, the feedback of 
information into the system is not necessarily neutral. To illustrate this, we draw on 
research on the effective use of measurement to reduce workplace injuries. The measure of 
work time that was lost due to injury was adopted as an Occupational Health and Safety 
(OHS) measure, but was found to be problematic (Blewett, 1994). Lost Time Injuries 
(LTI’s) were used as a measure of workplace safety. However, this measure was 
unsatisfactory for a number of reasons, including that it was “far more sensitive to claims 
and injury management processes than to real changes in safety performance” (Blewett, 
1994, p. 29).  

In Education, much has been written about potential and actual adverse effects of 
assessment that interfere with the main goal of education. Many of these concerns are 
related to how the information is used, rather than about the measurement itself. Unlike 
other contexts, where measurement is neutral until it is fed back into the system, testing 
provides an opportunity for a learner to organise information and increase learning. 

It is widely recognised that educational assessment performs a variety of functions, 
ranging from the use of large-scale assessments to inform policy to in-class assessments to 
inform teaching practices (Care et al., 2014). Educational outcomes are to some extent 
measured by the outcomes of assessments, and we consider them to be intrinsic to 
educational processes, rather than a neutral measurement. Accordingly, in this paper 
assessments are treated as defence layers within the model, rather than neutral 
measurements external to the model. 

Following is a discussion on how the SCM and HCM can be used to analyse 
mathematics learning in school at four levels: the education system as a whole, the 
mathematics classroom, the mathematics curriculum, and the individual student.  

Education System 
At the education system level, it is recognised that good educational outcomes depend 

on a suitable physical environment, a well-structured curriculum, competent teachers, and 
student attendance. Accordingly, employing the terminology of the SCM, a poor physical 
environment, an inadequate curriculum, incompetent teachers, and poor student attendance 
each may be considered as a hazard, that is something which might contribute to the 
adverse event of students not learning at the appropriate level.  

The defence layers that are in place to prevent the adverse outcomes described above 
are: a suitable budget for school building and maintenance; a structured curriculum; 
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minimum teacher qualifications and professional development; system-wide students 
assessments such as NAPLAN and Year 12 examinations; and student mandatory 
attendance. These protective layers are put in place via legislation and Education 
Department policy.  

Mathematics Classes 
At the classroom level, children need good rapport with the teacher, a teacher who has 

the requisite knowledge to teach mathematics, and learning resources such as 
manipulatives, textbooks and ICT. Associated hazards are impediments to learning such 
as: when the children are absent; when children are disengaged from the subject material; 
and when connections are not made with previous knowledge. The protective layers are 
accordingly: roll calls or attendance lists; lesson plans; monitoring of students’ learning via 
quizzes, exams; review of homework books; and projects. Roediger III, Putnam, and Smith 
(2011) identify ten benefits of testing, ranging from identifying gaps in knowledge and 
providing feedback to teachers, to encouraging active learning by encouraging “students to 
study”, producing “better organisation of knowledge”, improving “transfer of knowledge 
to new contexts”, and improving “metacognitive monitoring”. An accurate understanding 
of the source of a gap is essential in order to match the teaching intervention to the type of 
error, and at the appropriate level of the individual student or the whole class (Holmes, 
Miedema, Nieuwkoop, & Haugen, 2013). The responsibility for these layers derives from 
the individual teacher, who operates within the larger framework of the school and wider 
educational policies. 

Mathematics Curriculum 
The mathematics curriculum is both a defence layer in the complex system of 

education – across the educational system and within the mathematics classroom – and a 
system in its own right. It provides a framework for teaching the desired mathematical 
knowledge in a structured way so that concepts and procedures are built up on previous 
knowledge. If one applies the traditional SCM at the curriculum level, hazards could be 
that the curriculum expects too much (or too little) of students, and presuming that students 
have actually mastered previous teachings and are ready to learn new material. Thus, in a 
somewhat recursive situation, the curriculum and its periodic revision act as defence 
layers. 

However, transforming the SCM, one can look at each slice of cheese as a study area 
of the mathematics curriculum. To illustrate this, the Australian curriculum outlines the 
scope and sequence for three interlinked branches of mathematics: number and algebra; 
measurement and geometry; and statistics and probability. Each of these branches of 
mathematics is broken down into more detailed study areas. For example, the number and 
algebra branch comprises six strands: number and place value; fractions and decimals; real 
numbers; money and financial mathematics; patterns and algebra; and linear and non-linear 
relationships.  

If each of these study areas represents a slice of cheese, then some holes in conceptual 
understanding will impact mastery of learning in another slice. Roman numerals are often 
introduced in primary school maths to explore alternative number systems and emphasise 
place value. However, provided a student has conceptual understanding of place value, a 
hole in knowledge of Roman numerals is unlikely to be detrimental in the long-term, other 
than on an assessment with test items for Roman numerals. In contrast, an understanding 
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of fractions is critical for developing working knowledge of algebra which, in turn, is 
important in developing an understanding of calculus. Following this line of reasoning, 
some study areas of mathematics are pre-requisites for mastery of other study areas and 
any gaps may have escalating consequences and long term implications. For example, 
misguided early number concepts (Mazzocco, Murphy, Brown, Rinne, & Herold, 2013), 
fractions and algebra (Gray & Tall, 1992a, 1992b). 

Individual Student 
Another transformation of the SCM is useful to consider the implications for an 

individual student. Picture a vertical stack of sliced cheese, with lower slices representing 
previous years of mathematics education and each slice of cheese consisting of the 
mathematics curriculum taught at that specific year level. Holes in understanding in earlier 
slices may mean that the student does not have the foundation to develop robust 
understanding in some areas of the current intended curriculum. There are many factors 
which might contribute to an individual not having the knowledge and skills in place to 
accommodate learning the current topic in the classroom, ranging from difficult personal 
circumstances, previous poor teaching, or learning difficulties.  It is important for a teacher 
to be aware of whether the difficulties experienced by students are due to learning 
disabilities, and to be able to act accordingly (Butterworth, Varma, & Laurillard, 2011).  
Defences against such hazards include factors such as having a supportive family who 
values mathematics learning and having a teacher who knows how to identify the sources 
of gaps in knowledge and what interventions are most appropriate to fill the gaps. 

Implications for Teaching 
Ultimately, the SCM and HCM were developed to both pro-actively mitigate the risks 

of gaps aligning resulting in an adverse outcome and also to analyse what the root causes 
of any failures were. In this section, we discuss what the potential sources of error may be, 
implications for assessments and interventions, and link this back to the important task of 
determining a individual student’s ZPD. 

Sources of Error 
There has been considerable research on the causes of errors in mathematics. Skemp 

(1976) differentiates between instrumental understanding which is understanding what to 
do, and relational understanding which is “knowing both what to do and why” (p. 2).  
Others use the terms procedural and conceptual understanding to differentiate between 
learning a collection of procedures or algorithms and developing a deeper understanding of 
what is happening mathematically. Both have their place. Procedural knowledge that is not 
underpinned by conceptual understanding can lead to learning lots of rules which only 
apply in certain situations. Strong conceptual understanding without the fluency of 
procedural knowledge can drive a student to derive formulas and rules from first 
principles.  Whilst this is a valuable skill, there is not always sufficient time during testing 
situations to derive knowledge and a measure of fluency is useful. The ideal is strong 
conceptual foundations which underpin procedural fluency and flexibility. 

Holmes et al. (2013) identify three sources of mathematics error: (1) vocabulary errors 
which are gaps in knowledge or misinterpretations; (2) computational errors; and (3) 
erroneous beliefs or misconceptions. They found that it can be difficult to differentiate 
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between computational errors and misconceptions, and yet this teacher knowledge is 
crucial for determining the appropriate teaching interventions. Teachers also need to 
“make judgement calls as to what gets addressed in the class setting and what becomes an 
individual student intervention” (Holmes et al., 2013, p. 32). 

There are other possible sources of error. Some students may not lay out their work 
properly on the page and or have illegible handwriting. Some students could have issues 
with test taking or working under pressure. An underlying source of any error could be 
working memory overload, when students are trying to deal with more information than 
they can manage and do not have good working practices to reduce the demands on their 
working memory. Self-management skills can be taught to help students develop their 
metacognition and thus improve their learning and production. 

From a teaching point of view, there is no such thing as a silly mistake because every 
error has an underlying cause. Identifying the gap, identifying its cause, and understanding 
the implications of the gap continuing, are all important factors in optimising a student’s 
mathematics learning. 

Implications for Assessments 
In Education, one very important way of ascertaining whether successful mathematics 

learning has taken place is through a variety of assessments including tests, quizzes, 
exams, assignments and projects, problem solving journals, review of homework books, 
class discussions and conversations with individuals. These assessments can be designed 
and implemented at various levels such as large-scale national testing, school-based 
exams, class assessments, and individual conversations with students. The different levels 
of assessments match up with three of the interpretations of the SCM presented above: the 
education system; the mathematics class; and the individual student. 

Large Scale Testing. NAPLAN is an example of a defence layer in the HCM, 
performing a monitoring role required for understanding the effectiveness of the education 
system at various points. This section discusses the role of NAPLAN under the SCM and 
the HCM.  

The inclusion of NAPLAN in the SCM requires an understanding of the role that 
NAPLAN plays in the education system. If the NAPLAN assessments were considered as 
having a neutral role in measuring outcomes, it would not be necessary to include 
NAPLAN explicitly in the model. This view, however, is simplistic. NAPLAN 
assessments have a role in identifying areas of strengths and weaknesses in educational 
outcomes, and therefore NAPLAN would be included as a defence layer at the system 
level. 

Under the HCM, it is recognised that the defence layers can interact with other defence 
layers in the system. As others have previously highlighted, the measurement role that 
NAPLAN plays is not neutral. On a positive note, NAPLAN is expected to illustrate 
curriculum expectations and consequently shape teacher practices in improving students’ 
mathematics and numeracy performance. On a negative note, pressure to improve scores 
may have the undesired impact of encouraging shallow teaching practices.  

Limits of written testing. It is important to recognise that a student’s mathematical 
understanding is only assessed to the extent of the questions contained on a test. Some 
holes do not show up on typical assessments. Multiple choice tests are an example of 
where a student might get the answers correct on a test but actually have a hole in 
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conceptual understanding. A teacher might pre-test the class on a given topic to help with 
future lesson planning. Although the test may be effective as a whole, there are likely to be 
some children whose capabilities are over or under-estimated. Holmes et al. (2013) 
emphasise that “identifying student misconceptions from their work is a matter of 
identifying and categorizing patterns. Thus, it is extremely important when developing 
assessments to have multiple questions targeting the same concept in order to better 
classify misconceptions” (p. 32).   

Benefits of talking with students. Holmes et al. (2013) suggest that “a good way to 
discover what students may be thinking when examining their answer for a particular 
problem is simply to ask them” (p. 38). Gray and Tall (1992a) go further stating that “in 
general classroom activity it is essential for the teacher to talk to individual children and to 
listen to how those children are performing their arithmetic calculations” (p. 13) and warn 
that “simply allowing them to carry out idiosyncratic procedures may actually be leading 
them up a cul-de-sac of eventual failure at more advanced arithmetic” (p. 13). 

Another method of getting inside the student’s head is to ask students to keep a journal, 
where they explain their thinking when solving certain problems, in order to diagnose 
inappropriate strategies. This can be a good way to record and capture the development of 
a student’s understanding. However, journals do lack the immediacy and interactivity of a 
conversation and thus may require some back and forth to dig deeper into the student’s 
reasoning. 

In summary, assessments provide evidence of student's capability to understand and 
respond to assessment items. While it is easy to misconstrue the extent of a student's 
understanding, the SCM suggests two things: firstly, that sources of errors might not be the 
immediately obvious; and secondly, that the imperfections of any type of assessments are 
appropriately compensated for by using a variety of styles of assessment, including 
conversation, thereby exposing different strengths and weaknesses. Despite their 
limitations, formative, summative, and large-scale testing provide information that might 
suggest further lines of inquiry which might be otherwise unavailable.  

Implications for Interventions - Dealing with ‘holes’ 
One of the necessary assumptions of any lesson plan is that students are able to absorb 

the material.  Gaps, or holes, in students’ understanding weaken this assumption. The SCM 
suggests that holes are to be expected, therefore teachers need to develop approaches 
which accept and address the existence of holes. One possibility may be to emphasise pre-
requisite knowledge over revision of procedural activities.  

We interpret the SCM as suggesting that students, with a perspective differing from a 
teacher’s perspective, might be able to identify issues that a classroom teacher may not 
have seen. Empowering students to actively participate in identifying the prerequisite 
knowledge required for a new task may also have the desirable effect of promoting 
relational understanding of material prior to instrumental understanding.  

Determining a student’s ZPD 
Pre-testing a student’s knowledge before teaching a new unit is a well-established way 

to determine a student’s readiness to learn new material or whether they may already have 
acquired the intended knowledge.  Written or online quizzes are the most common format 
used, and teachers should keep in mind the limitations of written testing discussed above.  
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Once any gaps in knowledge or understanding are identified, teachers need to decide 
whether the gap is of a critical nature which will impact future learning and, if so, how best 
to fill the gap.  This process can help teachers clarify the base level of the student’s ZPD, 
the demarcation between coasting and being stretched.  The upper level of the student’s 
ZPD – the demarcation between being stretched and crashing – is a topic for another time. 

Conclusion 
Reason's Swiss Cheese Model (SCM), although somewhat simplistic, has been 

successfully used in the engineering and medical fields to illustrate and model complex 
systems, in particular to highlight the multifactorial aspect of adverse events. This paper 
has introduces the SCM model to the field of Education, based on the consideration that 
children failing to learn important concepts and skills despite all efforts to the contrary is 
an example of an adverse event. The SCM model is flexible, and examples have been 
given on how the SCM can be applied at the individual student level, the mathematics 
classroom level, the curriculum level, and the system level. 

The inherent simplicity of the SCM limits the usefulness of the model for complex 
situations. Li and Thimbley’s (2014) Hot Cheese Model, based on the SCM, includes the 
potential for unintended interaction of components of measures that are intended to prevent 
adverse outcomes. This paper has suggested that these models might be pertinent to 
assessments in education, whether in the classroom or system wide.  
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Traditionally, the domain of higher education, the ‘flipped classroom’ is gaining in 
popularity in secondary school settings. In the flipped classroom, digital technologies are 
used to shift direct instruction from the classroom to the home, providing students with 
increased autonomy over their learning. While advocates of the approach believe it is more 
engaging and effective than traditional instruction, there is little empirical research into the 
benefits of this approach, particularly in relation to mathematics instruction. This paper 
adds to the limited research by reporting on students and parents’ experiences with a 
flipped classroom in a senior mathematics class.  The results indicated that there were five 
main components that influenced students’ motivation to engage with the flipped classroom 
approach. The study has particular implications for students and secondary mathematics 
teachers who have limited time to make the curriculum comprehensible for students and to 
prepare them for external assessment tasks.  

In the flipped classroom, teachers typically record and narrate screenshots of work they 
do on their computer screens, create videos of themselves teaching or curate video lessons 
from internet sites such as TED-Ed and Khan Academy (Hamdan, McKnight, McKnight, 
& Arfstrom, 2013). Benefits of the approach include differentiated teaching for a range of 
student abilities, greater student motivation and increased student-teacher interaction 
(Bergman & Sams, 2012). Despite its growing popularity, there is little empirical research 
on the flipped classroom outside of higher education settings, with Abeysekera and 
Dawson (2015) labelling the area as under-evaluated and under-theorised. This paper adds 
to the limited research in the field by investigating senior secondary students’ and parents’ 
experiences with flipping the mathematics classroom. It adds to a previous study by Muir 
and Chick (2014) through targeting a different cohort of students and documentation of 
parental perspectives. Specifically, this paper aims to answer the following research 
question: What are student and parent perspectives of the benefits or otherwise of adopting 
a flipped classroom approach in the teaching of senior secondary mathematics? 

The study is important because it documents an alternative approach to traditional 
mathematics instruction. There is continued concern in Australia, and internationally, over 
the lowering levels of engagement with mathematics (Attard, 2010), and research has 
shown that there is a definite decline in school mathematics engagement of many young 
adolescents compared with their primary school counterparts (NSW Department of 
Education & Training, 2005). As noted by the Department of Education and Early 
Childhood Development (2009), there is a persistent and progressive decline in middle 
school students’ attitudes towards, and interest, in science and mathematics. This is of 
concern as disengagement with mathematics can lead to exclusion from courses requiring 
specific levels of mathematics and generally limits one’s capacity to understand life 
experiences through a mathematical perspective (Sullivan, Mousley, & Zevenbergen, 
2005). According to Attard, the pedagogical relationship between students and teachers 
appeared to have a significant effect on students’ engagement in mathematics, and that 
students were highly engaged when working on computers. The flipped classroom caters 
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for students’ propensity to be online, and is consistent with MCEETYA’s (2003, p. 4) 
statement that “students will use online curriculum content to expand and deepen their 
understanding at a pace, in a place and with an educational purpose that suits them”. The 
pedagogy, however, must transform learning, engage students in ways not previously 
possible (MCEETYA, 2005), and give them greater control over how, where and when 
they learn (ACARA, 2014). 

The flipped classroom also reconceptualises the paradigm of traditional mathematics 
homework. It is common practice in Australian secondary classrooms to allocate regular 
homework, often involving the use of the classroom textbook, and requiring the 
completion of a number of exercises. In the home environment, completion of homework 
tasks can be problematic, particularly as students move into higher grades, and the 
mathematics becomes more challenging. Mathematics homework often becomes a source 
of tension between parents and children (Civil, 2006) and many parents feel largely 
uninformed about contemporary mathematics teaching methods (Muir, 2009). In the 
flipped classroom, traditional homework tasks are completed in class where the teacher can 
provide targeted assistance as students work through activities designed to help them 
master the material. 

Theoretical Framework 
Regarded as the pioneers of flipped learning, Bergman and Sams (2012) reported that 

flipping their classroom led to greater student interaction in class, and more targeted 
individual instruction. A range of benefits associated with flipping the classroom have 
been identified for students, including differentiation of teaching, allowing the “pausing 
and rewinding’ of teachers in recorded presentations, informed parents, a more transparent 
classroom, greater student motivation and interest, and improved classroom management 
(Bergman & Sams, 2012).  

A key feature of the flipped classroom is the shifting of direct instruction to outside of 
the group learning space, and maximising one-on-one interactions in the classroom that 
more actively involve students in the learning process (Hamdan et al., 2013). The 
reduction of in-class time spent on teacher presentations and explanations allows the 
teacher to target their teaching to specific areas which may be particularly challenging and 
provide for greater monitoring of individual student progress. Instructional benefits of the 
flipped classroom approach include active learning, increased one-to-one interaction, 
priming, reduction in cognitive load and catering for diverse learners (Hamdan et al., 
2013).  

A theoretical model proposed by Abeysekera and Dawson (2015) provides an 
appropriate lens for investigating the flipped classroom approach. Although developed in a 
higher education setting, it contains a number of elements that would be relevant in a 
secondary school setting. The model, which is depicted in Figure 1, shows five 
components of the flipped approach that have the potential to cater for motivation and 
cognitive load.  These components are: sense of competence, sense of relatedness, sense of 
autonomy, tailoring to expertise and self-pacing.  

Motivation, which is closely linked to engagement, can be defined as ‘the willingness 
to attend and learn material in a development program’ (Cole, Field & Harris, 2004, p. 67). 
According to Pintrich and De Groot (1990), motivation is linked strongly with self-
regulated learning and contains three components: an expectancy component, which 
includes students’ beliefs about their ability to perform a task, a value component, which 
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includes students’ goals and beliefs about the importance and interest of the task, and an 
affective component which includes students’ emotional reactions to the task. In essence, 
students’ motivation is related to their beliefs about whether or not they can perform the 
task and that they are responsible for their own performance (Pintrich & De Groot, 1990). 
This is consistent with Xu and Wu’s (2013) research on self-regulated learning in relation 
to homework management. They suggested that the use of self-regulatory strategies are 
influenced by goal orientation (purpose for engaging in a task), task value (the importance 
and utility of a task), and task interest (the appeal of a task or an activity).  
 

 
 

Figure 1. Theoretical model for the flipped classroom (Abeysekera & Dawson, 2015, p. 10) 

As homework is primarily an individual task, undertaken outside of a scholarly 
environment, with the goals typically set by others, it requires students to be motivated in 
order to complete it. As mentioned earlier, homework is often seen as a source of tension 
between students and parents (Civil, 2006 ) and students complain about homework tasks 
being frequently boring, too easy or too hard, or irrelevant to their lives (Xu & Wu, 2013). 
As depicted in Figure 1, intrinsic and extrinsic motivation is closely linked with 
characteristics such as competence, relatedness and autonomy, which in turn all relate to 
self-regulated learning. Students develop a sense of competency through a belief that they 
can perform a task, are motivated to perform the task if they can relate to it as being 
importance and interesting, and are more likely to complete the task if they have a sense of 
autonomy or belief that they are responsible for their own performance. They are also more 
likely to manage the cognitive demands associated with a task if the instruction is tailored 
to their expertise, and there is provision for self-pacing, such as manipulating the pace of 
video tutorials. These aspects are particularly applicable to students’ engagement with 
homework tasks, including those set within the context of a flipped classroom approach. 

Methodology 
The study employed a mixed-methods approach (Creswell, 2003) to investigate 

students’ and parents’ perceptions of their experiences of a flipped mathematics classroom. 
Within this methodology, the researcher used sequential procedures (Creswell, 2003) 
where data collected from the surveys were used to inform the interview schedule, 
allowing more detailed exploration with a few cases or individuals. The study was 
undertaken with a senior secondary mathematics class from a large metropolitan secondary 
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school in Tasmania. Mathematics Methods is a senior secondary pre-tertiary course which 
covers topics such as functions, calculus and statistics. The teacher, Mr Smith, 
(pseudonym) was a fully qualified mathematics teacher, with over 20 years’ teaching 
experience and had been teaching the course for several years. He had trialled the use of 
videos in 2013 (see Muir & Chick, 2014), but 2014 was the first year in which he used a 
fully flipped approach to teach his class. The student participants were in Grades 11 or 12 
(approximately 16-17 years of age); there were 24 students in the class, all of whom 
completed the online survey (15 male and nine female), and 10 participated in the student 
interviews (seven male and three female). Six parents participated in the parent interviews.  

The procedure involved the completion of an online survey using Qualtrics and for 
some students, participation in a follow-up interview. The survey contained 24 items, two 
of which required responses in a Likert format (see Table 1 for example items). There was 
also the provision for open-ended responses. The survey took approximately 15 minutes to 
complete. Semi-structured interviews were conducted with students after the completion of 
the survey. The interviews were audio-recorded and transcribed, and took approximately 
15 minutes. Students were given the option of individual or focus group interviews, and 
with one exception, (‘Rose’) they all participated in focus group interviews. Parent 
interviews were conducted early in 2015 after students had finished the course and 
received their results. These were conducted individually, either in person or over the 
phone and varied from between 15-40 minutes duration. The teacher was also interviewed. 

Quantitative data from the survey were analysed using Qualtrics, with responses to the 
Likert scale items expressed in percentages for ease of comparison. Qualitative data from 
the surveys and interviews were transcribed and analysed using reflexive iteration 
(Srivastava, 2009) whereby each sentence in the transcripts was coded, initially through 
emerging themes. The transcripts were then re-analysed and instances of the components 
contained in Figure 1 were identified. This process limited researcher bias in that the 
researcher was open to the possibility of other themes emerging and not restricted to 
narrowing the data to pre-determined themes. Initially 11 codes were ascribed to the data, 
and these were able to be further classified into the five components in Figure 1. For 
example, references to ‘convenience’ or ‘easily accessible’ were included in ‘sense of 
autonomy’ and ‘targeted work’ in ‘tailoring to expertise’. The results section has been 
organised to report against the themes identified in the student data, supplemented by 
teacher and parent interview data. 

Results and Discussion 
Survey data showed that 100% of students had a computer and internet access at home 

and that 88% of students had accessed Mr Smith’s pre-prepared online tutorials that year. 
Items from the student surveys that are relevant to this paper are presented in Table 1. 
Qualitative data from the survey were drawn primarily from three main open-ended 
questions which asked students to identify the advantages of the online resources as 
compared to the text book and the teacher, and whether or not they would recommend the 
practice to others.  

Sense of Competence  
Responses in this category included references to being helpful in terms of 

understanding the mathematical content and/or achieving success, thereby establishing a 
‘sense of competence’ in the user. Table 1 shows that 96% of students agreed that online 
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tutorials helped with their learning and helped them to learn a concept.  Furthermore, 92% 
indicated that they found the tutorial helpful and 88% indicated that watching the tutorial 
contributed to success in both tests and class work. Qualitative comments from students 
included “Online resources are good for clarification of understanding” and “I liked Mr 
Smith’s videos because they are easy to understand and they’re more based on the 
questions we’re answering”. Jess, in a focus interview, indicated that “It helped because he 
was actually like teaching how to do everything and [it was] easier than looking in the 
book and trying to figure it out for yourself”.  

Mr Smith explained that: 
the flipped classroom enabled me to do the easier examples, set the scene, bit of drill and practice, 
you know what’s differentiation of trig functions about - do these examples, so that when we got to 
class, they were ready to go [In class]. I was able to do a more sophisticated example so I didn’t 
waste 20 minutes starting from scratch so that the homework, instead of doing lots of problems 
which I could have got them to do if I wanted to, was to just get the topic consolidated, the 
knowledge consolidated, the easier questions done, the rule, whatever it was, so that they were 
ready to go when we got in there 

Parents were ambivalent in their perceptions of whether or not the flipped classroom 
approach impacted upon their child’s success with the subject and with their overall 
grades. Donna, for example, believed it definitely benefited her daughter and “definitely 
helped her in terms of her results”. Sue, however, felt that her son, Andrew, “thought that 
by watching these videos, I’m going to understand this maths and then when they ask 
questions I’m going to be able to do it … but he didn’t – had no idea”. Sue’s comments 
show that, while not the intention, her son tended to passively watch the videos, which was 
in contrast with other students who generally indicated that they regularly paused and 
rewound the videos, and took notes throughout. Other parents, perhaps not surprisingly, 
were reluctant to attribute their child’s success or otherwise in the subject to the flipped 
classroom approach, due to extraneous variables and no opportunity to compare with other 
approaches.  

Sense of Relatedness 
Table 1 shows that 88% of students accessed Mr Smith’s online resources, compared 

with 25% who accessed other online resources. Reasons for this included relevance, with 
many students’ comments showing that they particularly connected with, or related to, Mr 
Smith. Illustrative survey comments included, “I preferred Mr Smith’s videos [over other 
online tutorials] because they were explained well and easy to understand”. They were also 
impressed with Mr Smith’s commitment to helping them learn: 

[In class] he’d get everyone involved and like the amount of effort he put into these videos – like 
he’d spend his periods where he was free, recording like he was talking to himself on his iPad and 
just the amount of effort he put in was really good. [Jack, focus interview] 

I like Mr Smith – he’s really good and I understand him, but if it was like [Mr T, another 
mathematics teacher], I have no idea about half the stuff he’s saying, so I probably wouldn’t 
understand his videos, but I understand Mr Smith’s. [Ella, focus interview] 

The parents also communicated a sense of relatedness to Mr Smith. Sue, for example, 
acknowledged that it was “almost like having your teacher coming into your home 
environment and you don’t feel so isolated”. Interestingly, only 33% of students agreed 
that they used the tutorial to explore mathematics of their own, despite finding them 
engaging. This is perhaps not surprising as the emphasis was on the prescribed work that 
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needed to be covered in the course, and exam preparation, indicating that students were 
extrinsically motivated to access them. 

Table 1  
Student Responses to Selected Likert Scale Items (n=24) 

Statement SA/A Undecided D/SD 
I use online resources to help me with my learning 96% 4% 0% 
I have used online resources (not prepared by my 
teacher) to help me with my mathematics this year 

25% 25% 50% 

I have used online resources prepared by my teacher to 
help me with my mathematics this year 

88% 0% 12% 

The tutorial helped me to understand a concept 96% 0% 4% 
The tutorial was about the right length 71% 16% 13% 
I watched all of the tutorial from beginning to end 71% 8% 21% 
I found the tutorial helpful 92% 4% 4% 
I found the tutorial boring 25% 42% 33% 
I think I did better in the test because I watched the 
tutorial 

88% 8% 4% 

I think I understood the work better in class because I 
watched the tutorial 

88% 8% 4% 

I used the tutorial to explore mathematics of my own 33% 42% 25% 
I used the tutorial to explore ideas about mathematics 
begun in class 

58% 38% 4% 

Sense of Autonomy 
In order for students to be motivated through integrated regulation, the need for 

autonomy needs to be satisfied (Abeysekera & Dawson, 2015). Students’ survey and 
interview data showed several references to this aspect of the framework. Rose, for 
example, in her interview, recommended the use of videos and stated: 

If you’re doing your homework at home on a Saturday night, and you don’t understand something, 
then rather than waiting for next maths lesson, you could just go online and access the video 
straight away 

Elsa’s comment, “I always watch them because I don’t want to get behind”, 
demonstrates that she sees herself as in control of her own learning, and also indicates that 
she is extrinsically motivated by wanting to maintain her grades.  

In terms of identifying advantages over asking the teacher or using a text-book, six 
student responses included references to the capacity to view the clips multiple times and 
pause and rewind them. Five student responses also mentioned accessibility (e.g., “You 
can work on the topic at home”).  

Parents also appreciated their children taking control over their own learning, 
particularly as they felt unable to assist with this level of mathematics homework. Trudy, 
for example, stated that: 

I think it’s really good that she’s had the videos to watch because before, and in other years, she 
might have been working from a textbook and get stuck, and I couldn’t help her, whereas with this 
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way, if she’s stuck, she can watch the video and she can write down questions and she can either 
email her teacher or she can ask him the next day, and it just seems to take all the stress out of the 
homework that used to happen before when she couldn’t do things. 

Tailoring to Expertise and Self-pacing 
In the framework, these components lead to better management of cognitive load. 

Students typically referred to these aspects when discussing the affordances of the 
medium, such as “You can go back and revise it whenever you need it”, “It [Mr Smith’s 
tutorial] was more specific to what we were studying”, “You can pause and rewind the 
video” and “You can choose what part to watch and what you need help with”.  

The ability to differentiate the learning and allow students to monitor their own 
progress was what led Mr Smith to trial the flipped classroom approach, particularly as it 
gave him added capacity to cover all the material required. He also stated: 

It had spin offs that I didn’t expect, so I had [names student] was [overseas] for a couple of weeks, 
and he was basically learning, he had his text book with him, he was watching my videos, he was 
doing the problems I set, and his mother was quite appreciative of the fact that he could do that. 

Conclusions and Implications 
The results indicate that Abeysekera and Dawson’s (2015) framework was useful for 

interpreting perceptions of the flipped classroom approach. Although originally developed 
for use in higher education settings, the senior secondary mathematics students in this 
study referred consistently to the five components in the framework when talking about 
their experiences with the flipped classroom. Reference was also made to these 
components by the classroom teacher and parents of the students in the class. The results 
showed that students had a purpose for engaging in the task (Xu & Wu, 2013) in that they 
were motivated to succeed in the subject and felt that watching the video tutorials helped 
them understand the work better and perform successfully in assessment tasks. The 
tutorials helped them with developing a sense of competency and a sense of autonomy in 
that they could use the video tutorials to consolidate and extend their learning when and 
where it suited them. Creating a sense of autonomy particularly resonated with parents, 
who felt unable to assist with mathematics homework at this level. 

It appeared that Mr Smith was particularly influential in developing a sense of 
relatedness in his students. The results showed that students and parents were appreciative 
of the time and effort involved in producing the videos, and they recognised that he could 
select examples and provide directed teaching when necessary to capitalise on the flipped 
classroom approach. Class time previously spent working through examples on the board 
became more targeted towards specific instruction. In this way Mr Smith was tailoring to 
students’ expertise and providing students with opportunities to self-pace their learning.  

Overall, the study shows that the flipped classroom approach has merits in terms of 
creating an environment where students can be intrinsically and extrinsically motivated to 
achieve learning goals. While it could be argued that the students in this study were 
already motivated to succeed as they chose to study the course, it is evident through the 
data that they could identify factors that influenced their engagement with the course. With 
the exception of Sue, who raised concerns about the passivity of the approach, students and 
parents favoured it over traditional mathematics homework practices. The study, therefore, 
has implications for teachers, parents and policy-makers who may need to re-consider 
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traditional approaches to senior secondary teaching and homework practices in light of 
these findings. 
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This paper presents a preliminary study of three six year-old children’s use of functional 

language when engaging collaboratively on a mathematics task. The analysis is presented as 

an illustration of young children’s authority and agency in mathematics as evidenced in their 

discourse. Modality, as a function of language, was seen to indicate reasoning as a semantic 

process that expressed a state of knowledge as the children explored number comparison 

relationships. It is proposed that the children’s use of modality indicated an element of internal 

authority in arbiting mathematical correctness and that related to the nature of the task. 

Introduction 

It would seem a worthwhile aim to encourage learners to participate as creative agents, 

who think and reason for themselves in mathematics, rather than being passive recipients of 

knowledge (Boaler & Greeno, 2000). Bandura (1997) considered how self-efficacy related 

human agency to the capacity to coordinate learning and motivations. Hence self-efficacy and 

agency would seem important in supporting learners to be creative agents.  

This paper presents a preliminary study of a task that intended to support collaboration 

and self-efficacy in young learners. Three six-year old children worked together on a puzzle 

designed to encourage the children to think and reason for themselves. The episode was 

analysed in relation to the children’s use of language as evidence of authority. Whilst just one 

episode, the analysis provides a rich interpretation of the children’s engagement with the task, 

from which more can be learnt about children’s agency and self-efficacy in mathematics, and 

the nature of supporting tasks. 

Exploring Agency and the Use of Language in Mathematics  

Lange (2009) defined human agency as the “faculty to act deliberately according to one’s 

own will and thus to make free choices” (p. 2588).  This interpretation of agency is extended 

further by Pickering’s (1995) and Cobb, Gresalfi, and Hodge’s (2009) distinctions between 

human agency (choice and discretion of a learner), conceptual agency (developing meanings 

and relations between concepts and principles), and disciplinary agency (the established 

procedures of a discipline). Pickering referred to the free and forced moves between these 

distinctions as a ‘dance of agency.’ As such, the choices made in learning mathematics are 

forced or tempered by the intrinsic authority of the discipline of mathematics, and agency in 

mathematics is further defined as the opportunity to exercise discretion in making choices by 

drawing on mathematics ideas to solve problems (Grootenboer & Jorgensen, 2009). 

Traditionally the teacher has authority in influencing, or controlling, the flow of ideas in a 

mathematics classroom (Amit & Fried, 2005). That is, the teacher controls the ‘dance of 

agency’ and shapes the authority of knowledge for the students. However, if students control 

the ‘dance of agency’, they learn to rely on the disciplinary agency of mathematics, and not 

the authority of the teacher. Such students would have the confidence to become “arbiters of 

mathematical correctness” (Schoenfeld, 1992, p. 62). This ability would seem intrinsic to the 
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relationship between self-efficacy and agency, and so lead to students as creative agents who 

think and reason for themselves. 

Studies regarding the distribution of authority in teaching mathematics have shown how 

secondary students rely on their teacher’s authority (Wagner & Herbel-Eisenmann, 2009). So 

it would seem desirable to establish agency with students from an early age.  Recent studies 

have considered play and agency with kindergarten children (e.g. Erfjord, Carlsen, & 

Hundeland, 2015), but little research has been carried out with primary school children. 

Whereas there is the potential for free choice in the play activities of pre-school children, 

primary school children are introduced, more formally, to key mathematical ideas that are 

often modelled by the teacher.  Hence primary school children are required to engage with 

conceptual and disciplinary agencies of mathematics in a more structured way. That is, they 

are being led by the teacher to engage in the dance of agency. So, how might we develop 

tasks where the children are managing this dance of agency, rather than the teacher?  

Furthermore, consideration is needed on how to investigate agency and authority in the 

mathematics classroom. One way is to analyse discourse as patterns of interaction between 

teachers and students (Wagner, 2007). Other methods of discourse analysis focus on the 

functional use of language. In relation to Halliday and Matthiessen’s (2004) theory of 

systemic functional linguistics (SFL), functional linguistics provides a way of examining 

meaning making in a given environment. In examining agency in relation to language use, a 

key distinction is made between the primary tense, that expresses what is present at the time 

of speaking, for example ‘it is’ or ‘it isn’t,’ and modality that expresses certainty or 

possibility, for example ‘it has to be’ or ‘it can be.’ Modality is further divided into deontic 

and epistemic. Deontic modality indicates the necessity or possibility of acts, that is, socially 

regulated behaviour, and these are more commonly known to young children (for example, 

‘you have to sit still’ or ‘you can’t go out to play’). Epistemic modality indicates the 

speaker’s beliefs based on the available evidence (for example, ‘that has to be …’).   

Much mathematical language relies on the use of modality, both deontic and epistemic. 

The use of deontic modality suggests authority through the control of behaviour in how to 

carry out a procedure, and epistemic modality suggests the certainties or possibilities 

regarding mathematics, and hence is part of the dance of agency in relating to the discipline 

of mathematics. De Freitas and Zolkower (2010) have focused on modality in studying 

authority and agency of the teacher in mathematics classrooms, but modality has not been 

used as a focus to study young children’s interactions.  

Developing the Task  

I had been working with a class teacher over a school year to develop tasks to encourage 

collaboration with six year-old children. The intention was to move away from direct 

instruction, and to shift authority away from the teacher. As such, the nature of the task was 

important in providing access to conceptual and disciplinary agency, where the students were 

put in charge of making decisions. The task presented here was developed as a puzzle with 

intrinsic logic (see figure 1). In solving a puzzle, as in playing a game (van Oers, 2014), there 

are rules: rules of the puzzle (how to act based on the rules of the puzzle) and conceptual 

rules (how to act based on specific concepts). As such the task resembled a play activity, 

where students make choices, but where the correctness of a choice is based on the rules of 

the puzzle.   

A further aim in developing the task was to support the children’s learning in number. In 

particular we focused on the comparison relationship ‘more or less than’. Finding a number 

with say two more or two less, relies on the comparison of two cardinal units and involves 

more than counting. The relational nature of numbers is abstract. Relations between numbers 

do not refer directly to concrete objects; they can only be represented by concrete or symbolic 
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objects (Steinbring, 2005). This abstract notion was seen as important in supporting the 

children’s learning in number, as they often relied on counting processes.  

Structural dot patterns, based on ten frames (see Figure 1), were used to represent 

cardinal units for comparison, as a way to encourage part-whole thinking rather than 

counting. Developed from earlier research on young children’s counting models and 

subitising abilities (Steffe & Cobb, 1988; Steffe, von Glasersfeld, Richards, & Cobb, 1983), 

the importance of pattern and structure in early mathematics learning has now become fully 

recognised. Studies on children’s use of representations and structure, such as egg boxes as 

six and ten frames, have been shown to support part-whole thinking (Young-Loveridge, 

2002). Further studies have examined young children’s awareness, recognition, and 

visualisation of pattern and structure. (Mulligan & Mitchelmore, 2009), and the examination 

presented here provided an opportunity to explore the use of pattern in comparing numbers.  

The task required the students to complete a rectangle by placing ten frame cards, which 

were more or less than the previous one, according to a given condition recorded on the 

arrows around the rectangle (Figure 1). For example, the ten frame following the start 10 ten 

frame could be either two more or two less than ten. Eight ten frame cards with values from 

three to ten were provided to complete the task.  The rectangle was to be closed, meaning that 

the last ten frame had to meet both the previous and the final conditions. As can be seen in 

Figure 2, the 9 ten frame has been placed, so that it is three more than the 6 ten frame and one 

less than the 10 ten frame.  

 

Figure 1. The More or Less task  

 

Figure 2. A completed version of the More or Less task 
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Research Methods 

In the episode examined in this paper, the focus is on how the pattern structures, within 

the nature of the task, might mediate the students’ arbitration in determining the correctness 

of their choices. The task was presented by me, as the researcher, to three six year-old 

children, Kim, Emma, and Helen. The children had worked together, and with me, on 

previous collaborative tasks, but the More or Less task was a new introduction. The episode 

was video recorded and transcribed. The research method followed the principles of the 

clinical interview (Ginsburg, 1997). As the researcher, I observed, probed, and prompted the 

children as they worked on a task. The intention was to enter the children’s minds, but 

through discourse analysis that focused on functional linguistics, and in particular the 

children’s spontaneous uses of primary tense and modality. The use of the primary tense 

indicated what was present and known to the children, and modality indicated the children’s 

reflections on possibilities or certainties. In introducing the task to the three children, Kim, 

Emma, and Helen, I emphasised that they needed to close the rectangle, so that, for the last 

space, the ten frame would have to be one more or one less that the first card (the 10 ten 

frame).  

Examples of Critical Incidents in Use of Language 

As this was just one episode, analysis was carried out through viewing the video material 

alongside the transcript. The students’ use of present tense and modal terms in critical 

incidents were identified. Transcripts of the critical incidents are presented below. Actions 

are presented in italics in parenthesis for clarification. References are made to figures 3 to 6, 

showing images taken from the video recording.  

1. Helen: What shall we do, two more or two less? Two less, two less. (Helen placed the 8 ten frame 
next to the 10 ten frame.) 

2. Kim: One less. (Kim read from the next arrow.) 

3. Helen: It’s eight. (Helen counted the dots on the 8 ten frame and Kim placed the 7 ten frame next.) 

4. Kim: Two more or two less. (Kim read from the next arrow.) 

5. Helen: Two more. (Emma handed Helen the 9 ten frame. Helen pointed to two dots on the 9 ten-
frame.) 

6. Helen: See there’s two more. (Helen placed the 9 ten-frame.) (See Figure 3.) 

7. Kim: We need to decide which one goes where. Do you want to do one more or one less? 

8. Helen: One less, I mean one more (The children looked at the ten frames they had left (3, 4, 5, and 
6) and Helen pointed to the 9 ten-frame and the next space on the rectangle.) 

 

 
 

Figure 3. The children’s first attempt at completing the task 

9. Helen: So that will be one less, it’ll have to be one less. 
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10. Kim: It will have to be eight. No. We have to do one more, because we don’t have…. (Kim looked 
to the 10 ten frame) Oh no we have to start again. (The children removed all the ten frames, apart 
from the 10 ten-frame, and started again.)  

11. Helen: What about we do this – more, less, more, less, more, less (Helen pointed to the spaces 
around the rectangle.) 

12. Kim: But there’s no bigger number, that’s the biggest number. (Kim pointed to the 10 ten-frame.) 

13. Kim: Why don’t we do this one less, this one less, this one more, this one more, this one less, this 

one less? What do you want that to be? (Kim pointed to the spaces around the rectangle and then 
stopped at the last closing space.) (See Figure 4) 

14. Emma: More. 

15. Helen: No less, less. 

16. Kim: That has to be nine. (Kim pointed to the space before the 10 ten-frame and Helen placed the 
9 ten frame in the space.) (See Figure 4)  

17. Kim: Two more? (Kim indicated the space next to the 10 ten-frame.) 

18. Helen: Two less, seven. (Helen pointed to the space next to the 10 ten frame, and Kim placed the 8 
ten frame.) (See Figure 4.) 

 

       

Figure 4. The children start again on the task 

At this point the children realised the positioning of the 9 ten frame before the 10 ten 

frame and, even though Helen had stated seven as two less than ten, Kim placed the 8 ten 

frame after the 10 ten frame (Figure 4). They then became confused over the positions of the 

8 and 7 ten frames.  

19. Kim: One more or one less. Eight where’s eight? (Kim suggested eight as one more than seven.) 

20. Helen: On no, this is an eight. (Helen picked up the 8 ten frame and counted the dots.) It’s eight. 

That’s seven. (Helen moved the 8 ten frame and placed the 7 ten frame between the 8 ten frame 
and the 10 ten frame.) 

The children then chose which ten frames to place next, with Kim asking “Which do you 

want, one more or one less?” but they did not place the ten frames according to the conditions 

given in the arrows (Figure 5).   

 

  

Figure 5. An incorrect solution to the task 

All three children turned to the researcher to say “Done!” The researcher returned to the 

group and asked the children to explain their decisions for placing the ten frames. 
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21. Researcher: So you decided that one had to be a nine. (Researcher pointed to the 9 ten-frame.) 
Why did you decide that? 

22. Kim: Because ten’s the biggest number. We can’t do one more, that would be eleven and we don’t 

have eleven. 

23. Researcher: So why did you decide to put this one there? (Researcher pointed to the 7 ten frame 
next to the 10 ten frame.) 

24. Kim: Cos it’s, what’s this? Because it’s… 

25. Helen: No it’s three less. 

26. Kim: It’s supposed to be two less. (Kim swapped the 7 with the 8 ten frame.) 

27. Researcher: (Researcher pointed to the new position of the 7 ten frame.) Why wouldn’t you put the 

9 ten frame there? You could have made that one more? 

28. Kim: Cos maybe you couldn’t put anything here. (Kim pointed to the 9 ten frame before the 10 ten 
frame.) 

29. Researcher: So where do you go after that? You need two more or two less. Can you use nine? 

(Kim shook her head.) So what you are going to have to use? 

30. Kim: Five? (Kim moved the five next to the 10 ten frame but then moved it away and replaced it 
with the 4 ten frame.) 

31. Helen: No you need the five, you need the five, you need the five there. (Helen moved the 4 ten 
frame away and replaces it with the 5 ten frame.) 

The students needed reassurance from the researcher in placing the last three ten frames 

but they did complete the task with the correct solution (Figure 6).  

 

 

Figure 6. The children complete the task with a correct solution 

Analysis and Discussion 

In transcript lines 1 to 7 the children used the primary tense. Helen asked, “What shall we 

do?” suggesting a free choice. The children also used the primary tense in stating “It’s eight” 

or “There’s two more.” The numbers and the number relationships were present and known 

to the children. Even though Kim used a deontic modal term “We need to decide,” she then 

asked what they wanted to do, not what they had to do, again suggesting free choice. In 

transcript lines 8 to 9, it seemed the children realised they did not have a ten frame more than 

nine, so they decided they needed a ten frame less than nine, and, for the first time, they used 

epistemic modality in the phrases, “It’ll have to be one less” (transcript line 9) and “It will 

have to be eight” (transcript line 10). As Kim noticed the 8 ten frame had been used, she then 

used deontic modality in the phrase, “We have to do one more” (transcript line 10). The 

children were beginning to reason what they had to do, and what numbers were needed to 

meet the rules of the puzzle, rather than referring to free choice. Hence, the children were 

beginning to relate to conceptual rules and the rules of the puzzle.  

As the children started a second attempt (transcript lines 11 and 13), and plotted possible 

positions around the rectangle, they seemed to experiment with systems. This systemic 

approach, whilst still tempered by free choice in choosing a system, suggested the children 

458



Murphy 
 

  

were attempting to relate to authority within the rules of the task. Their experimentation with 

the systems also led them to look at the final closing position. Kim used the primary tense in 

noting that there was no bigger number than ten (transcript line 12), and then used epistemic 

modality in the phrase, “That has to be nine,” in determining the value of the ten frame in the 

closing position (transcript line 16 and Figure 4). Ten, as the biggest number, was present and 

known to the students, but Kim then used epistemic modality to realise a necessary number 

for the closing ten frame.  

The children made an error in stating seven as two less than ten, but the 8 ten-frame was 

placed next. The confusion with the 8 ten-frame and the 7 ten-frame (transcript lines 19 and 

20) resulted in the children checking by counting the dots. The children referred to the 

numbers on the ten frames and used the primary tense “…this is an eight….It’s eight. That’s 

seven,” in confirming knowledge that was presented to them. The children then further 

confused the completion of the task by swapping the 8 and 7 ten frames, but later, after 

questioning from me, Kim and Helen changed the placing of the 8 ten frame as two less than 

ten (transcript lines 24 and 25). Kim’s phrase, “It’s supposed to be…” (transcript line 26) 

showed use of epistemic modality that linked knowledge of the number on the ten frame with 

the number relationship and the rules in the task.  

Children’s use of both the primary tense and modality were further evidenced as I 

questioned the positioning of the ten frames. For example, Kim’s statements “We can’t do 

one more... we don’t have eleven” (transcript line 22) and “you couldn’t put anything here” 

(transcript line 28) further suggested Kim was linking the knowledge of the number on the 

ten frame with the number relationship and the rules of the task. Later, Helen was clear in her 

use of necessity as deontic modality in the repeated phrase “you need the five” (transcript line 

31). Whilst deontic, this use of modality must also have related to epistemic modality in 

noting that the next ten frame had to be 5. 

Analysis of the children’s dialogue indicated that, as they realised the limiting conditions 

in completing the task (“But there’s no bigger number...[than ten]”), they began to use modal 

terms both deontic (“So we have to...” and “You need…”) and epistemic (“It’ll have to be 

one less” and “That one has to be nine...”). This suggested they were linking knowledge that 

was present to them in the numbers as quantities, the number comparison relationships, and 

the intrinsic logic or rules of the task. As they realised the limitations of their choices, the 

children moved from free choice (human agency) to conceptual agency. Whilst the children 

received some prompting from me, as the researcher, the rules of the puzzle in the task had 

the potential to mediate the children’s arbitration in determining the correctness of their 

choices. Hence authority was determined within the task.  

Concluding Remarks 

From the analysis of the use of modality in this episode, it is proposed that young 

children are capable of conceiving of possibilities and certainties and reflecting on these. 

Modality was seen to indicate reasoning as a semantic process, where it depended on 

understanding the meaning of the premises and expressed a state of knowledge. It is further 

proposed that tasks presented as puzzles, with an intrinsic logic, have the potential to support 

students in determining the correctness of their choices, and in realising the dance between 

human, conceptual and disciplinary agency. The task was new to these children, and it 

remains to be seen if further use of such tasks would enable young children to work 

independently in completing the task. Whilst this task was based on the comparison 

relationships, more than and less than, the closed rectangle could be further investigated with 

other number relationships, including multiplicative thinking, and other mathematical 

functions.  
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Further studies are needed to investigate how extended use of such tasks might effect a 

shift of authority in learning from the teacher, and so support learner agency with young 

children. However, this preliminary study of one episode has shown the potential of 

investigating agency through discourse analysis focusing on modality as a function of 

language. More extensive studies, and finer analysis of the use of language using software 

such as NVivo, would be important in further understanding how tasks can be developed to 

support young children’s self-efficacy and agency in relation to learning mathematics.  

References 

Amit, M., & Fried, M. (2005). Authority and authority relations in mathematics education: A view from an 8th 
grade classroom. Educational Studies in Mathematics, 58(2), 145-168.  

Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY.: W. H. Freeman and Company. 

Boaler, J., & Greeno, J. G. (2000). Identity, agency, and knowing in mathematics worlds. In J. Boaler (Ed.), 

Multiple perspectives on mathematics teaching and learning (pp. 171-200). Westport, CT: Greenwood 

Press. 

Cobb, P., Gresalfi, M., & Hodge, L. L. (2009). An interpretive scheme for analyzing the identities that students 

develop in mathematics classroom. Journal for Research in Mathematics Education, 40(1), 40-68.  

de Freitas, E., & Zolkower, B. (2010). Discursive authority in the mathematics classroom: Developing teacher 

capacity to analyze interactions in terms of modality and modulation. Paper presented at the Mathematics 

Education and Society 6 Proceedings, Berlin, Germany. 

Erfjord, I., Carlsen, M., & Hundeland, P. S. (2015, 4-8 Feb 2015). Distributed authority and opportunities for 
children's agency in mathematical activities in kindergarten. Paper presented at the CERME 9.: 9th 

Congress of European Research in Mathematics Education, Prague, Czech Republic. 

Ginsburg, H. P. (1997). Entering the child's mind: The clinical interview in psychological research and practice. 

NY: Cambridge Press. 

Grootenboer, P., & Jorgensen, R. (2009). Towards a theory of identity and agency in coming to learn 

mathematics. Eurasia Journal of Mathematics, Science and Technology Education, 5(3), 255-266.  

Halliday, M. A. K., & Matthiessen, C. (2004). An introduction to functional grammar. Third edition. London: 

Arnold. 

Lange, T. (2009). “Tell them that we like to decide for ourselves” - children’s agency in mathematics education. 

Paper presented at the Proceedings of the Sixth Congress of the European Society for Research in 

Mathematics Education. January 28th - February 1st 2009, Lyon  

Mulligan, J., & Mitchelmore, M. (2009). Awareness of Pattern and Structure in Early Mathematical 
Development. Mathematics Education Research Journal, 21(2), 33-49.  

Pickering, A. (1995). The Mangle of Practice: Time, Agency, and Science. Chicago: University of Chicago 

Press. 

Schoenfeld, A. (1992). Reflections on doing and teaching mathematics. In A. Schoenfeld (Ed.), Mathematical 

thinking and problem solving (pp. 53-70). Hillsdale, NJ: Erlbaum. 

Steffe, L. P., & Cobb, P. (1988). Construction of arithmetic meanings and strategies. New York, NY.: Springer-

Verla. 

Steffe, L. P., von Glasersfeld, E., Richards, J., & Cobb, P. (1983). Children's counting types: Philosophy, theory, 

and application. New York, NY.: Praege. 

Steinbring, H. (2005). The construction of new mathematical knowledge in classroom interaction: an 

epistemological perspective (Vol. 38). Berlin, NY.: Springer. 
van Oers, B. (2014). The roots of mathematising in young children's play. New York, NY.: Springer. 

Wagner, D. (2007). Students’ critical awareness of voice and agency in mathematics classroom discourse. 

Mathematical Thinking and Learning, 9(1), 31-50.  

Wagner, D., & Herbel-Eisenmann, B. (2009). Re-mythologizing mathematics through attention to classroom 

positioning. Educational Studies in Mathematics, 72(1), 1-15.  

Young-Loveridge, J. (2002). Early childhood and numeracy: Building an understanding of part-whole 

relationships. Australian Journal of Early Childhood, 27(4), 36-42.  

460



Ng and Dindyal 

.	  	  
	   Φ
.	  

Examples in the Teaching of Mathematics: Teachers’ Perceptions 

Lay Keow Ng 
National Institute of Education, Singapore 

< ng_lay_keow@moe.edu.sg> 

Jaguthsing Dindyal 
National Institute of Education, Singapore 

<jaguthsing.dindyal@nie.edu.sg> 

As part of a study examining how teachers in Singapore select and use examples for 
teaching mathematics, 121 teachers from 24 secondary schools responded to three open-
ended questions about the use of examples in teaching. The results show that students’ 
abilities and the difficulty level of the examples were among the topmost considerations 
teachers have when introducing mathematical ideas or when selecting homework tasks. 
This paper also reports on teachers’ perceptions of a good example. 

The use of examples by teachers in the mathematics classroom is a well-established 
practice. While researchers have attended to the roles of sub-categories of examples, 
research into how teachers integrate examples into their teaching remains scarce (Zodik & 
Zaslavsky, 2008). Research has also shown that the use of examples, or exemplification in 
short, is neither arbitrary nor straightforward, where prospective teachers (Huntley, 2013) 
and experienced teachers (Zodik & Zaslavsky, 2008) both face problems, hence 
summoning the need for research in this area. 

Literature has also revealed a strong connection between teachers’ knowledge and their 
use of examples in teaching. Rowland, Huckstep, and Thwaites (2005) found that teachers’ 
ability in selecting suitable mathematical examples was strongly related to their 
mathematics content knowledge for teaching. Also, Chick (2010) stressed that the capacity 
of teachers in crafting effective examples relies heavily on their pedagogical content 
knowledge too. 

Teachers use examples in various ways, often to introduce an idea or illustrate a 
concept. Also, examples are used by teachers in the assignment of specific tasks, such as 
homework, which in Singapore is a common practice. Several factors may affect the 
choice of specific examples by teachers. This paper focuses on the following three 
questions.  

1. What factors do secondary mathematics teachers consider when choosing examples 
for introducing new mathematical ideas? 

2. What factors do secondary mathematics teachers consider when selecting examples 
for homework tasks? 

3. What are the characteristics of a good example used for teaching mathematics in 
the eyes of secondary teachers? 

Examples in the Teaching of Mathematics 
The significance of examples is summarised by Watson and Mason (2002): “learning 

mathematics can be seen as a process of generalizing from specific examples” (p. 39). 
Examples are therefore paramount in mathematical teaching and learning.  

The definition of examples used by researchers generally refers to an example as an 
illustration of a larger class. This broad definition can include geometrical figures, 
demonstrations of solving problems, tasks, and worked examples, as long as the 
mathematical object is offered or perceived as an example of something. In this study, a 
task can be an exercise, problem, or assessment assigned to students for completion during 
or beyond curriculum time. The same task may differ in operation and learning outcomes, 
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depending on the intentions of the author, the aims and knowledge of the teacher, the 
goals, knowledge, and experiences of the students, and on the learning environment. The 
role of teachers therefore lies in setting up appropriate tasks. 

Example selection is, however, not merely choosing or implementing good examples, 
but entails leveraging on coherent example sets to build students’ understanding in order to 
attain instructional goals. Watson and Mason (2006) claimed, “the starting point of making 
sense of any data is the discernment of variations within it’ (p. 92). They proposed to 
systematically change certain aspects of a task while keeping others invariant, to help 
learners better perceive the mathematical structure. In addition, Skemp (1971) advised 
educators to reduce the noise in examples during concept formation so as to draw learners’ 
attention to the key characteristics of the concept.  

Empirical findings from work with teachers have also revealed principles that guide 
teachers in making their example choices. One common approach was the use of simple 
first examples (Bills & Bills, 2005) that include keeping the numbers small and ordering 
examples in increasing complexity. To scaffold students’ learning, teachers have also 
proposed using examples that build on students’ prior knowledge (Bills & Bills, 2005) and 
keeping unnecessary work to a minimum (Zodik & Zaslavsky, 2008). Sometimes, teachers 
tend to craft and use examples that allow them to attend to common errors and 
misconceptions to forewarn their students (Zodik & Zaslavsky, 2008) or to include 
uncommon cases to increase students’ exposure. 

Teacher Knowledge and the Use of Examples in Teaching Mathematics 
A closer scan of the literature on mathematical examples highlights the close 

connection between teachers’ examples and their knowledge. In particular, content 
knowledge and pedagogical content knowledge (PCK) have been identified to directly 
influence teachers’ exemplification abilities. Content knowledge is the knowledge of the 
subject matter content. PCK is the “blending of content and pedagogy into an 
understanding of how particular topics, problems, or issues are organized, represented, and 
adapted to the diverse interests and abilities of learners, and presented for instruction” 
(Shulman, 1987, p. 8). Ball, Thames, and Phelps (2008) sub-divided PCK into knowledge 
of content and students (KCS), knowledge of content and teaching (KCT), and knowledge 
of content and curriculum (KCC). KCS includes an awareness of topics that students will 
find easy or difficult and their common conceptions and misconceptions. KCT comprises 
of knowledge on the sequencing of examples and the use of appropriate representations. 
Finally, KCC encompasses knowledge of educational goals, assessments, and the 
sequencing of topics across grade levels. 

Rowland et al. (2005) observed how content knowledge and PCK contributed to the 
decisions and actions of their participants.  Of the four units of their Knowledge Quartet 
framework, transformation or knowledge-in-action was strongly tied to teachers’ example 
choice. Variables, sequencing, representations, and learning objectives were also identified 
as related to teachers’ awareness in exemplification.  

Noticing the lack of research between teachers’ PCK and their exemplification 
practices, Chick and her colleagues (see Chick, 2007) studied the instructional practices of 
Australian elementary teachers and were successful in surfacing moments where aspects of 
PCK were enacted through the teachers’ examples. Chick (2007) also noted that most of 
the examples that the teachers used were planned and selected based on the examples’ 
structures and qualities. The selection process was much guided by the teachers’ PCK, 
especially on what affordances they perceived the examples could offer. Even when 
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teachers have to come up with an example on the spot, their ability to do so is greatly 
influenced by their PCK (Chick & Pierce, 2008). Similarly, Zodik and Zaslavsky (2008) 
who carried out an in-depth study with five secondary teachers concluded that content 
knowledge, PCK, and knowledge of students’ learning, a sub-category of PCK, shape 
teachers’ examples. 

Methodology 
This study surveyed the exemplification practices of secondary mathematics teachers 

in Singapore for which a purposeful sample of experienced teachers was used to provide 
richer information. Participants were chosen from teachers who had taught mathematics for 
at least five consecutive years and had some experience in teaching at the upper secondary 
level. A questionnaire was then constructed and distributed to teachers who fit the criteria.   

The questionnaire was pilot-tested with 16 teachers from two schools and thereafter 
refined. Of the 128 questionnaire returns from 24 secondary schools, seven were invalid as 
three had only lower secondary (grade 7 and grade 8) teaching experience and four had 
taught for less than five years. The remaining 121 teachers had a mean of 12 years of 
teaching and 89 of them had experience in teaching Additional Mathematics: an advanced 
level of mathematics that is offered to more mathematically able students in upper 
secondary and includes topics like plane geometry proofs and introductory Calculus. Of 
these 121 teachers, 44 teachers taught one other subject and the rest taught mathematics 
only. All respondents had a first degree and a teaching qualification. 25 of the teachers had 
a masters degree of which 19 were masters in mathematics or mathematics education. The 
gender composition was almost 50:50 (57 females). 119 indicated their age group and the 
age distribution is shown in Table 1. 
Table 1  
Age Group of 119 Teacher Respondents 

Age Under 30 30-39 40-49 50-59 60+ 
Number of teachers      7    58    32   17  5 

The purpose of the questionnaire was to explore teachers’ opinions on mathematical 
examples, their mathematical knowledge of teaching, and their mathematical beliefs. For 
this paper, the focus is on the three questions that surveyed the teachers’ exemplification 
considerations. The first question read “list down two factors you consider when selecting 
examples to introduce a new concept/procedure/rule/principle”. Research has shown that 
teachers like to begin with a simple or familiar first example and order examples in 
increasing degree of difficulty (Rowland et al., 2005). Teachers also reported to be 
conscious of the importance to reduce the noise in examples so as to focus learners’ 
attention on the critical aspects (Skemp, 1971). Hence, the objective of this question was to 
elicit teachers’ decisions in selecting their first few examples in order to focus on those 
teachers who can better justify their choice of mathematical examples. 

The second question asked teachers to list down two factors they considered when 
selecting homework tasks. Hiebert et al. (1996) proposed that teachers look for tasks that 
can offer situations that students will perceive as problematic and that provide platforms 
for students to think about important mathematics. Tasks should also connect to some part 
of the students’ knowledge so that they are attainable by students. Hence, it is worthwhile 
to investigate how teachers decide on homework tasks. 
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Finally, teachers were asked to write down three characteristics of what they think a 
good example would have. Zaslavsky and Lavie (2005) defined a good example as one 
“that conveys to the target audience the essence of what it is meant to exemplify or 
explain” (p. 2). They described good examples as transparent, can foster generalisation, 
and aid in explaining and resolving mathematical subtleties. Thus, the third question was to 
elicit what teachers believed that a good example would entail. 

Results and Discussion 
The data collected for this study involved teachers’ responses to the three questions. 

Teachers’ responses for each question were categorised and 13 category codes were 
created to facilitate the analysis and discussion both within and between the questions. In 
all 13 categories, some were common. Table 2 presents the percentage category 
frequencies for each question, ordered in decreasing frequencies for question one. 

Table 2 
Categories of 121 Teachers’ Exemplification Considerations 

Category 
Code  

Category Description Teach 
Mathematics 
Idea (%) 

Select 
Homework 
(%) 

Good 
Example (%) 

SA  Students’ Abilities 25.5 17.4 13.1 
DL Difficulty Level 21.3 23.0 16.1 
FC Familiar Context 18.3 - 8.36 
LO Learning Objectives 8.09 8.12 5.97 
EC Exemplify Content 8.09 - 10.7 
VE Variety of Examples 6.81 19.2 10.1 
CE Clarity of Examples 5.11 - 15.8 
TI Thinking and Interesting 3.83 - 9.25 
CM Common Misconceptions 2.13 0.855 4.18 
CH Classwork and Homework 0.851 5.98 - 
NE Number of Examples - 9.83 - 
RL Reinforce Learning - 8.94 4.78 
AU Assess Understanding - 6.41 1.49 

RQ1. What Factors do Secondary Mathematics Teachers Consider when Choosing 
Examples for Introducing New Mathematical Ideas? 

A total of 235 teachers’ considerations, when they teach new mathematical ideas, were 
gathered in which the first three categories surfaced more often. From Table 2, Student 
Abilities (SA) was reported as the major concern teachers have when introducing new 
content (60 counts). SA consisted of responses on students’ abilities, prior knowledge, and 
the need to scaffold students’ learning. The comments included “must suit students’ 
ability” and examples should be able to “link to prior knowledge”. Some teachers, like the 
mentors in Bills and Bills’ (2005) study, also advocated instructional scaffolding via 
examples like “easy ones first, then progressively more challenging ones”.  
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The second most common category was Difficulty Level (DL) which pertains to 
whether the examples were easy or hard (50 counts). Many teachers echoed that they 
would take note of the difficulty level of examples. Others proposed to use an example that 
is “easy to understand” and this resembles the key theme in another study, which was 
keeping things simple (Bills & Bills, 2005). A related category was to use Familiar 
Context (FC) that students can easily relate to by linking to the “personal experience of 
students” or “real-world situations”, of which there were 43 counts. In a way, SA, DL, and 
FC encompassed one of the guiding principles teachers in Zodik and Zaslavsky’s (2008) 
study demonstrated which was to start with a simple or familiar case. 

Of the participating teachers, 19 were concerned if examples used could “address the 
instructional objectives” and prepare students for examinations (LO). This factor was also 
identified by Rowland (2008) in his study. Teachers were also mindful when selecting the 
first few examples that could exemplify a new content (EC), so as reduce the noise 
(Skemp, 1971) by selecting only those that were able to “highlight the key points”.   

There were 16 comments on using different examples, Variety of Examples (VE), when 
presenting a new mathematical idea whereas some included examples that “show the 
application of the new concept”. 12 wrote about the Clarity of Examples (CE) that 
examples should be clear, “should not be overly tedious to solve”, and should involve 
“small numbers, positive integers if possible”. This partially reflected the approach by 
teachers in another research to draw attention to relevant features (Zodik & Zaslavsky, 
2008). Arousing interest and stimulating thought processes, Thinking and Interesting (TI) 
was also raised (9 counts). Fewer (5 counts) attended to the need to address Common 
Misconceptions (CM) and only two teachers selected examples that “can help them 
[students] to solve questions given for homework later” (Classwork and Homework-CH). 
Since the teaching of a new mathematical idea was the focus of this question, it was logical 
that the following categories: Number of Examples (NE), Reinforce Learning (RL), and 
Assess Understanding (AU), were not part of the teachers’ considerations. 

RQ2. What Factors do Secondary Mathematics Teachers Consider when Selecting 
Examples for Homework Tasks? 

There were 234 written factors where the top three categories, DL, VE, and SA were 
more frequently cited. Similar to teachers’ choice of the first few examples, when they plan 
homework, DL (54 counts) and SA (41 counts) were important too. What differs in DL 
was teachers were more prone to choose challenging over simple homework tasks. “Tasks 
should be reasonable within ability of students” so that “students can manage the 
homework”. Hiebert et al. (1996,) considered SA as vital too as teachers should select 
tasks that “students can see the relevance of the ideas and skills they already possess” (p. 
16). 

A key approach by many (45 counts) was to expose students to varied examples (VE), 
as a limited range of examples might lead to an incomplete or erroneous understanding. 
“Direct application of concepts, challenging questions, and integrated mathematics and 
real-life situations” should be tasked for a “comprehensive coverage of exercise”. 

The next three codes, NE (23 counts), RL (21 counts), and LO (19 counts) had 
comparable ratings. Some teachers carefully considered the “time taken to complete 
homework questions” by reminding themselves to give “manageable number of questions” 
(NE). However, this category was absent in the teachers’ exemplification considerations 
when they introduced new concepts or when they identified good examples.  
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Some teachers were concerned whether homework could “reinforce classroom 
teaching” (RL). The “purpose of the homework task” (LO) to cover the school’s scheme of 
work or to “prepare students for examinations” was also raised. 15 teachers suggested that 
the role of the homework is “to assess students’ understanding” (AU) and that “tasks 
should give feedback on students’ learning”. Slightly fewer (14 counts) shared that their 
homework selection was based on the classwork and that for the homework they “will give 
questions similar to the work done in class”. Only two stated that they would include 
“questions that can surface common mistakes or misconceptions”. 

It was noticeable that the teachers did not consider FC, EC, CE, and TI when they set 
homework tasks.  Since homework served mainly for students to develop their skills, 
teachers reported that they tended to expose students to different types of problems rather 
than focus on context familiar to them (FC). The same can be said for EC and CE, which 
were more relevant to mathematical understanding. What was more conspicuous was the 
absence of thinking and interesting aspect in homework tasks, as this is fundamental in 
Singapore mathematics framework (Ministry of Education, 2012). 

RQ3. What are the Characteristics of a “Good” Example used for Teaching 
Mathematics in the Eyes of Secondary Teachers? 

The respondents gave 335 written descriptions of their concept of good examples. 
Likewise, when teachers look for critical attributes in examples, DL (54 counts) and SA 
(44 counts) were pivotal. Interestingly, over 75% were more likely to pick an “easy to 
understand” example over one that “can stretch their thinking”. A good example should 
also be “pitched at the right level for the class” and be able to “link with prior knowledge”. 
Unlike the previous two questions, there were five teachers who favoured the use of 
“illustrations and diagrams” to “assist in the conceptualisation”, which Rowland et al. 
(2005) found to be tied to teachers’ exemplification practices. 

A substantial number of teachers (53 counts) felt that good examples are “clear” (CE) 
and “well-crafted”, where they “test students on the concept but not on the English”. “Ease 
in calculation” and having “no complicated equations” reflected the keep unnecessary 
work to a minimum strategy, discussed earlier in Zodik and Zaslavsky (2008).     

Teachers (36 counts) also characterised those that “highlight the salient points” (EC) 
and enable one “to generalise ideas or rules” as good examples. Hence, good examples are 
transparent and promote generalisation (Zaslavsky & Lavie, 2005). Others (34 counts) see 
examples as a set of “varied examples” (VE) to provide “sufficient coverage”, to “link 
concepts together”, and to allow the “application of concepts across topics”.  

Another desirable attribute of an example is if it is “able to provoke thinking” and 
“arouse students’ interest” (TI). Of this type, 31 counts were identified and we can draw a 
parallel between TI and what Hiebert et al. (1996) meant by tasks that problematised the 
subject, so that they will “pique the interests of students and engage them in mathematics” 
(p. 18). Following next, is teachers’ preference (28 counts) for examples “related to 
everyday experiences of students” (FC) or “has real-life application”.  

Twenty teachers indicated that a good example “delivers the lesson objectives” (LO) 
and some felt that it should be “similar to the examination syllabus type of questions”. 
Fewer comments (16 counts) highlighted examples that “reinforce concepts or skills taught 
in class” (RL). 14 felt that good examples offer “opportunities to sieve out misconceptions 
in students” (CM) so as to attend to students’ errors (Zodik & Zaslavsky, 2008). There 
were only five comments on choosing examples that can “assess students’ understanding” 
(AU). 
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Connections to Teacher Knowledge 
The three questions discussed in this paper were not based on any specific 

mathematical content. However, another section of the questionnaire examined teachers’ 
mathematical knowledge. The data suggested that there were obvious connections between 
teachers’ PCK and their use of examples. When teachers present new content, KCS is 
exhibited in how they considered students’ prior knowledge (SA) and the difficulty level 
(DL) of the topic. As such the teachers try to choose examples that students can relate to 
(FC) and find interesting (TI) to make learning more manageable and meaningful for the 
students. Furthermore, knowledge of students’ conceptions and misconceptions (CM) 
means that teachers prefer examples “that should not be clouded by other concepts or 
difficult algebra manipulation” (CE) so as not to confuse their students (Ball et al., 2008). 
Each of the above-mentioned categories requires teachers’ knowledge of how students 
learn the mathematical content or KCS in short. 

Teachers’ example choice is influenced by their KCT too. They select examples that 
are able to exemplify the mathematical idea (EC) and also provide students with sufficient 
contact with the mathematical content through varied examples (VE). Teachers’ KCT 
guide them in the sequencing of homework tasks in “ascending difficulty” (SA) in order to 
scaffold students’ learning. In addition, teachers tend to pick those tasks that are able to 
reinforce what has been taught (RL) or by relating homework tasks to what have been 
covered in class (CM), in order to help students retain knowledge and gain fluency in their 
mathematical competency (Rowland, 2008). Furthermore, challenging tasks (DL) are also 
utilised to bring students deeper into the topic.  

Finally, teachers’ knowledge of the curriculum (KCC) sensitises them to those 
examples that are able to address and deliver learning objectives stipulated in the 
mathematics syllabus, as well as prepare students for assessment (LO) by making available 
to them examples that are similar to those tested in examinations. At the same time, 
teachers leverage on examples that “provide good feedback about students’ understanding” 
(AU) in order to improve students’ learning. 

Conclusion 
Teachers will continue to use examples in teaching their students, for whom examples 

may be a primary means for learning mathematical concepts. The use of certain examples 
for teaching a particular topic may not be universal, which implies that the survey of the 
teachers from Singapore who participated in this study may be very context-specific. It is 
important to be aware of the limitations in using questionnaire findings to study teachers’ 
pedagogical practices since what is written may not be used in actual lessons. 
Nevertheless, this study brings us some insights into the exemplification perceptions of 
experienced mathematics teachers in Singapore. Teachers are most concerned over 
students’ abilities and the difficulty level of examples when choosing examples. However, 
when selecting examples for different purposes, the considerations differ to some extent. 
For instance, when introducing new content, teachers favoured examples that connect with 
students’ experiences whereas for homework, they are more concerned with providing 
students with varied exposure.  

Finally this research reveals the potential direction for further research into the reasons 
teachers considered as critical factors in their choice of examples and points to a 
connection between teacher knowledge and beliefs about what constitutes effective 
teaching and learning of mathematics through the use of mathematical examples. 
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Growth mindsets are vital for effective lifelong learning. Students with growth mindsets are 
more willing to learn new things, take risks, and embrace challenges. Students with fixed 
mindsets have limiting beliefs about their abilities, and will attribute success in learning to 
factors beyond their control. Inquiry in mathematics classrooms may have the potential to 
facilitate growth mindsets. This paper provides an analysis of inquiry mathematics in a 
primary classroom and reflects upon its potential to foster growth mindsets in classrooms. 

What is the Problem? 
The Australian Academy of Science (AAS) has expressed concerns that “Australia 

with be unable to produce the next generation of students with an understanding of 
fundamental mathematical concepts, problem-solving abilities and training in modern 
developments to meet projected needs and remain globally competitive” (2006, p. 9). The 
AAS is not alone, the research-based Australian National Numeracy Review Report 
(National Numeracy Review Panel, 2008), which came about in response to a need for 
improving numeracy and mathematics learning within Australia, recommended that: 

From the earliest years, greater emphasis be given to providing students with frequent exposure to 
higher-level mathematical problems rather than routine procedural tasks, in contexts of relevance to 
them, with increased opportunities for students to discuss alternative solutions and explain their 
thinking (2008, p. xii). 

There is emerging evidence that innovative teaching approaches can significantly 
improve students’ attitudes and engagement in learning (O’Brien, under review). Within 
mathematics classrooms, inquiry pedagogies are linked to observable improvements in 
students’ levels of engagement, performance and interest in mathematics (e.g., Allmond & 
Huntly, 2013; Fielding-Wells & Makar, 2008). Building a classroom culture of thinking 
results in significant gains in improving student thinking and reasoning abilities (Ritchhart 
& Perkins, 2005); but doing so relies on the effective development of certain types of 
student dispositions–the propensity for open-mindedness, curiosity, attention to detail and 
evidence, imaginativeness, scepticism, and a high tolerance for ambiguity (Ritchhart, 2002; 
Ritchhart & Perkins, 2005). 

Dweck’s (2006) research on dispositions, or mindsets shows that students can hold  
beliefs about their personal qualities that reflect either a positive, flexible disposition 
towards learning and knowing (a growth mindset) or a limited, inflexible disposition 
towards learning and knowing (a fixed mindset). In this paper we present an analysis of a 
primary mathematics inquiry classroom to illustrate how the distinctive pedagogical 
practices of mathematical inquiry can foster growth mindsets in students.  
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Literature and Theoretical Framework 

Growth Mindsets 
Beliefs play an important role in learning (Hofer & Pintrich, 2012). Dweck’s (2006) 

recent research synthesises the complex but interrelated sets of beliefs about one’s personal 
qualities and abilities as mindsets–noting the distinction between having a fixed mindset 
and having a growth mindset. This work can be illustrated by the diagram in Figure 1. 

 
Figure 1. Fixed vs. growth mindsets (Press, 2014). 

Having a fixed view of one’s self means that you see personal qualities as stable and 
predetermined. In order to feel secure in a social context, students with fixed mindsets 
work hard to project a positive impression. They want to look smart, and they avoid 
challenges that can potentially reveal uncertainty or ignorance as they believe this to be 
unacceptable. They see any kind of feedback or guidance as a negative affirmation of their 
inabilities, and in turn, feel threatened by the success of others (they know, I don’t).  

In contrast a student with a growth mindset fundamentally believes that his or her 
personal qualities–intellectual ability, personality, character, preferences, and beliefs–are 
changeable and in a constant state of growth. As such, growth minded students are oriented 
to learning and feel less defensive in social settings. They embrace challenges and persist 
in the face of setbacks (a common occurrence in learning!). They value effort and see its 
contribution to mastery learning, easily learn from feedback or criticism, and are 
encouraged and inspired by the learning successes of others (if they can do it, so can I). In 
this way core beliefs about intellectual abilities and personal dispositions influence and 
shape the way students approach learning. 

Inquiry Pedagogy 
Cobb, Wood, and Yackel (1993) describe mathematical inquiry as an apprenticeship 

where ways of thinking are developed within classrooms. Students are supported to work 
with an ambiguous, ill-structured problem (Makar, 2012); ill-structured problems being 
those that are ambiguous or have a number of open constraints such that they require 
negotiation (Reitman, 1965).  

In guided forms of inquiry, “The teacher provides the students with the problems or 
questions and the necessary materials. The students have to find the appropriate problem-
solving strategies and methods.” (Bruder & Prescott, 2013, p. 812). Throughout the 
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process of solving an inquiry problem, students are scaffolded and challenged by the 
teacher to plan for, identify, and provide mathematical evidence. The need for negotiation, 
decision-making, reasoning, and collaboration is somewhat different from usual practices 
in school mathematics that centre on clarity, structure, and lack of ambiguity (Baber, 
2011). Working with ambiguity and open-endedness requires flexibility and a willingness 
to not know yet; to see learning as an opportunity to build new knowledge and new ways of 
thinking, and to be prepared to take risks and work collaboratively on the creation and 
testing of ideas and solutions.  

For those students who already have a growth mindset, inquiry potentially provides an 
engaging learning experience that offers a degree of openness, challenge, and autonomy. 
Provided there is appropriate scaffolding and support for skill development and the 
reinforcement of related dispositions (such as evidence-based reasoning, mastery learning, 
and resilience in the face of challenge), inquiry learning may further enhance and promote 
a growth mindset. It is an opportunity to learn to work confidently with the unknown, to 
learn how to learn from and with others; to take risks, explore ideas, to reflect on one’s 
own learning process, and to question taken-for-granted assumptions and ideas. In this 
paper we identify pedagogical practices that, while inherent within inquiry pedagogies, can 
promote and scaffold a growth mindset within inquiry mathematics classrooms.  

Methodology 
This paper draws on classroom video data from the first year of a larger collaborative 

project between the authors that is investigating potential links between positive learner 
identity and mathematical inquiry (O’Brien, Makar, & Fielding-Wells, 2013; 2014). In the 
first stage of the project, the aim was for the researchers to learn to recognise 
characteristics of positive learning identity that occurred in mathematical inquiry lessons. 
Positive mindset is part of the first pillar of positive learning identity and among the first 
aspects of positive learning identity we are analysing in depth. This paper presents a case 
study from one of the classrooms in the project.  

Study Context, Participants and Data Collection 
For this paper, we focused on video data from a lesson in a Year 5 classroom in a 

suburban, middle class primary school in Queensland. The lesson took place 9 months into 
the first year of the project from a classroom with an experienced inquiry teacher and 27 
students (aged 9-10 years old). The class was working on the inquiry question, “What is 
the best one litre container I can build with one face that is 125cm2?” This was the third 
inquiry unit the students had completed in the year so they had by this time developed a 
classroom environment that supported mathematical inquiry. We selected this lesson 
because it was one in which the class was at a point in their inquiry in which they were 
stuck and the teacher had taken the opportunity to stop the class and discuss the issues they 
were having. We recognised that being stuck was a productive context in which to observe 
characteristics of positive mindset (Dweck, 2006). 

Data Analysis 
The video data went through a process of analysis adapted from Powell, Francisco, and 

Maher (2003) who describe seven stages: intent viewing, describing the video data, 
identifying critical events, transcribing, coding, constructing a storyline, and composing 
narrative. A log was created from the video to provide time stamps, screen shots, and brief 
excerpts to provide a running summary of the lesson (intent viewing; describing the video 
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data). Using the video log, the researchers re-watched segments to identify those that were 
potentially useful to characterise positive mindset (identifying critical events) and 
discussed the potential narratives within these critical events as explained by Powell and 
his colleagues, recognising how narrative and critical events “co-emerge” (p. 417). The 
critical events were transcribed and annotated (transcribing; coding) with characteristics of 
positive mindset (Figure 1). The researchers discussed the insights provided by the coded 
critical events and chose a small number of excerpts which would coherently and 
succinctly illustrate links between mathematical inquiry and the key characteristics of 
positive mindset (constructing a storyline). Finally, these insights were composed as the 
narrative written in the paper (composing narrative). 

Results 
This learning episode has been selected from a sequence of lessons in which the 

teacher had implemented a unit of inquiry in her mathematics classroom. In our analysis, 
we identify the opportunities in the lesson that reinforced the need for a growth mindset in 
learning, in particular with reference to the need to: 

• embrace challenges 
• persist in the face of setbacks 
• see effort as the path to mastery 
• learn from criticism 
• find lessons and inspiration in the success/learning of others. 

Embrace Challenges, Persist in the Face of Setbacks, See Effort as the Path to Mastery 
Facing ambiguity and doubt can be a challenging experience, and one that students 

might initially be inclined to shy away from. However in inquiry pedagogy, the challenge 
that ambiguity presents is actively embraced and reinforced as highly valuable in order to 
deepen mathematical understanding and decision-making. In this particular episode, the 
students faced the challenge of devising a one litre container and realised they were yet to 
learn specific mathematical concepts that might help them when one group’s container 
required finding the volume of a cylinder.  

In the excerpt below, one of the students had researched the formula for calculating the 
volume of a cylinder; however Ms Thomson, the teacher, wanted the students to develop 
conceptual understanding of volume rather than move to a formula so quickly. The teacher 
reassured them that while that may be a challenge, they have much they already know that 
they can draw on to respond to that challenge, and in doing so, reinforced that challenge is 
an expected feature of learning. 

Noah: Actually I have an answer for Isabelle and whoever said you can’t measure a 
circle. We in my group we found it easy to make this circle. What we did is 
we umm we got the diameter and then we halved the diameter which is the 
radius … We put the scratchy bit (referring to the point of a compass) at the 
end and we twirled it all the way around and then we cut this scratch and it 
made this thing here. And, to measure a circle you actually need to halve the 
diameter which is from this side to this side 

Student:  Radius times the pi? 
Noah:   Radius times radius times pi. 
Ms Thomson: OK, now that is a formula that you will learn later on for measuring the area 

of a circle … If you don’t know any formulas, how do you measure the area 
of the base of that cylinder? … How could you do it? Think of all your years 
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of schooling and what you’ve done in the past how could you measure it? 
What could you do? Benjamin? 

Benjamin: I’m confused. 
Ms Thomson ... [to the class] Think outside the box, [if you] don’t use the mathematical 

formulas. … 
Student:  Circles aren’t square centimetres…. 
Students: (several students in unison) You can— (long pause) 
Ms Thomson: At least you are thinking. How can you use square centimetres to measure, or 

how could you measure area of the base when it’s a circle? What would you 
do, Alkina? 

Alkina:  I don’t know how to measure [a circle]. 
Ms Thomson: [to the class] No idea? Oh, come on, think, think … If I gave it to a five year 

old and said ‘How many square centimetres do you think are on the bottom of 
this?’ What would they do? ... 

Arnav: They’d get blocks like this so you could put it on the bottom and then trace it 
around and whatever is left you could estimate how much of the block is, how 
many blocks are left that it hasn’t covered and then you’d probably get a close 
answer. 

Ms Thomson:  You would! You’d get a pretty close answer. Do you understand what he’s 
talking about? What else could you do? 

You can see in this exchange that the teacher did not give the students an answer, or a 
way forward, but rather continued to probe and question until the students suggested a 
solution. The students therefore experience that they can find the answers within 
themselves if they persist: that challenge is an opportunity to think about something more 
deeply rather than a stopping point, which links closely to Dweck’s (2006) third point: 
effort as the pathway to mastery.  

Learn from Criticism 
As this same episode continued, the teacher asked students to explore various options 

for responding to the task, and where necessary she acknowledged how difficult it was, but 
affirmed that such difficulty is to be expected. By doing so, she modelled to the entire class 
that their approach or preliminary solutions may be incorrect or not working, but that is to 
be expected; and that feedback and critique on that approach is a valuable part of the 
learning experience, on the path to mastery. As the teacher continued to question each 
group and specific students about where they were up to and how they were approaching 
the problem, she provided feedback and facilitated critique from herself and other students 
on their progress thus far: 

Chloe:  … if you keep that one the same then make that the height we need it be to 
equal a litre, um, then we need to keep this one the same as well. 

Ms Thomson: Why? 
Chloe:  Because if you change that [side], it would kind of be like the sides would 

curve instead of being straight and that’s not really what we want, so [pause]. 
You could kind of, I think you could do that. [pause] Well, it’s going to be 
open because the base like, the other side of it needs to be open. 

Ms Thomson: OK. Isla? 
Isla: Well, if we make it higher, then the base will have to change and that might 

not equal a litre. 
Ms Thomson: Why? Sorry what did you say? 
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Isla: If they make like them higher to 8cm, they’ve got to change the size of their 
base so it fits. 

Alkina: No, ‘cause that’s going to be the base so if you just make it higher it won’t 
change the base. We’re just making these higher. It won’t change the base. 

Isla:  OK. 
Zhang:  You just have to change these sides. 
Ms Thomson: What did you say Zhang? 
Zhang: I reckon that’d work, I think if you just make it like 3 cm higher, all the other 

sides, um, then that would be 8 [cm] and then it would work. 
[The group of girls are talking quietly about what they need to do.] 

Ms Thomson: So do you guys know where you are going with that? 
Chloe: Now we do because we didn’t, we thought we knew before Josh’s group did 

their’s because they were doing the same thing that we are doing. But then we 
realised it wasn’t going to work, so yeah. 

Ms Thomson: … Have you got anything to add to that, Alkina? 
Alkina:  No 
Ms Thomson: Harrison. Harrison, your turn to share what you’ve found so far. 

In this episode, the students illustrate their willingness to rely on one another to 
challenge and develop each other’s thinking. The critique from peers became a resource for 
learning rather than an indication that they were performing poorly. This suggests that the 
students in this class were building positive mindsets through their collaborative wrestling 
and critique of each other’s thinking. 

Find Lessons and Inspiration in the Success or Learning of Others 
In this last extract from the final stages of the episode, the teacher asked students who 

had worked out a satisfactory solution to explain what they found and how, providing 
evidence for their claims. In doing so, she purposefully brought in the experiences of other 
students into the lesson as a shared experience of learning–an opportunity for students to 
learn from (and appreciate) the success of others as an inspiration for their own learning 
process and experience: 

Ms Thomson: So when you said your container, you don’t know how high it is and you 
didn’t know how high to make it … But do you understand why you have to 
make it that high? 

Alexander: Because that equals a litre. 
Ms Thomson: Why? … 
Alexander: 125 x 8 = 1000 
Ms Thomson: 1000 what? 
Alexander: Cubic centimetres. 
Ms Thomson: Harrison? 
Harrison: What we could do is we could make it 8cm high with a base of 125 square 

centimetres and that will be 1 litre . … 
Ms Thomson:  Why? [pause] Benjamin? 
Benjamin: Because 125 centimetres x 8 = 1000 
Alexander:  1000 cubic centimetres and that’s what we need to make it equal a litre. 
Students: Why? (several students, anticipating the teacher’s next question) 
Ms Thomson: … You made the container and then what did you do? 
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Zhang:   And then we— 
Max:   Tested it. 
Zhang:  Then we tested it. 
Ms Thomson: How? … 
Max:  Well we had a cup equalled 500 ml or approximately it said apparently 

according to someone and we put some sand in it to fill the 500ml mark and 
poured that in twice. 

Ms Thomson: Anybody going to add, anyone going to say something? They tested it; does 
anyone want to say anything? … No one? … 

Lucy:  Well we did the same way of testing except we did it like 5 times, to make 
sure it was perfect. 

Hearing about the solution pathways that other students in the class had developed was 
an important learning opportunity for all students. They were exposed to a variety of 
approaches to the problem and a set of strategies for finding a solution that they might not 
have considered themselves. By making these explicit, the teacher actively encouraged all 
students to consider adopting these strategies in the next stage of the learning task. She also 
reinforced the value of learning from what others had done–whether ineffectively or 
successfully–as a valid part of the learning experience. The teacher was quite deliberate 
about paraphrasing the puzzling out that has occurred with some groups (e.g., the opening 
sentence in this extract). In doing so, she invited all of the other students to participate in 
the unpacking and development of the possible solution pathways. Even students who had 
reached an impasse could reconnect with, and contribute to the dialogic exploration of the 
solution. Lastly, exploring the various approaches taken by different groups explicitly 
valued both the successes and failures (however temporary) of the class. While the inquiry 
offered the teacher an opportunity to scaffold learning and direct thinking and reasoning, 
her role was primarily to bring all learning experiences into view and to highlight and 
value each for their contribution to the learning of the class as a whole. 

Discussion 
Engaging effectively in learning and in life requires flexibility, determination, 

resilience, and a host of high-level intellectual capabilities (Dweck, 2006). While 
mathematics classrooms can provide comprehensive opportunities to develop mathematical 
knowledge and concepts, a more deliberate pedagogical approach is required if we are to 
foster the kinds of dispositions that accompany significant gains in student thinking and 
reasoning (Ritchhart & Perkins, 2006), and mathematical capabilities (NNRP, 2008).  

In this analysis we identified specific pedagogical practices that foster and reinforce a 
growth mindset amongst students. In general, mathematical inquiry pedagogies elicit (and 
require) the kinds of open-mindedness and willing flexibility that is the hallmark of the 
growth mindset. However a key feature of inquiry is the time, encouragement, and 
scaffolding of students’ exploration of solutions in a shared, collegial way. Where there is 
an open-ended solutions pathway, there is the possibility of running into dead-ends, of 
becoming lost, and of encountering difficulties and disagreements. Such setbacks, and the 
effort we must exert to navigate them, are all part of engaging positively in a field that we 
eventually master. The teachers’ role in inquiry is to monitor the momentum of the inquiry 
carefully, to look for opportunities to redirect, to gently guide and to offer hints, clues or 
support (both intellectual and psychological) to students, and to generally inject needed 
momentum along the way. By doing so, the teacher reinforces a range of dispositions and 
personal qualities that are characteristic of growth mindsets. This paper has outlined how 
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the pedagogy of inquiry within mathematics classrooms can enable the teacher to model 
and scaffold–and the students to experience first-hand–what it means to embrace 
challenges, persist, mobilise effort in the pursuit of mastery, learn from criticism, and find 
lessons in the learning and successes of others. In doing so, the features of a growth 
mindset are integrated into the students’ experiences of mathematical thinking and 
reasoning. 
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Challenging the Mindset of Sammy: A Case Study of a Grade 3 
Mathematically Highly Capable Student 

Linda Parish 
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This case study narrative reports on the journey of *Sammy as her mindset as a learner of 
mathematics is challenged. Often students who are mathematically highly capable are 
viewed as being privileged, they are rarely placed with the cohort of struggling students. 
Children like Sammy who are mathematically highly capable or gifted, however, are simply 
students who learn differently and therefore require a different type of teacher support. 
[*Sammy is a pseudonym]. 

I think the problem is that she is really good at everything, and she's always been good at 
everything, and she doesn't know how to fail. It freaks her out completely, and she won't even get 
close to it because at the first little thought that something's going to go wrong she'll just shut down. 
(Sammy’s teacher) 
Generally students who are considered mathematically gifted or highly capable are not 

perceived as being classroom strugglers. Students categorised as ‘vulnerable’ or ‘at risk’ 
are most likely to be those who are not achieving minimum standards, those who require 
intervention or specialist assistance to help them ‘catch up’ to their peers in order to be 
able to participate successfully in the regular classroom (Gervasoni, et al. 2013). This 
study, however, considers the reality that there are students who, even though they may be 
highly capable mathematically, may in fact be vulnerable in terms of realising their true 
capabilities within the classroom. Indeed, it may be because of their unusually high natural 
aptitudes for understanding mathematical concepts that they develop a skewed view of 
what the process of learning entails, which in turn may stifle further learning opportunities. 

Sammy is a case in point. Sammy, an eight-year-old, Grade 3 student, was a participant 
in a research project, ‘Supporting the learning of students who are mathematically highly 
capable or gifted’. She proved to be a girl with issues in terms of perception of herself as a 
learner, which was curtailing her ongoing learning potential. This paper is her story: a story 
of how Sammy began to transform, through targeted teacher intervention, her self-limiting 
mindset to a much more confident and positive mindset. 

Context 
Classroom teachers have the responsibility to understand and cater for the learning 

needs of all students in their classes. This is essential for students who are mathematically 
gifted even though, or maybe because, these students are already successful in 
mathematics.  

 During the past decade there has been educational research focusing on identification 
of mathematical giftedness (e.g., Bicknell, 2009), on understanding mathematically highly 
capable students and how they learn (e.g., Leder, 2008), on providing suitable programs for 
them (e.g., Chesserman, 2010) and best approaches for teaching them, for example, 
differentiation (Kronburg & Plunkett, 2008), and acceleration (Hannah, James, Montelle & 
Noakes, 2011). However, the discourse about why it is necessary to consider the specific 
needs of mathematically highly capable or gifted learners has historically been based 
around benefits to society and our “globally competitive economy” (Office of the Chief 
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Scientist, 2014), with provision for the gifted even being described as “human capital 
development” (Ibata-Arens, 2012, p. 3). Thankfully this is beginning to change. In the 
latest Victorian Government Department of Education’s Strategy for gifted and talented 
children and young people, the benefits to the individual are highlighted first “The chance 
to realise their potential, pursue a passion and develop a love of learning…” precedes the 
more common general benefits to society, “…gifted and talented children and young 
people are the potential leaders of tomorrow” (DEECD, 2014, p. 5).  

Developing a ‘love of learning’ is a necessary element of 21st Century education. In an 
ever-changing technological era where types of jobs for future school leavers is highly 
unpredictable (Robinson, 2006), students need to learn how to continue to learn beyond the 
classroom. Unfortunately classroom environments can actually paint a skewed picture of 
what successful learning is, and what it feels like. Without providing students with work 
that requires perseverance and sustained personal effort we run the risk of turning naturally 
successful learners into students who are intimidated and fearful of effort and initial 
difficulty (Williams, 2014). Children who are mathematically gifted or naturally highly 
capable may have attracted many positive comments from a very early age from parents, 
friends of parents, pre-school teachers, even complete strangers. It is normal for many 
adults in western cultures to recognise and want to praise children’s mathematical abilities 
(Bishop, 2002). The problem that may develop, however, is that without praise directed at 
effort and perseverance exhibited in performing a task, and often children who are highly 
capable mathematically do not need to apply much effort or perseverance in early 
mathematics tasks, we may be inadvertently nurturing a self-limiting mindset: a mindset 
that leads to children avoiding failure at all costs, which may mean avoiding suitably 
challenging tasks, or the opportunity of learning something new (Dweck, 2006). The 
development of a self-limiting mindset in students who are mathematically highly capable 
or gifted could have severe consequences. 

In this study, I was testing three conjectures about mathematically gifted students: (1) 
Mathematically gifted students who are not challenged sufficiently develop a limited view 
of the process of successful mathematics learning, which results in a self-limiting mindset, 
but this mindset can be changed; (2) Mathematically gifted students who possess a self-
limiting mindset will require teacher support when approaching challenging tasks so as not 
to feel overwhelmed and/or distressed; and (3) With a positive mindset about themselves 
as learners, mathematically gifted students can be taught, or may only need to be given 
permission, to challenge themselves, by being creative, delving deeper, and exploring 
further their own curiosities. Sammy’s story describes an initial analysis of my findings. 

Sammy’s Story  
Sammy was identified as mathematically highly capable through a multi-faceted 

process: teacher nomination; independent analysis of previous mathematics assessments 
and work samples; a parent questionnaire asking about her prior-to-school mathematical 
aptitude; individual semi-structured interviews carried out with both Sammy and her 
teacher; and a one-to-one task-based mathematics interview, assessing her ability to 
perform novel and creative tasks (as opposed to assessing previously learned mathematics 
content). It is important to note that my research was not aiming to identify all 
mathematically gifted or highly capable students, only to identify a small number of 
students to follow in a case study.  

I observed Sammy in four mathematics lessons in a one week period as a participant 
observer – asking her questions, suggesting further challenges, and providing support if 
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necessary. This was followed by collaborative discussion with her classroom teacher, 
exploring suggestions for supporting Sammy’s ongoing mathematics learning (see below). 
These suggestions were then implemented by the teacher within regular mathematics 
lessons over the following twelve weeks. Further classroom observations followed – three 
mathematics lessons in a one week period – with me as a participant observer. I then re-
interviewed both Sammy and her teacher, and conducted a second one-to-one task-based 
mathematics interview with Sammy.  

All interviews and in-class conversations were audio-taped and transcribed. Classroom 
observations were journalled, and student work samples were collected and/or 
photographed. This formed the data for a priori analysis. 

Data analysis was based on the observation of classroom involvement and participants’ 
perspectives, establishing themes for description, reflection and interpretation (Creswell, 
2013). It consisted of making a detailed description of the case – supporting mathematical 
giftedness – and its context – within the mathematics classroom (Hébert & Beardsley, 
2001). The study assumes a social constructivist framework which places emphasis on the 
role of others in the learning process, including an actively involved teacher and the shared 
experience of other children.  

Sammy Before  
In the initial one-to-one assessment interview Sammy presented as a bright, friendly, 

very self-assured girl. She answered questions quickly and confidently, even when she was 
incorrect she was very quick and confident with her answer. I was initially unsure just how 
outstanding her natural ability was, but in hindsight, it’s possible she was ‘playing it safe’ 
with many of her responses, and answering quickly rather than being seen to be having to 
put in any effort. 

When I asked her “How do you know someone is good at maths?” her reply was, 
“[They] always finish their work in time. They’re always going 'done', and always get the 
right answer…” (Sammy, May 2014) 

My first observation of Sammy in a maths lesson in her regular classroom was in mid-
June. The lesson was about arrays (visualising multiplication), and the focus of the lesson 
was ‘writing number sentences to describe arrays’. The introductory session covered what 
an array is [arranging dots/counters in equal rows and columns], and the class was then 
sent off to explore various quantities (12, 15, 18, etc.), using counters to make arrays, and 
writing number sentences to describe the different arrays they could make with each of 
these quantities. Sammy set to work quickly and quietly by writing down a list of number 
sentences – 12x1, 1x12, 3x4, 4x3, 2x6, 6x2 – and then dutifully drawing the arrays next to 
each equation. She was going through the motions, reproducing work she could already do 
quite confidently. And she was happy.  

I decided to intervene to show her some other possibilities she could explore. I 
explained that I could see another number sentence that could be written for an array of 12 
she had drawn (Figure 1): I could see three rows of three on the top and another row of 
three along the bottom – 3x3+3 (Figure 2). She immediately saw two rows of three plus 
another two rows of three – 2x3+2x3 (Figure 3), so I left her to see what else she could 
discover within some of the other arrays she had drawn. As I walked away I heard her 
exclaim to others at her table, “This is so cool!”, and she eagerly set to work. 

479



                            
                        Figure 1.           Figure 2.           Figure 3.               Figure 4.             Figure 5. 
                         12=4x3           12=3x3+3        12= 2x3+2x3         18=3x5+3          15=3x3+3+3 

When the teacher called the class back to the mat, Sammy was very eager to share what 
she had discovered about ‘array busting’, but what she chose to share was that she was able 
to write 18 as a number sentence: 3x5+3. Unfortunately, although the number sentence was 
correct, and what she drew certainly represented the equation (Figure 4), she had lost sight 
of the array focus. The dilemma was that the rest of the class was looking puzzled at her 
non-array representation, and some began to question it. To overcome the awkwardness of 
the situation I got Sammy to compare her drawing with a 15 array that was already drawn 
on the board and asked her to ‘bust’ the 15 array in the way she was trying to describe. She 
was a little flustered initially, but ended up with 15=3x3+3+3 (Figure 5). 

It wasn’t until the teacher directed the class to the follow-up activity, and the students 
dispersed from the mat, that I realized that Sammy was sobbing! Initially she couldn’t 
explain what was wrong because she was sobbing so hard, but eventually pointed to the 18 
‘array’ on the board and choked out, “I can’t do it!” After some reassurance she eventually 
settled back to work, but reverted to writing and drawing basic number sentences for her 
arrays (16=4x4, 2x8, 8x2 etc.), and remained miserable for the rest of the lesson. 

Sammy had been fascinated and excited about the possibilities of more complex array 
partitioning, but when the class discussion led her to believe she was wrong, she became 
highly distressed, and subsequent learning opportunities in that lesson were completely 
stifled.  

From the interview with Sammy’s teacher it seems that this kind of reaction, while not 
an everyday occurrence, was not uncommon (I witnessed it twice in the seven lessons I 
observed), and it was the sort of thing that Sammy dwelled on…  

I said, "Why don't you try something else with that and doing the ‘explore more challenging 
things’”, and she's like, "No, I think I'm ok with this." And she brought up that lesson [the arrays 
lesson], like from however long ago it was, and I was actually really surprised. But she had brought 
it up a few times since then, like I've heard about it a few times ... (Sammy’s teacher, July 2014) 

Sammy also tended to be very self-critical. ‘I’m no good at maths’ was a regular 
utterance when she was asked a question she didn’t know the answer to immediately. 
Within the first 30 minutes of a lesson on ‘How many designs can you make that are 1/4 
yellow and 3/4 red?’ she had uttered, "Let's do the easy ones first", “Oh my gosh, you guys 
are fast! How do you do it [come up with design ideas] so fast?" “I’m not very good at 
this”, “I’m not good at maths”, “But it’s too hard”, and “I can’t do this”, all the while 
successfully working on not only coming up with creative designs but also exploring and 
understanding non-contiguous three-quarters designs, and non-uniform parts (see Figure 
6). This, however, was new territory for her that required some thinking and she constantly 
wanted to go back to ‘the easy ones’. 
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Figure 6. Sammy’s ¼ yellow ¾ red designs 

Sammy was undoubtedly highly capable mathematically. She learnt new concepts 
quickly, she was readily able to transfer new knowledge to novel situations, she was able 
to reason abstractly, and she was able to explain her reasoning to others (cf. Krutetskii, 
1976). However, she seemed to have issues with having to put in effort, with not knowing 
the answer straight away, with having to think hard about a problem. These things, to her, 
seemed to be an indication that she was ‘no good at maths’. The challenge with students 
like Sammy is not just in providing them sufficiently challenging work. Students like 
Sammy also need to be sensitively supported through these often foreign feelings of 
floundering, of cognitive conflict, that are, in fact, a necessary part of higher level learning 
(Roche, Clarke, Sullivan & Cheeseman, 2013). To us Sammy’s responses of devastation 
and uncontrollable sobbing may seem extreme, but it is not uncommon for highly capable 
or gifted students to exhibit intense emotional sensitivity (Dabrowski & Piechowski, 
1977), where every little setback is felt as earthshattering. These feelings are very real and 
these children need to be given strategies to help cope with their intense emotions. 

The Intervening Period 
The next stage in the study was to meet with Sammy’s teacher and discuss together 

ways she could provide sufficiently challenging tasks for Sammy, and how to support her 
in this. Most of the suggestions discussed were useful and effective strategies for all 
students in the class. The following list was agreed upon: 

• Establish a classroom understanding that learning requires effort and hard thinking, 
and that is what is expected in a mathematics class. Hard thinking is a good thing, 
not a sign that you are not good at maths.  

• Establish that when I (the teacher) ask a question, I am posing a problem I want you 
to think about. I don’t want a quick answer (I am not testing you). What I require is 
a well thought out explanation, the answer is the by-product of this. 

• Model that there is always more you can explore. Teach them how to think deeper 
(if necessary); there is a skill in learning how to learn. Generate a classroom 
environment that values creativity. Encourage students (especially the highly 
capable students) to run with their own ideas. Constantly ask questions like “How 
are you challenging yourself?”, “What’s next?”, “How can you be creative with 
this?” The aim is for these questions to become part of a student’s own self-talk.  

• Give them permission and time to explore and investigate further – to follow their 
own curiosities. 
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• Be aware of, and challenge self-limiting mindset statements such as “I’m no good 
at maths”, or “This is too hard”, as well as statements like, “This is easy!”, or “I’m 
bored”, or “I’m finished!”  

Sammy’s teacher was already putting into practice task differentiation for varying abilities 
within her class. However, putting the onus of challenge, in part, onto the student who is 
mathematically highly capable allows for even further meaningful differentiation. 
Sometimes what we, as teachers, think will be challenging turns out to be either too easy, 
or just way too hard. Sometimes, something we think will be too easy turns out to be quite 
challenging due to misconceptions or gaps in their learning. It also avoids the tragedy of 
statements like, “At University they get you to actually learn things yourself, instead of 
school where they tell you everything and get you to do it a certain way…" by Jacob 
Bradd, on acceleration to university at age 14 (McNeilage, 2014, para 18). Or the advice to 
parents to allow their children ‘mental health days’, “…days on which gifted kids are given 
an opportunity to [stay home] to learn more. They don’t have to sit in a room waiting for 
the other kids to catch up. They can unfurl their wings and fly” (Bainbridge, n.d., para 8). 

Sammy After 
In the follow-up classroom observations with Sammy three months later, I witnessed a 

child who was more willing to take risks. She still became excited and animated when 
faced with new ideas to explore, but was now much more willing to stop and think through 
things that didn’t initially make sense. This allowed her to learn even more. Her teacher 
had also noticed this: 

… there was another time when she could have absolutely lost it – they were talking about 
recording the area of a certain object, so imagine they measured this bench and they recorded that it 
took 50 large playing cards. James, the pre-service teacher, was writing '50' and then 'large cards' 
next to it, and she [Sammy] is like, "and you should put like a little square on the top of it, it's a 
number 2 and it means squared," because she was trying to tell him about squared centimetres. And 
he was like, "but is this playing card square?" And she's like, “Well no ..." and then she made the 
connection that "Oh, it's actually centimetres squared because they are squares!", and that was the 
whole reason behind it. But usually she would just freak out because he said, "but that's not a 
square". (Sammy’s teacher in post interview, October 2014) 

In this lesson, when the teacher questioned Sammy’s suggestion of putting ‘a little square 
on the top of it’, she stopped and reflected and was able to identify a critical concept about 
area measurement, that the unit of measure for measuring area is an actual square. This 
was in complete contrast to the previous lesson I had observed with arrays where she had 
an emotional meltdown because she thought she was wrong in front of the whole class. 

The other very notable change in Sammy was her lack of negative comments such as 
‘I’m no good at maths’. Not once in the three follow-up lessons observed did she mention 
this. When asked about this in the post interview Sammy said that her teacher had been 
helping her learn how to not say things like that, that her teacher had drawn up a chart to 
help her change her mindset, and she drew an example of the chart for me:  

…like, 'I can't do it', and she has all negative stuff here [indicating the left side of the chart], and 
then she reversed them here into positives [indicating the right side of the chart] to something like, 
'I'll work hard to get the answer, but I might not be able to get it right just now'. (Sammy, November 
2014) 

When I asked if it was she was consciously choosing not to say ‘I’m not good at maths’, 
she stopped and thought and seemed quite surprised before exclaiming, “I don’t think it 
anymore…It’s just kind of worked like magic!” 
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When I asked her this time how she knew she was good at maths her response was, “I 
know I'm good at maths because I did that [pointing to a task she’d just persevered with for 
over 30 minutes] and I thought it was too hard but I did it!” (Sammy, November 2014) 

Discussion and Conclusion 
Sammy certainly appeared to have self-limiting beliefs about what it means to be ‘good 

at maths’. To be good at maths she believed she needed to be able to work quickly and get 
the answers right. When we began to challenge her, even though she initially enjoyed the 
challenge, if she couldn’t get it right straight away, or if she perceived she may have done 
something wrong, she immediately came to the conclusion that she wasn’t good at maths, 
and this was quite distressing for her. Her ‘safe’ responses in the initial one-to-one 
assessment interview may also have been an example of underachievement due to this 
misconception.  

The good news is that Sammy’s self-limiting mindset was turned into a more positive 
mindset in a reasonably short period of time. However, this was a scary and sometimes 
overwhelming venture for her that required intensive and sensitive support from her 
teacher who had to learn to understand where Sammy was coming from, and how to deal 
with her hyper-sensitivities. 

As far as encouraging Sammy to challenge herself by being creative, delving deeper 
and exploring further, there seems to have been quite a deal of ‘unlearning’ of what she 
believed was expected in the classroom. She has certainly come a long way in that she is 
now prepared to take risks and explore unknowns if suggested to her, which is a necessary 
first step, but she is yet to show any initiative in this.  

The data reported on in this paper suggest that challenging Sammy’s mindset about her 
beliefs about herself as a mathematics learner proved to be a challenging journey for both 
Sammy and her teacher. 

Probably one of the biggest things I've learnt this year is because she is really great at everything 
you wouldn't necessarily look at her and think "This kid's struggling" but she is probably struggling 
more than anyone in the class, but in a different way. She's been my biggest struggler this year. 
(Sammy’s teacher, October, 2014) 

There is much to learn and understand about students who are mathematically highly 
capable or gifted. Contrary to popular belief that they are a ‘privileged’ group who work 
easily without the need for help from the teacher, they are actually just children who learn 
differently and therefore may require a different type of teacher support. The classroom 
observations and follow-up interview demonstrated that Sammy’s mindset had changed to 
a much more positive one, but this only came about due to the diligence and perseverance 
of her teacher who was prepared to learn as much as she could about things like hyper-
sensitivities. As with so many things, prevention is better than a ‘cure’. If more teachers 
were aware of the impact of not catering for students who are mathematically highly 
capable or gifted, in terms of making sure they understand that hard work, effort and 
perseverance are a normal and expected part of learning, it is possible we may see less 
underachievement in this cohort of students, and may even pave the way for happier and 
more successful adults in the future. 

It wasn’t because Newton and Einstein were geniuses that they were successful, it’s because they 
made the transition from learning, to thinking, to creating. (Jacob Barnett, 2012, 14 year old 
astrophysicist) 
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This study investigates the potential of Facebook as a medium and process for teachers’ 

learning about mathematical and pedagogical knowledge. Participants’ (N=117) responses 
towards four inter-related posts regarding division-of-fractions were captured and 

systematically analysed to gain insight about the participants’ engagement. The results 

suggested the potential of Facebook to support informal teachers’ learning. This was 

evidenced by the existence of the three main elements of community of practice (CoP): 

mutual engagement; negotiated joint enterprise; and development of a shared repertoire. 

Until the education community comes up with a formal means of professional development that is 

free, user friendly, and timely, Facebook teacher groups and similar forms of social media should be 

seen as an effective supplement to traditional teacher professional development (Rutherford, 2010, 

p. 69). 

The citation above reflects the awareness of the educational potential of Facebook 

(FB). In fact, FB has become one of the most prominent social network sites, having 1.35 

billion monthly active users worldwide as of September 2014 (Facebook, 2015). 

Furthermore, FB has been an object of research since 2005, one year after FB was created. 

Four review papers by Hew (2011), Aydin (2012), Nadkarni and Hofmann (2012), and 

Manca and Ranieri (2013) together informed us of; the effects of FB usage, students’ 

attitude towards FB, educational aspects of FB, reasons for people using FB (e.g., FB as a 

part of a formal learning environment), and “the extent to which its pedagogical potential 

is actually translated into practice” (Manca & Ranieri, 2013, p. 487). Manca and Ranieri 

concluded “pedagogical affordances of FB have only been partially implemented and that 

there are still many obstacles that may prevent a full adoption of FB as a learning 

environment such as implicit institutional, teacher and student pedagogies, and cultural 

issues” (p. 487). These reviews suggest that studies on FB within the domain of 

mathematics education are sparse. Despite FB’s popularity, most FB studies (through 

surveys) have not explored its potential for teachers’ learning in mathematics or 

mathematics pedagogy.  

In addition, four main studies were found that specifically highlighted FB and teacher 

professional development (Bissessar, 2014; Goodyear, Casey, & Kirk, 2014; Ranieri, 

Manca, & Fini, 2012; Rutherford, 2010). All suggested that further exploration in this area 

was warranted. We found no studies that specifically focused on the use of FB and 

teachers’ mathematics learning. Therefore, there is a need to gain insight on teachers’ 

learning through FB by analysing data from their authentic conversations about 

mathematics or mathematics pedagogy. This study will provide additional understanding 

of the potential of FB as a space and process for teacher professional development on an 

informal basis. This is neither a survey-based research nor an experimental design. This 

was not designed as a formal professional learning site. The researcher was not a teacher 

trainer or part of the Government body. Rather the results of this study are from simply, a 

part of life activities where the researcher routinely shared ideas, opinions, photographs, 

and web links. Therefore, we argue that FB used in this study is considered an informal site 

for learning. This paper considered how the FB environment contributed to a sociocultural 
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approach to Indonesian teachers’ professional learning through the emergence of a 

community of practice (CoP) (Wenger, 1998). This study was guided by our research 

question: How does engagement within the FB environment build towards a community of 

practice for teachers’ learning? 

Theoretical Underpinnings 

This paper is underpinned by a sociocultural approach to learning through investigating 

the emergence of a community of practice (CoP) (Wenger, 1998) within the FB 

environment. Wenger, McDermott and Snyder (2002, p. 4) defined CoPs as “groups of 

people who share a concern, a set of problems, or a passion about a topic, and who deepen 

their knowledge and expertise in this area by interacting on an ongoing basis.” Within a 

CoP, members jointly develop and share practices, learn from their collaborations with 

group members, and have opportunities to develop personally, professionally, and/or 

intellectually (Wenger, 1998). Table 1 briefly describes the three defining characteristics of 

CoP.  

Table 1 

Description of the three defining elements of Wenger’s community of practice 

Element Description  

Mutual engagement How does it function: people are engaged in actions whose 

meanings they negotiate with one another, through diversity, 
relationships and opportunity? 

Joint enterprise What is it about: negotiated common interests and collective 

goals with mutual accountability? 

Shared repertoire What capability has it produced: communal resources (routines, 

tool, artifacts, discourse, styles, etc.) that members have 

developed? 

Note: Adapted from Wenger, 1998. 

The Context of the Study and Method 

Facebook has been heavily used in various communities in Indonesia. It falls within the 

top five countries for FB users, with over 64 million users who actively access their 

accounts monthly (The Jakarta Post, 2013). Although the exact number of teachers joining 

this network is unknown, the identification of over 100 FB groups, created for Indonesian 

educators with over 50,000 members, reflects teachers’ interest on FB. In addition, 

Indonesia is characterised by word-of-mouth communication or oral culture, and is one of 

the top users of mobile phones, through which FB can be accessed easily even for teachers 

in remote areas. It appears that teachers may find that FB is a quick solution for them to 

find the information they need, to report or to solve their problems, or to seek support 

within uncertain political situations and limited educational resources. 

The data presented in this paper are drawn from a larger virtual ethnographic study 

(Hine, 2000) on the use of FB for Indonesian mathematics teachers’ informal professional 

learning. This paper investigated 117 (F1-F117) Indonesian FB users’ engagement with 

four inter-related FB posts concerning division of a whole number by a fraction, a concept 

often taught using the rule “invert and multiply”. Of the participants, 70 were identified as 

teachers, 30 were not mentioned as teachers but their posts or profile reflected having 
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educational background or interest, and 17 with unknown educational background. Data 

were collected within a one-week period. Figure 1 illustrates the posts uploaded by the first 

author and shows a visual model for dividing a whole number by a fraction. The model has 

been drawn incorrectly in Post 1, with Post 2 showing the correct representation. Post 3 

shows 4÷2/3 and Post 4 links the model to the rule, with the author suggesting in the red 

cloud in the corner that students, if given the opportunity, will often find these rules and 

patterns on their own. 

 

 
Figure 1. The four images of the inter-related FB posts 

These four images were initially only posted on the first author’s own FB wall. 

However, she shared and others in turn shared these posts to not only their own walls, but 

various Indonesian education FB group walls also. This resulted in comments and likes on 

the author’s wall, as well as on other “outside” walls.  

Data Analysis 
A content analysis was utilised in order to identify themes of responses from the 

comments and shares and hence, the approach to coding the data was naturally grounded. 

All the responses (like, share, comments) were downloaded and imported into Microsoft 

Excel for descriptive statistics and NVivo where emerging themes were noted and the data 

coded. The coding system was continuously refined after recognising the similarities and 

differences since qualitative data analysis requires flexibility and open mindedness. Coding 

reliability measures (e.g., two coders independently coded the data) showed an initial 

agreement on 87% of the codes, with the remaining 13% agreed upon after discussion. 

Coding was simplified from 13 major codes to be only 6 main categories (see Table 2).  
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Table 2 

Coding of the six main categories of responses to the four inter-related posts 

Types Meaning/Indicators 
No. of 

comments 

Appreciation Comments were appreciative of the information. 56 

Opening 

opportunities 
for others 

Permission to share the posts; Used the facilities on FB to 

share to their own wall or to a group wall with or without 
description/message/comments; Inviting others to discuss. 

85 

Enriching the 

conversation 

Attempting to correct; Asking questions related to 

mathematical ideas, pedagogical, and mathematical 

pedagogical ideas; Answering questions; Clarifying 

ideas/additional explanations. 

70 

Direct impacts Changing opinion about mathematics; Increasing 

confidence; Applying the ideas in their teaching; 

Expecting more of these types of posts. 

15 

Misalignment 

with practice 

Not being critical of the posts per se, but being critical of 

the existing practices of teaching and of systems. 

9 

Other Comments/questions not related to the specific posts or 

private conversations. 

18 

Total 264 

Mutual Engagement 
Wenger (1998) suggested that certain contexts enable mutual engagement. Two main 

enabling factors were identified in this study: the tool (FB) and the participants. The 

affordances of FB itself enabled engagement, such as: the features of liking, sharing, 

commenting; through to the ability to upload images and video easily; and the user-

friendly navigation of the features. However, the participants themselves also enabled 

engagement: through joining FB; developing a profile; having the time to read, respond to 

posts and interact with other users; and through their own network of FB friends. These 

subtle and underlying affordances highlight the ease with which CoP can begin to develop.  

There was evidence of engagement from geographically diverse participants (89 people 

from 20 regions in Indonesia; 8 Indonesians in 6 other countries; 20 others with unknown 

locations). Table 2 shows that the four posts together gained traction in engagement in a 

one-week period, suggesting that this type of resource is useful to the Indonesian education 

community. The participants’ engagement was shared among one another, where even the 

smallest involvement contributed to the overall conversation. People’s involvement 

consisted of showing appreciation, or inviting others to join the conversation or to apply 

the ideas; while others contributed to enriching the mathematical and pedagogical 

discussion. Other people were directly impacted and attempted to implement the idea with 

students or children. Hence, a variety of different types of engagement were contributing to 

the discussion. 

Within the data, there was evidence of negotiated actions to develop meaning within 

the community. For example, the themes of enriching the conversation revolves around 

attempting to correct mistakes; asking questions or prompts of both the posts and of the 

conversation; answering questions posed by others; and clarifying understanding and 
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thinking. Interestingly, the first post accidentally contained an incorrect representation, 

where the first author intended to model 4÷1/2 using 4 boxes, but only drew 2 boxes. As a 

result, the comments suggested: “It seems two boxes missing because the result should be 

8.” Another suggested: “Maybe, [author’s name] meant to write 2÷1/2 because there are 

two boxes.” Some people informed other people that this was actually the incorrect 

representation and gave links to the second post, which had the correct representation.  

The following examples illustrate the mutual engagement and highlights that responses 

were thoughtful and enriching. 

Thank you very much for your explanation. It is very important to teach children about concepts. If 

they already understand, what is next? For example for 4÷2/3, how many 2/3 are there. And they 

found 6 2/3 [there were 6 two thirds]. Now, Can we then direct them to 4×3/2? [Post 2-IN; F102] 

Can the method be applied to large numbers such as 5÷12/13? [Post 4-OUT; F107] 

The teachers asked questions and contributed ideas such as in relation to the 

representation and explanation of 4÷1/2 = 8 and 4÷8 = 1/2 as presented below. 

Can you please show this with pictures, the difference between 4÷1/2 = 8 and 4÷8 = 1/2. [Post 4-

OUT; F89] 

Some of the questions asked in the discussion were explicitly answered. The transcript 

below highlights the interactive nature of the discussion: 

Question: May I share this Mam? The explanation is very clear. But how should I explain 4÷1/4 = 

4×4/1? [Post 2-IN; F102] 

Answer: F102, it would be better if the children can find the patterns themselves. Because we give 

them many rules without meaning, any child can be wrong in remembering the rules. Through many 
examples and having mental images as the models above, the child can understand why an integer 

divided by a fraction gives a greater result. In the picture the child can see the number of ¼ box is 

4×4 = 4 + 4 + 4 + 4. [Post 2-IN; F93] 

The notion of mutual engagement as defined by Wenger is shaped here by the people 

themselves and the affordances of the FB environment. There is a dynamic interaction in 

this community, and it involved people from very different contexts and with different 

expertise. This virtual community evolved naturally over a short period of time and with 

further stimulation, has potential for greater impact. 

Joint Enterprise 
The joint enterprise is the common focus of the community. The initial enterprise 

proposed by the author was an approach to help children understand fractions without 

forcing them to use a rule that may not make sense. It shows the connection between the 

idea of dividing a whole number by a whole number, “how many [divisor] within 

[dividend]?” and dividing a whole number by a fraction. For example 4÷2 means “how 

many twos in the four?” Similarly 4÷1/2 means “how many halves are there in a four?” 

This differs from the general accepted notion of “dividing means equal distribution”, 

namely “share the four equally to two people, and how many does each person get?”  

The four inter-related posts became a joint object of conversations about mathematics 

and teachers’ own pedagogical practice and their own mathematics understanding in an 

informal and less confronting space. 70 comments were coded under the enriching the 

conversation category with many of these comments related to mathematical ideas, 

pedagogical, and mathematical pedagogical ideas. These became the joint enterprise 

through which the participants engaged with these ideas.  
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For example, with regard to mathematical knowledge, participant F105, wrote the 

following thought-provoking post. The question posed by this participant was outside of 

the examples given in the four posts, which indicated that this person had thought about the 

model and tried to apply it to their own example: 

This is very inspiring……... By the way, I tried to solve 4÷3/4. [using the model method] and I 

found  5+1/4. But when I solved it using the instant method 4÷3/4 = 4×4/3, the result was 5+1/3. 

Please give advice on this. [Post 4-IN; F105] 

To demonstrate that the enterprise was jointly constructed, F2 responded: 

F105, if you use the method of dividing the 4 bars with 3/4, the results are the same. If you do, you 

will be able to find 5 with the rest of the log would be a quarter. But the quarter itself is a third of 
three quarters. So the answer is still 5+1/3. [Post 4-IN; F2] 

This illustrates how the mathematical idea of dividing by fractions can be challenging 

and not always as simple as the examples in the four posts. This conversation above shows 

how a deeper understanding of mathematical knowledge is often needed to solve similar 

problems. As mentioned in F2’s response, there is a need to understand that the remaining 

part is 1/4 of the original whole, yet only 1/3 of the new unit (3/4). 

Some comments were quite general and therefore they were categorised as general 

pedagogy, that is, general ideas about teaching and learning. For example: 

Concepts should be learned by learners before introducing them the procedure or technique to make 

the learning process as meaningful as possible. [Post 4-IN; F43] 

Come on lovely teachers, cultivate the process in the teaching and learning and do not always give 

students smart solutions. Let them find their own smart solutions. [Post 4-OUT; F2] 

The most critical ideas were categorised as pedagogical mathematical knowledge. 

These comments were related to how to teach mathematics and addressed particular 

student mathematical difficulties. 

Fractions in the early elementary school stage should start with a concrete => picture => symbol. 

Most teaching directly goes to the symbol, they cannot wait… even though the children do not 

understand yet. As a result, many still think that 1/3+1/2 = 2/5 [Post 4-OUT; F90] 

One teacher shared his teaching experience following on from a comment from another 

teacher’s findings about students’ difficulties in adding fractions. 

I also adopted this method for my vocational students as you wrote above. [many students did 

1/3+1/2 = 2/5]. As a result, I kindly taught them using “biting” [manipulatives], I prefer this than 
having complaints from my school principal. [Post 4-OUT; F76] 

One teacher prompted others to explain a method of teaching 4÷1/2 and 4÷8. Two 

teachers replied: 

You can draw half a kilogram of sugar for 4÷1/2 … For 4÷8, prepare 4 “biting” and share them to 

eight children ….Welcome for any suggestions. [Post 4-OUT; F76] 

4÷8 can be described as 4 apples for eight children, so it can be 1/2. But if it is 4÷1/2, this is 

difficult to teach to students (perhaps: half those 4 apples, so there are 8), welcome for any 

corrections. [Post 4-OUT; F89] 

The evidence from the comments and ideas supports the emergence of joint enterprise 

within the discussion. The participants themselves developed these ideas through their 

explicit engagement and own expertise, practices and experiences. The production of the 

joint enterprise has led to a shared repertoire among the participants. 
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Shared Repertoire 
The affordances of FB allow the notion of a shared repertoire to evolve naturally. The 

design of FB encourages the sharing of ideas and resources. As a result, there is the 

potential to reach many people with one post even though the original poster may not 

know it. Facebook affords to document all the conversations that can be found/revisited by 

FB friends anytime. Furthermore, the content of the posts becomes a shared resource and 

becomes part of the community’s shared repertoire. Since the joint enterprise was related 

to the mathematics knowledge, general pedagogy and mathematical pedagogical content 

knowledge, the model and the associated processes of teaching and learning also become 

part of the shared repertoire associated with that joint enterprise as reflected by the 

comments: “I am very happy to have this knowledge. I have kept all the images that you 
uploaded. Thanks Mam.”  

Further evidence was a message received from a primary teacher six weeks after the 

fourth post was uploaded, who exhibited no engagement during the one-week data 

collection. She expressed her strong interest in the posts and reported challenges from her 

further explorations on the modelling idea of division of fractions. She even stated that she 

had tried to solve 1/6÷1/3 and had thought about it for three days: 

Mam, I always take a chance to read your FB wall because there many lessons that I could have, 
many of your pictures I have downloaded and kept for my learning and to give to my students at 

school. One point, it is interesting to explain mathematical concepts to kids using pictures. The 

lesson of fraction division you gave is very interesting. But now I find it difficult … when I have to 

explain a fraction division, where the divisor is greater than the number divided, for example a sixth 

divided by a third. I have been working on this for 3 days, trying to find the solution but I haven’t 

been able to solve it.  

Although some people may not have been identified as participants in terms of the 

initial data collection, we cannot assume that their lack of response meant that there was no 

interest or no wider learning occurring from the four-post conversations. This is further 

evidenced by a teacher posting their own videos of their method and explanation of solving 

the problem visually and symbolically on a teacher group wall. This attracted many 

comments, likes and shares. Hence, the response of the teacher was “public” in the FB 

world and became a shared resource for others to use, learn from and implement in their 

own classrooms. 

We argue that the use of the model to illustrate the division of fractions became a 

shared repertoire since this seemed logical and easy to follow for many people compared to 

a rule-based teaching “invert then multiply”; it stimulated discussions and was widely 

shared and encouraged to be utilised by the community or participants. In this case, FB as a 

social networking site mediates the knowledge building within the community. 

Unlike other studies (Bissessar, 2014; Rutherford, 2010), the professional learning 

identified in this study was not created for a specific purpose, the participants in this study 

engaged actively and willingly in shaping this informal CoP. However, it is difficult to 

pinpoint the most determinant factor for why they engaged with the posts. It could be 

related to: (a) the type of posts, that is, the mathematical content of the posts; (b) how the 

content is misaligned to the current context of mathematics teaching; (c) the types of 

comments on these posts which stimulated further conversations; or (d) the reputation of 

the person who initially posted them. Alternatively, it could be that this sort of 

environment is seen as a safe space for people to ask questions, contribute ideas and learn 

from each other without being attacked or ridiculed. Understanding about such factors is an 

area for further research. 
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Conclusions and Implications 

This study identifies that the beginnings of a CoP emerged through the online 

interactions in Facebook via the four inter-related posts. The mutual engagement and 

interactions of the participants are apparent. The shared enterprise was developed through 

insightful discussions on mathematical knowledge and mathematical pedagogical 

knowledge, which were captured in a relatively short timeframe and a variety of resources, 

both concrete and intellectual, were jointly developed. The four inter-related posts were not 

designed to be a CoP. It was a part of the first author’s routine to share experiences and 

ideas through FB. However, the systematic analysis of these posts provided opportunities 

to gain insight about the potential of FB for teachers’ learning or even to communicate 

mathematics to wider audience. This adds another perspective on research about FB where 

the previous studies were dominated by their finding of FB as mainly for social networking 

(Nadkarni & Hofmann, 2012). 

An implication for further research could be the use of CoP as a theoretical framework 

to analyse the potential of FB, as not only a medium for engagement but also to understand 

the process of teachers’ professional learning. That is, developing a better understanding 

about FB as a virtual space for professional learning and how the CoP framework, along 

with the space itself, can facilitate such teacher learning processes. CoP is also a promising 

framework to help us to optimise FB as a tool. This potentially gives us opportunities to 

address issues regarding the structure and sustainability of teachers’ learning in this new 

connected digital world. 
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Many researchers argue that a deep understanding of fractions is important for a successful 

transition to algebra. Teaching, especially in the middle years, needs to focus specifically 
on those areas of fraction knowledge and operations that support subsequent solution 

processes for algebraic equations. This paper focuses on the results of Year 6 students from 

three tasks from a Fraction Screening Test that demonstrate clear links between algebraic 

thinking and students’ solutions to fractional tasks involving reverse processes. 

The National Mathematics Advisory Panel (NMAP, 2008) stated that the conceptual 

understanding of fractions and fluency in using procedures to solve fractions problems are 

central goals of students’ mathematical development and are the critical foundations for 

algebra learning. Teaching, especially in the primary and middle years, needs to be 

informed by a clear awareness of what these links are before introducing students to formal 

algebraic notation.  

Sixty-seven Year 6 students from an eastern suburban metropolitan school in 

Melbourne were tested using our Fraction Screening Test (Pearn & Stephens, 2014). This 

paper  aims to identify and examine students’ responses to three tasks from the test that 

demonstrate clear links between algebraic thinking and students’ solutions to fractional 

tasks involving reverse processes.  

Previous Research  

According to Wu (2001) the ability to efficiently manipulate fractions is "vital to a 

dynamic understanding of algebra" (p. 17). Many researchers believe that much of the 

basis for algebraic thought rests on a clear understanding of rational number concepts 

(Kieren, 1980; Lamon, 1999; Wu, 2001) and the ability to manipulate common fractions. 

There is also research documenting the link between multiplicative thinking and rational 

number ideas (Harel & Confrey, 1994).  

Siegler and colleagues (2012) used longitudinal data from both the United States and 

United Kingdom, to show that, when other factors were controlled, competence with 

fractions and division in fifth or sixth grade is a uniquely accurate predictor of students’ 

attainment in algebra and overall mathematics performance five or six years later. They 

controlled for factors such as whole number arithmetic, intelligence, working memory, and 

family background. We need to extend these important findings to highlight for teachers 

those specific areas of fractional knowledge that impact directly on algebraic thinking. 

Lee and Hackenburg (Lee, 2012; Lee & Hackenburg, 2013) conducted research with 

18 middle school and high school students. Their research showed that fractional 

knowledge appeared to be closely related to establishing algebra knowledge in the domains 

of writing and solving linear equations and concluded: “Teaching fraction and equation 

writing together can create synergy in developing students’ fractional knowledge and 

algebra ideas" (p. 9). Their research used both a Fraction based interview and an Algebra 

based interview. The two interview protocols were designed so that the reasoning involved 

in the Fraction based interview provided a foundation for solving problems in the Algebra 
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Interview. In both Interviews students were asked to draw a picture as part of the solution. 

For the Fraction tasks they were also asked to find the answer whereas in the Algebra tasks 

they were asked to write an appropriate equation but not solve it. Examples of one of each 

of the Fraction and Algebra Tasks are shown in Table 1 below.  

Table 1 

Examples of tasks used by Lee and Hackenburg  

Fraction Task Algebra Task 

Tanya has $84, which is 
7

4
 of David’s 

money.  

Could you draw a picture of this situation?  

How much does David have? 

Theo has a stack of CDs some number of 

cm tall.  

Sam’s stack is 
5

2
of that height.  

Can you draw a picture of this situation? 

Can you write an equation?  

After analysing the data, Lee (2012) constructed models to determine the fraction 

schemes used by students and their reasoning about unknowns and writing equations. 

However, the important point that these authors make is that the thinking required to solve 

this type of fraction task is very similar to the kind of thinking required to “solve for x” in a 

corresponding algebra equation. Both the Fraction Task and the Algebra Task from the Lee 

and Hackenburg study (2013) shown in Table 1 require multiplicative thinking to move 

from a given fraction to the whole, and relating these actions to the corresponding 

quantities. They cannot be solved additively, for example, by saying “I have to add another 

three-sevenths”. We notice that in the Fraction Task above students are not asked to 

explain their thinking or what the picture represents. Moreover Lee and Hackenburg do not 

discuss the range of possible methods that students might use to solve the fraction task, 

presenting instead an example of a picture and associated comments by one student. 

Students are not required to solve the algebra equation (S = 
5

2 T where S and T represent 

the number of CDs that Sam and Theo have). 

Stephens and Pearn (2003) identified Year 8 proficient fractional thinkers as students 

who demonstrated a capacity to represent fractions in various ways, and to use reverse 

thinking with fractions to solve problems. This research also showed that effective reverse 

thinking depends on a capacity to apply multiplicative operations to transform a known 

fraction to the whole. This capacity will later be fundamental to the solution of algebraic 

equations. In this study we identify algebraic thinking in terms of students’ capacity to 

identify an equivalence relationship between a given collection of objects and the fraction 

this collection represents of an unknown whole, and then to operate multiplicatively on 

both in order to find the whole. Jacobs, Franke, Carpenter, Levi, and Battey (2007) also 

emphasise the need to “facilitate students’ transition to the formal study of algebra in the 

later grades (of the elementary school) so that no distinct boundary exists between 

arithmetic and algebra” (p. 261). Three distinct aspects of algebraic thinking identified by 

Jacobs et al. (2007) and by Stephens and Ribeiro (2012) are important for this study. They 

are students’ understanding of equivalence, transformation using equivalence, and the use 

of generalisable methods.  
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This Study 

Unlike the Lee and Hackenburg study (2013) which used both a Fraction Interview and 

a separate Algebra Interview, our study is based on analyses of students’ performances in a 

single paper and pencil test of fractional thinking. Previously Pearn and Stephens (2007) 

used a Fraction Screening Test and Fraction Interview using number lines to probe 

students’ understanding of fractions as numbers. Results from these showed that successful 

students demonstrated easily accessible and correct whole number knowledge and knew 

relationships between whole and parts.  

The current version of the Fraction Screening Test (Pearn & Stephens, 2014) includes 

items that require students to use reverse or reciprocal thinking. The Fraction Screening 

Test was divided into three parts. Part A included 12 tasks, 11 tasks had been trialled in 

previous work (Pearn &Stephens, 2007). Part A tasks included routine fraction tasks such 

as equivalent fractions, ordering fractions and recognising simple representations. Part A 

also included a simple reverse thinking task showing a collection of four lollies and saying: 

“This is one-half of the lollies I started with. How many lollies did I start with?” This task 

was correctly answered by the majority of students and was one of the easiest questions in 

Section A. Part B included five number line tasks with four tasks trialled in previous work. 

One number line task involving reverse thinking gave a number line showing “where the 

number 
3

1
 is. Put a cross (x) where you think the number 1 would be on the number line.” 

Part C included three questions which required students to use reverse thinking using less 

familiar fractions (see Figure 1).  

Our Sample 
Sixty-seven Year 6 students from an eastern suburban metropolitan school in 

Melbourne were tested using our Fraction Screening Test (Pearn & Stephens, 2014). 

Students completed the tests in approximately 30 minutes. After analysis of the 67 sets of 

responses, 19 students were chosen for closer analysis. These 19 students had correctly 

solved each of the three questions shown in Figure 1 and provided adequate explanations 

of their thinking. They were asked to provide a more detailed written explanation of their 

solution to one question only in order to confirm their thinking.  

Our Three Key Questions 
The analysis for this paper is based on these three items from Part C which specifically 

required students to use reverse or reciprocal thinking in which their task is to find a whole 

collection when given a part of a collection and its fractional relationship to the whole.  

We devised these three items to offer students opportunities to use more explicit 

algebraic thinking which was not needed in the earlier task relating to one-half. Each of the 

three questions was marked out of three. Only one mark was given if there was some 

evidence of correct diagram or of an initial representation which the student did not take 

further (starting point). Two marks were given for a correct answer but without explanation 

and three marks were given for an adequate explanation. 
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Figure 1. Questions 5 – 7 

Like Kieran (1981) and Jacobs et al. (2007) we do not restrict correct algebraic 

thinking to students’ ability to use pro-numerals or unknowns or necessarily to set up 

formal algebraic equations. We expect that these Year 6 students who have not necessarily 

been exposed to formal algebra will employ a variety of successful representations to solve 

these problems. We also expect that some students may use a routine algorithm to solve the 

problem. Simply using a routine without an appropriate explanation may not be convincing 

evidence of algebraic thinking. However, we also expect that some students may choose to 

solve the same problems in non-algebraic ways. 

Results 

Among the 67 students, five groups were identified: Group A (19 students) who 

correctly answered and adequately explained each of the three questions (scoring 9 

marks out of a possible 9). Group B (9 students) answered the three questions correctly but 

gave an incomplete explanation or no explanation for one of their correct answers (scoring 

7 or 8). All Group B students scored a 3 for Question 5. Group C (14 students) all had 

correct answers to Question 5, with 12 providing adequate explanations (scoring between 4 

and 6). Group D (11 students) scored between one and three marks on the same three 

items. All 11 students omitted to answer at least one of the questions. Four students had 

correct answers to Question 5, with three providing adequate explanations. No student in 

this group correctly answered Question 7. Group E, (14 students) scored 0 on all three 

questions, providing insufficient evidence of performance. 

Forty-six of the 67 students (69%) gave correct answers and 43 gave adequate 

explanations to Question 5. The diagram accompanying this problem may have assisted 

students to solve the problem. Some students’ explanations used reverse thinking to show 

that one-third was equivalent to 5 dots and therefore the whole needed to be 15. Other 

students’ explanations involved additive one-step thinking saying that one more row was 

needed to make the whole.  Either explanation is suitable for this question.  

Question 6 was correctly answered by 38 students (57%). Not being supported by a 

diagram, it appeared more difficult. Using one-step additive thinking is not helpful in 

solving this problem.  It was necessary for students to calculate the number of CDs 

represented by 
7

1  and to scale up that quantity to make a whole. More difficult was 

Question 7 involving an improper fraction 
6

7  even though it was supported by a 

quantitative representation. Question 7 was correctly answered by 32 of the 67 students 

(48%). Some successful explanations applied a fractional lens to decode the 14 dots 
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shown, arguing that each pair of dots represents 
6

1  and that the whole can be found by 

subtracting two dots. This solution, as is Emily’s solution to Question 6 (see Figure 2), 

involves similar two-step thinking as those students who first divide the 14 counters by 7 

to find how many counters are represented by 
6

1  and then to multiply (scale up) by 6 to 

find a whole. These two questions, even with a diagram provided for Question 7, were 

more difficult than Question 5.  

 Analysis 

In this section, we focus on the 19 students (Group A) who gave completely correct 

responses and adequate explanations to all three questions. Some explanations were briefly 

written leaving some thinking unstated and raising a question of whether these students 

may have been using a routine. Each of the 19 students was asked to provide a short 

written elaboration of their initial explanation to one question selected by the researchers. 

In looking at their initial responses and their subsequent elaborations our goal was to 

identify those features that could be confidently taken to indicate evidence of algebraic 

thinking. Our focus was to identify instances of student thinking that could be clearly 

classified as algebraic; namely, understanding of equivalence, transformation using 

equivalence, and use of generalisable methods. Students in Group A offered the best 

chance to show this. 

Confident Reverse Thinkers 
Responses of Group A students show that confident reverse thinkers are able to step 

back from a visual representation, and to relate the fraction to the numerical quantity it 

represents. These students know how to scale down and scale up fractions and the 

quantities they represent to obtain a measure for the whole. Scaling down and scaling up is 

a reliable two-step procedure for finding the whole. It may even be compacted into one-

step. These students are not dependent on using additive strategies which may be 

appropriate for simple fraction problems like the one-half task in Part A.  

From the 19 fully correct responses four different types of responses were evident: 

Response Type 1. Eleven students employed equivalent operations using fractions and 

whole number quantities in parallel.  See for example Emily’s response to Question 6 in 

Figure 2 where she wrote  
4

7
 ÷ 4 = 

1

7
 × 7 = 

7

7 
 = 1 on one line and 12 ÷ 4 = 3, 3 × 7 = 21 on 

the one underneath tracking both fractional and whole number computation in parallel. 

  

 
Figure 2. Emily’s response to Question 6 

497



Pearn and Stephens 
 

Emily’s response can be directly compared to a two-step solution for  
4

7
 𝑥 = 12 . Like 

some other students, Emily uses an equal sign idiosyncratically to connect her steps as in 

the first line of her response. However, Emily clearly understands the need for equivalent 

operations to relate the two lines of her solution. Other students write “equivalence 

relationships” involving fractions and whole numbers together. For example, in Question 6 

some students wrote:  
7

4
= 12, 

7

1
= 3, 3 × 7 = 21 

Sometimes a two-step reverse operation is compacted into one step as Kenneth’s 

response to Question 5 as shown in Figure 3.  

 

 

Figure 3. Kenneth’s response to Question 5 

Kenneth’s response mirrors very closely the kind of transformational thinking needed to 

solve the algebraic equation  
2

3
 𝑥 = 10 → 𝑥 = 10 × 1

1

2
 .  

Response Type 2. Six students left the fraction unstated and operated directly on the 

whole number quantity. While scaling up the fraction is left invisible, this transformation 

clearly guides the operations on the associated whole numbers using equivalence: For 

example, one two-step response to Question 6 was 12 ÷ 4 = 3, 3 × 7 = 21; or by another 

student on the same question: 12 × 7 = 84, 84 ÷ 4 = 21 or in one compacted step by 

another student for Question 7 was 14 ÷  
7

6
. These strategies explicitly show the kind of 

generalisable algebraic thinking needed to solve the equation 
6

7  x = 14 

Response Type 3. Symbolic representation using an unknown was used by one student 

only. Figure 4 shows Julie’s response to Question 6: 12 is 
7

4  of x, meaning that 𝑥 = 12 ÷

 
4

7
 which is now 

12 

1
 ×  

7

4
  

 

 

Figure 4. Julie’s response to Question 7 
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Julie’s response shows a clear understanding of equivalence and transformation. It is 

also generalizable unlike Response Type 4 which relies on written descriptions involving 

continued adding. This was used by one student for Question 6 who stated: “ 
4

7
 of Kay’s 

CD collection is 12. That means that 
1

7
  is 3. I started adding 3 onto 12 until it reached  

7

7
 . 

That number is 21”. Multi-step responses like this correctly establishing that one-seventh is 

equivalent to 3 then rely on additive strategies to achieve the whole. This is a more limiting 

strategy than shown in the preceding Response Types which demonstrate reciprocal 

thinking. 

Mixed Methods 
Julie, who used a pro-numeral expression for Question 6, used the second and also 

generalisable method to solve other questions (e.g. 10 ÷  
2

3
  to solve Question 5). While 

some Group A students tended to use either the first or second method consistently, most 

used a mix of methods. We wondered, for example, if the student who wrote 14 ÷  7 = 2 

× 6 = 12  might be using a routine, but this student later explained that “14 was split into 

seven numerator groups”. Adding, “I could have taken one group away”. 

A similar range of methods, excluding symbolic representation, was evident among 

students in Groups B and C. However, among students in Groups C and D additive 

processes became more evident, like this Type 4 explanation from a student in Group C for 

Question 5: “I had to halve 10 because 
2

3
 is 10, halve 2 to get 1, and so I did this to get 5. I 

just added it (5) on after (to get 15).”  

Among students in Group D explanations begin to show less evidence of multiplicative 

(reverse) thinking: “Started with 10 to get 15”; or “Every 5 is 
1

3
 ”; or “Because there are 5 

in each row and 10 is 
2

3
 of 15”; or “

1

3
 = 5, 

2

3
 = 10, 1 = 15”. There is clear evidence of 

equivalence but these additive strategies have less algebraic potential compared to the 

efficient multiplicative (reverse) strategies shown by those using Response Types 1, 2, and 

3. Algebraic thinking, as we have defined it, requires more than use of equivalence. It 

needs to be reflected in confident and appropriate transformations of the fractional entities 

involved.  

Conclusion and Implications 

Confident reverse thinkers are able to scale down and scale up (or scale up and then 

scale down) based on the meaning of the particular fractional relationship. This is exactly 

what is required in “solving for x” in corresponding algebraic representations. Their 

working shows that scaling down and scaling up of fractional quantities must be 

accompanied by equivalent changes in the quantities represented by a particular fraction. 

These methods and their resulting mathematical relationships are indicative of algebraic 

thinking, by which students demonstrate that they can manipulate the fractional and 

numerical quantities independently of any diagram or visual representation.  

The algebraic significance of these findings is that they draw attention to three quite 

specific aspects of fractional operations that are not sufficiently emphasised in earlier 

studies. The first is being able to transform (operate on) a given fraction in order to return 

it to a whole, regardless of whether the fraction is expressed in proper or improper form. 

The second is students’ understanding of equivalence, meaning that the operations that are 
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required to restore a fraction to a whole need to be applied to the corresponding numerical 

quantities represented by the fraction. The third is to utilise efficient and generalisable 

multiplicative methods to achieve this goal; in contrast to other methods, usually additive, 

which may work only with simple fractions. All three aspects are essential for the 

subsequent solution of algebraic equations. Teachers especially need to help students 

identify and use these efficient and generalisable strategies.  
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Increasing numbers of primary pre-service teachers (PSTs) enrolled in Education degrees in 
Australia enter university with insufficient mathematical content knowledge (Livy & Vale, 
2011) and low confidence levels about their ability to teach and do the mathematics 
required for their intended role as classroom teachers (Wilson, 2009). Mentoring of PSTs 
by highly capable and experienced classroom teachers, within the framework of a 
structured and well-planned mentoring programme (Hudson & Peard, 2006), has the 
potential for developing the confidence, and thus alleviating the mathematics anxiety 
exhibited by PSTs. 

Introduction 
Pre-service teachers often complete their professional experience without having 

improved their skills, confidence, content knowledge, or repertoire of pedagogical skills in 
mathematics. In fact, it could be postulated, that due to a lack of exposure to excellent 
teaching of mathematics, their skills do not improve and the anxiety around having to 
eventually become responsible for the teaching of mathematics to a class on their own, 
actually increases. This is clearly not best practice and the consequence is a perpetuation of 
the limited capacities of the pre-service teachers leading to poor teaching and impeded 
learning opportunities for their students. What is even more disturbing is the clear 
anecdotal evidence that despite lack of confidence with mathematics content knowledge 
and lack of interest in mathematics as a subject, surprisingly few pre-service primary 
teachers are concerned about their ability to teach mathematics. 

One way of addressing and potentially arresting and reversing this trajectory of 
negativity is a planned and focused mentoring programme (Hudson & Peard, 2006). A 
highly skilled and qualified mentor has the potential to ameliorate the mathematics anxiety 
often experienced by pre-service teachers and the scope to set them on the path to quality 
mathematics teaching and learning for themselves and their future students. 

Literature review: Mathematics Anxiety 
Mathematics anxiety has been defined in various ways, each of which shares some 

fundamental and common characteristics. According to Wilson and Gurney (2001) 
mathematics anxiety is “a learned emotional response, characterised by a feeling that 
mathematics cannot make sense, of helplessness, tension, and lack of control over one’s 
learning.” (p.805). Chewning (2002) defines mathematics anxiety as: “an intense 
emotional feeling that people have about their inability to understand and do mathematics. 
People who suffer from math anxiety feel that they are not capable of doing any course or 
activity requiring mathematics” (p.1). This, clearly, would make the teaching of 
mathematics by the sufferer extremely problematic. 

Harding, cited in Harding and Terrell (2006), defines mathematics anxiety as a 
“learned emotional response which usually comes from negative experiences in working 
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with teachers, tutors, classmates, parents or siblings” (p.2). Greenwood (1984) supports 
such causality stating that mathematics anxiety often emanates from “A bad experience in 
a math class or with a math teacher” and elaborates by stating that mathematics anxiety, 
“results more from the way subject matter is presented than from the subject matter itself ” 
(p.3). 

What these definitions share is a predication on the belief that mathematics anxiety 
indeed exists and that it is both debilitating for the sufferer in terms of being able to 
perform mathematical tasks and also that the mathematics anxiety regularly stems from a 
negative experience in mathematics class or more specifically a negative inter-personal 
experience with a mathematics teacher. 

Mentoring 
Mentors can play a significant role in shaping pre-service teachers’ practices (Hudson 

& Hudson, 2010). Previous research has shown that mentors choose to be involved in 
mentoring programmes for pre-service teachers because of a desire to “influence the 
quality of pre-service teacher education” (Hudson & Hudson, 2010, p.1). As stated by 
Edwards (1998), “the role of mentor has considerable pedagogic potential for the 
development of pre-service teachers” (p.48) while according to Hudson and McRobbie 
(2004), mentoring can lead to improved classroom practices. However, the potentially 
positive relationship between mentoring and mathematics anxiety has not been adequately 
explored. Mentoring needs to be a planned and intentional process (Christensen, 1991) 
where the “the job of a mentor is to put the mentees’ interest in the foreground of the 
relationship” (Lennox, Skinner, & Foureur, 2008, p.9).  

Sullivan (2011), in analysing the Japanese Lesson Study approach, as described by 
(Inoue, 2010), explored the value of teachers watching, critically reflecting, and supporting 
each other as a way of developing profoundly valuable mathematics lessons. He suggests 
that: “by building trust between teachers and emphasising an orientation to improvement 
as distinct from evaluation, this approach will result in powerful mathematics teacher 
learning. (p. 59)” Although Sullivan is referring to fully qualified teachers working 
together within the framework of a very specific methodology, this could be extrapolated 
to the context of mentor and pre-service teacher working together in the same way as 
planned for this study. Sullivan goes on to state that: “the principles of collaborative 
planning, with observation and review of the lesson rather than the teacher, can be 
effectively incorporated into the practicum experiences of prospective teachers. (p. 60)” It 
could be suggested that Sullivan’s focus on improvement rather than evaluation is more 
likely to occur outside the professional experience blockwhich is based around evaluation. 

Mentoring of pre-service teachers by experienced teachers occurs most often during 
their professional experience block. Many teachers who supervise and mentor pre-service 
teachers on their placements have received no “professional development in mentoring to 
support pre-service teachers in the school context” (Hudson & Hudson, 2010, p. 5). 
Consequently, the scope for mentoring and supervising to be of a high quality, and to 
significantly add to the pre-service teacher’s developing expertise, may be compromised.  

Exposure to best practice in the teaching of mathematics by supervising teachers as 
well as support and opportunities to lead mathematics lessons in a structured, planned and 
non-threatening environment, is essential for pre-service teachers. PSTs would benefit 
from observing creative, engaging, challenging, differentiated lessons modeled by teachers 
displaying confidence, sound pedagogy, and having sound content knowledge. However, 
this is not always the case. Mathematically anxious pre-service teachers are not always 
partnered with a competent teacher during their professional experience blocks. 
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Professional Experience Block 
The logical forum for PSTs to benefit from exposure to informed mathematics teaching 

is the professional experience block. Professional experience or practicum blocks form part 
of the assessable component of pre-service teachers’ degree courses. Supervising teachers 
observe and assess the teaching of their pre-service teachers and grade the students on their 
efforts. University supervisors also monitor student professional experience units and work 
in conjunction with the supervising teachers to make decisions about whether or not the 
pre-service teachers meet the required standards in order to pass the professional 
experience and, therefore, progress further in their degree. If the students are deemed to 
have performed poorly, they can fail the professional experience. The on the job pressure 
of being monitored in such a way is a valuable way of ensuring that future teachers meet 
the necessary standards for entry into the profession. An unintended and perhaps 
unavoidable side effect of this experience is increased anxiety and stress in pre-service 
teachers who are uncertain about aspects of their practice and unfamiliar with being 
monitored in such a potentially high stakes forum. Such a forum is conducive to pre-
service teachers limiting risks, playing it safe and masking any inadequacies they may 
have. They will swim in the shallows for fear of being found out for not being proficient 
once their feet can no longer touch the bottom. 

For this reason, a fundamental aspect of this study, and its key point of difference from 
other such mentoring approaches is that it separates the mentoring process from the 
professional experience block. The study involves pre-service teachers being mentored for 
a school term with experienced and highly capable mentor teachers in the mathematics 
classroom, outside of their professional experience. The pre-service teachers who nominate 
to take part in the study are encouraged to take risks with their teaching in an exclusively 
supportive environment with a deliberate and planned focus on diminishing the fear of 
judgement or failure.  

Bly (1988) suggested one difference between the traditional classroom and the playful 
classroom: 

In a traditional mathematics classroom there are a set of rules and if you get something wrong, it 
leads to shame. In a playful mathematics classroom, there are a set of guidelines and if you do 
something different, it leads to conversation” (cited in Breen, 2001, p.46).  

It is possible that the source of fear and anxiety felt by pre-service teachers in relation 
to their mathematics has: “more to do with the personality and style of the teacher than 
with the content of the mathematics and their ability to cope with it” (Breen, 2001, p. 45). 
It would be fair to suggest that the pre service teachers who self-nominated to be a part of 
this study may have experienced the shame and humiliation of the traditional classroom 
and more specifically the traditional teacher. It is for this reason that each experience that 
the pre-service teachers has during the process is exclusively instructive and reflected on in 
such a way that future improvement leading to best practice was the goal.  

Breen (2001) refers to the work of Davis (1996) identifying three forms of listening 
which he believes limit or enhance the thinking and self concept of the pre-service 
mathematics teacher. These three forms of listening are: Evaluative listening based on 
judgement; Interpretive listening based on subjective nuance; and Hermeneutic listening 
which is based in respect for the teller, where the teller and the listener are engaged in a 
shared purpose and the views of each are valued as worthy of consideration and the desire 
to come to a shared and improved understanding is mutual. Such an approach requires the 
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deliberate addressing and breaking down of the traditional power dynamic between teacher 
and student or mentor and mentee.  

The aim of this study is to develop a strategy that will allow university mathematics 
educators and school staff development teams to address issues of mathematics anxiety 
through a practical and manageable mentoring programme as a means to improve the 
confidence of pre-service teachers and ultimately, the quality of mathematics outcomes for 
their students. It is aimed at utilising the capacities and skills of expert teachers as mentors 
for those entering the profession in a collegial, supportive, and non-threatening 
environment. The research question being addressed in this aspect of the study is: In what 
ways can a mentoring relationship outside of the professional experience block increase 
the confidence of pre-service teachers who identify as suffering from mathematics anxiety? 

The Mentoring Model Proposed for this Study 
Several aspects of both Hudson and Skamp’s (2005) and Rogoff’s (1995) models have 

been incorporated in a proposed model, which focuses on the following requirements for 
the selection of the mentors:  

• Experience–a minimum of 5 years’ teaching experience 
• Professional Responsibility–a desire to improve the profession by working with 

pre-service teachers to improve their ability to teach mathematics.  Along with a 
desire to read and learn from articles about mentoring best practice. 

• Mathematical Confidence–a very confident disposition towards both doing and 
teaching mathematics based on a subject matter knowledge 

• Teaching Expertise–a proven track record of successful maths teaching evidenced 
through positive dispositions of their own students towards mathematics, creative 
approaches, positive classroom environments, engaging lessons, differentiated 
opportunities for students 

• Appropriate personal attributes–a demeanour appropriate for mentoring pre-service 
teachers who lack confidence in this subject. Characteristics such as: good listener 
and communicator, empathy, sense of humour, supportive, encouraging, ability to 
deliver feedback positively and constructively 

• Time–A preparedness to plan and review lessons with the PST’s and to respond to 
their reflections of the experience.  

Methodology 
This investigation was carried out as a case study of eight 3rd and 4th year students from 

a metropolitan university in Sydney. The students were selected as a result of self-
nominating to be part of a mentoring programme to address mathematics anxiety from 
which they had indicated they were suffering. 227 3rd and 4th year students completed an 
adapted Mathematics Anxiety Rating Scale (Richardson & Suinn, 1972)) survey with 
38.29% (n=85) indicating that they suffer from mathematics anxiety according to Wilson 
and Gurney’s (2011) definition of mathematics anxiety as a “learned emotional response, 
characterised by a feeling that mathematics cannot make sense, of helplessness, tension, 
and lack of control over one's learning”. From these, 8 pre-service teachers (PSTs) were 
selected based on the extent to which they were negatively impacted by their mathematics 
anxiety. The PSTs were paired together to form 4 groups.  
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Mentors were from Catholic primary schools in the Sydney archdiocese, nominated by 
their school principals according to their meeting the six criteria listed above. The 
mentoring process took place in Term 4, 2014 with 2 PST’s working with 1 mentor teacher 
in their primary classroom for a 1-hour mathematics session once per week for 8 weeks. 
Where possible, the team of 3 met for approximately 10 minutes prior to and/or 10 minutes 
after each session to explore what would be happening in class that day.  

These mentoring sessions were underpinned and supported by the reflective practice of 
journaling via the use of a blog specifically established for this project. Pre-service teacher 
mentees in the programme were expected to reflect on their experience and practice, 
celebrate their successes, and support their fellow pre-service teacher mentees via the blog 
on a weekly basis. The mentors were also expected to blog their own thoughts and 
responses to the mentees postings. At the completion of the project, mentors and mentees 
completed a post survey and a semi-structured interview with the researcher. Due to work 
and travel commitments, only 6 of the 8 mentees and only 2 of the 3 mentors have been 
interviewed thus far. 

Results and Discussion 
One of the most prevalent themes to emanate from the interviews conducted with the 

students after the mentoring programme was the relationship between professional 
experience and the mentoring programme. Professional experience, also known as prac, is 
the time that students spend in classrooms with cooperating teachers, to improve their 
professional practice. In NSW it is mandated that all teacher education students spend a 
minimum of 80 days, which equates to 16 school weeks, working in classrooms during 
their four-year degree.  

There has been much criticism of teacher training in NSW in the media over the past 
12 months and one of the areas being challenged is the professional experience blocks. The 
pre-service teachers in this study complete extensive professional experience with their 
course requiring them to complete 31 weeks of professional experience during their 4-year 
programme. One of the great difficulties universities face is the sourcing of professional 
experience opportunities for their students. With increasing numbers of students enrolled 
in education courses, there is increasing pressure on the Professional Experience Office at 
universities to place their students. The professional experience block should be an 
opportunity for students to work with experienced and highly capable teachers in a 
mentoring relationship, which adds a practical component to the theoretical input at 
university. A concern outlined by the government reports into teacher training (Piccoli, 
2012) is that the cooperating teachers in the professional experience are not given 
sufficient training in mentoring and can sometimes provide a less than perfect learning 
opportunity for their prac students.  

AMac: It was good to be guaranteed a good teacher and someone you knew wanted to help 
you however they could. And she was always willing to answer our questions … 
which sometimes on prac is a little bit challenging. 

Of the 8 students involved in this study, all 8 suggested that the mentoring approach 
was superior to their professional experience. When questioned as to why this was the 
case, two prominent themes emerged. Firstly, and most importantly, was the relationship 
between the student and the mentor as opposed to the relationships they have experienced 
with their cooperating teachers during professional experience placements. All 8 students 
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suggested that the relationship with the mentors was more collegial and relaxed with a 
distinct focus on improving their skills.  

TW: This project was all about bringing our weaknesses out into the open, exploring them, 
and actively working towards strengthening them.  

Secondly, the mentees suggested that the high stakes aspect of professional experience 
meant that they were always under pressure, that the environment was stressful, they felt 
that they were being judged, that they were expected to be highly proficient, and that as a 
result, they were disinclined to take risks and that they kept their deficiencies to themselves 
for fear of being judged and potentially failed by their cooperating teachers.  

AM: On prac, you are watched like a hawk. You’re paranoid the whole time just to perform 
well. Prac is smoke and mirrors. 

SA: [T]hat pressure just not being there. It was so much more human, the relationship with 
the teacher, which is not something you have on prac.”   

This consequently led to low level activities during professional experience, based around 
keeping all students busy and trying to make themselves look capable rather than rich, 
challenging tasks that may not be immediately successful. One of the mentors stated:  

MM: [A] key difference, they don’t have that fear of failing. They don’t have the fear of 
being assessed and they could just get on with it. 

A second major theme to come out of the study is the reduction in fear felt by the 
mentees that they had to be experts in Mathematics and know all the content from the 
syllabus in order to be able to teach it well. Many of them commented on the fact that they 
knew a lot more than they thought they did.  

AM: What I really picked up on - I have just gone, ‘Maths as a subject, I don’t know it: I’m 
hopeless at it.’ because that’s just the attitude I’ve always had. But being in the 
classroom over the eight weeks I went ‘There is a lot I actually know.’ 

TW: I also learnt more about myself, my skills and abilities. I walked into the project 
thinking that I wouldn’t be able to complete any Stage 3 mathematical content. I now 
know that there are only a few gaps and I can work on filling those gaps with 
knowledge.  

The mentors supported these thoughts. For example: 
MM:  I said to them, teaching’s not about knowing everything. I said, look, we teach Maths, 

I said look at me, look what I’m teaching in history and science, I said I can’t possibly 
know all of this at any one point in time. 

There are many more themes to explore and draw out from this research project. What 
has been interesting is the unanimous consensus among the mentees that there has been 
some shift from anxiety towards greater confidence as a result of completing the mentoring 
trial. The precise reasons for this movement towards greater confidence need to be teased 
out more specifically but at this stage, the results look promising. What is also noteworthy 
is that the mentors found the process valuable and productive which augers well for future 
trials. 
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This study investigated potential gender differences in a sample of 807 Year 6 Singaporean 

students in relation to two variables: spatial visualisation ability and cognitive style. In 
contrast to the general trend, overall there were no significant gender differences on spatial 

visualisation ability. However, gender differences were prevalent among students who 

possessed high spatial visualisation ability, in favour of boys. In terms of cognitive style, 

there were significant gender differences in the spatial imagery and verbal information 

processing dimensions. Boys gave higher ratings to their spatial-imagery encoding and 

processing preferences than their verbal information processing preferences. Some of these 

findings are in contrast to studies undertaken in the educational-psychology literature. 

Implications are drawn regarding pedagogical practices in Singaporean schools.   

There has been sustained interest from both mathematics educators and psychologists 

to understand how spatial ability operates and develops. Due to its strong correlation to 

performance in mathematics and science (Sinclair & Bruce, 2014), spatial ability continues 

to attract research attention. Spatial ability is generally regarded in terms of mental 

rotation, spatial relation, spatial orientation and spatial visualisation, although these 

concepts are not always used with the same consistency, to some extent because of the 

complex relationships among them (Carroll, 1993; Clements & Battista, 1992; Höffler, 

2010). Relatedly, the inconsistencies in the definition of spatial constructs and their 

measurement by different standardised spatial tests make the comparison between studies 

problematic (Voyer, Voyer, & Bryden, 1995). This study focuses particularly on spatial 

visualisation that involves “the ability to ‘see’, inspect, and reflect on spatial objects, 

images, relationships and transformations” (Battista, 2007, p.843). It may invo lve elements 

such as holding a visual pattern in memory, comparing visual patterns, or doing a mental 

transformation and requires the manipulation of internal (mental) representations. 

Although there has been much interest in understanding how boys and girls operate on 

spatial visualisation tasks (Voyer et al., 1995), what has not been fully explained, is the 

significance of cognitive style in the relationship between spatial visualisation and gender, 

especially at the primary level in mathematics education. This research gap is the rationale 

for the current study.  

Spatial Visualisation and Gender Differences 
There is considerable evidence pointing to the fact that boys and girls differ in their 

spatial abilities (Battista, 1990; Ben-Chaim, Lappan, & Houang, 1988; McGuinness, 1993; 

Voyer et al., 1995). This tendency is equally observed in terms of spatial visualisation 

(Mayer & Massa, 2003). Different explanatory factors have been put forward to explain 

why boys and girls differ in spatial ability, recognising the contribution of both learner-

related factors (such as cognitive variables) and environmental factors (such as activities in 

which boys and girls are engaged in their daily life). In terms of learner-related factors, 

substantial attention has focused on the ways in which boys and girls encode and process 
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information, what is commonly referred to as cognitive style (Arnup, Murrihy, 

Roodenburg, & McLean, 2013; Kozhevnikov, 2007; Mayer & Massa, 2003).  

Cognitive Style and Gender Differences in Mathematics Learning 
Blazhenkova & Kozhevnikov (2009) distinguished among three categories of learners, 

namely object imagers, spatial imagers and verbalisers. Object imagers prefer to use 

colourful, concrete, high-resolution and pictorial images of objects to interpret information. 

Spatial imagers prefer to represent schematic images and spatial relations. The third 

category of people, verbalisers, has a preference to process information verbally. This 

study is framed within this three-tier categorisation of cognitive style. There is research to 

suggest that boys and girls differ on cognitive dimensions. For instance, Arnup et al. 

(2013) observed that boys with an analytic imagery cognitive style had higher mathematics 

performance compared to corresponding girls. Anderson, Casey, Thompson, Burrage, 

Pezaris, and Kosslyn (2008) reported that girls with high spatial-imagery cognitive style 

performed better on geometry tasks, compared to those who had lower spatial-imagery 

scores. Blazhenkova, Becker, and Kozhevnikov (2011) found that males scored higher on 

the spatial-imagery dimension while females had higher object-imagery scores, with no 

gender differences on the verbal information processing dimension. 

Condensing the findings from the cognitive style and spatial visualisation literature, the 

following two patterns emerge: (1) boys tend to fare better than girls in spatial visualisation 

tasks and (2) boys tend to use more spatial imagery information processing than girls. 

Building on these findings, we hypothesised that the extent to which students use spatial 

imagery would be a significant determinant in their spatial visualisation ability. In 

particular, girls who have high spatial imagery cognitive style would have high spatial 

visualisation ability.    

Examining the relation between spatial imagery as a cognitive style and its relation to 

spatial visualisation as an ability is premised on the assumption that the latter involves 

processing requirements shared by the former. A corresponding question is then to what 

extent do boys and girls process spatial information differently and how are these related to 

spatial visualisation ability? Thus, we posed and revisited the following two questions: 

1. How do boys and girls vary in terms of spatial visualisation ability and cognitive 

styles?  

2. Does gender interact with cognitive style on spatial visualisation ability? 

Method  

This paper emanates from a larger cross-cultural study (Lowrie, 2013) designed to 

investigate the ways in which students process mathematical information from two 

different cultures, Singapore and Australia. The participants (age range 11-12 years) for 

this paper were the Singapore cohort and included 807 Grade 6 students (392 boys and 415 

girls) from 8 Singaporean schools (6 government and 2 government-aided). The schools 

were chosen from different regions of Singapore on the basis of their willingness to 

participate in the study. Two instruments were used to collect data in April 2013. Both 

instruments were administered on the same day by the research team according to the 

guidelines of the tests (Ekstrom, French, & Harman, 1976; Blazhenkova et al., 2011). 

Correlations, t-test, and factorial ANOVA were used to analyse the data in line with the 

two research questions. 
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Instrument 1: Measurement of Cognitive Style 
The Children’s Object-Spatial Imagery and Verbal Questionnaire (C-OSIVQ) 

(Blazhenkova et al., 2011) is premised on three dimensions of cognitive styles: (i) object-

imagery, (ii) spatial-imagery, and (iii) verbal information processing. The instrument 

consists of 15 items from each dimension. Participants rated the 45 items on a 5-point 

Likert scale (1 = total disagreement; 5 = total agreement). The scores in each of the three 

sets are averaged to produce an object-score, a spatial-imagery score and a verbal 

information processing score. A sample item from each of the three dimensions are 

presented for descriptive purposes: (i) My visual images are like colorful photographs, or 

pictures of real objects and scenes (object-imagery), (ii) I can easily imagine and rotate 

three-dimensional figures in my mind (spatial-imagery) and (iii) My verbal abilities would 

make me a good writer (verbal information processing).   

Instrument 2: Measurement of Spatial Visualisation Ability 
The Paper Folding Test (PFT) (Ekstrom et al., 1976) is a commonly used instrument 

for measuring spatial visualisation ability both in Educational Psychology and 

Mathematics Education. In this timed test, students are required to visualise the folding and 

unfolding of a square sheet of paper with a punched hole (see Figure 1). The PFT consists 

of 20 items. A correct item is given a score of 1 mark. Incorrect items are negatively 

marked. The total score is calculated as follows: Number of items marked correctly minus 

one-fifth the number marked incorrectly (Mayer & Massa, 2003).  

 

Figure 1. Paper Folding Test1 

Results and Discussion  

Descriptive Statistics  
Table 1 presents the mean performance of boys and girls on the two instruments. 

Table 1  

Distribution Characteristics of the Instruments 

Test Mean Standard Deviation 

 Boys Girls Boys Girls 

PFT  10.14 9.82 4.40 3.95 

Object 3.73 3.81 0.68 0.67 

Spatial 3.57 2.95 0.71 0.74 

Verbal  3.16 3.29 0.67 0.65 

                                                   
1
 The Paper Folding Test is reproduced with license and permission of Educational Testing Service, New 

Jersey, USA. 
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Boys’ scores were higher than that of girls’ on the Paper Folding Test. Similarly boys 

had higher spatial-imagery scores. We comment on the statistical significance of these 

differences at a later point.  
Table 2 shows the correlation between the three dimensions of cognitive style and 

spatial visualisation, interpreted from a gender perspective. Spatial visualisation, as 

measured by PFT, was correlated to object imagery for boys and for both boys and girls for 

the spatial imagery dimension, although the value of the correlation coefficient was larger 

for boys. There were no significant correlations between verbal information processing and 

spatial visualisation. It is to be noted that there were correlations among the three 

dimensions of the C-OSIVQ questionnaire. 

Table 2  

Correlation Among Variables with Focus on Gender 

Measure Object Spatial Verbal PFT 

B G B G B G B G 

Object 1 1 .51** .43** .54** .57** .14** .02 

Spatial   1 1 .34** .34** .29** .16** 

Verbal     1 1 .04 .05 

PFT       1 1 

Note: ** p < 0.01  

Research Question 1: How Do Boys and Girls Vary in Terms of Spatial 
Visualization Ability and Cognitive Styles? 

Gender differences on the Paper Folding Test. Overall, there were no gender 

differences on the Paper Folding Test (Boys: M = 10.14, SD = 4.40; female: M = 9.82, SD 

= 3.95), t(802) = 1.059, p = 0.290. The students’ scores on the PFT were split into three 

categories to determine whether there were gender differences among students with 

different levels of spatial visualisation ability. The participants were classified into Low-

SV (bottom 25% of the distribution, PFT score <6.8), High-SV (top 25% of the 

distribution, PFT score >13) and Medium-SV (middle 50%, PFT score between 6.8 and 

13). Table 3 shows that gender differences were only significant among those students who 

had high spatial visualisation ability, with boys faring better than girls. 

Table 3  

Comparison of Boys and Girls Spatial Visualisation Ability from PFT 

Level of SV Number Mean t-value Sig. 

 B G B G   

Low-SV 102 101 4.33 4.51 t(201) = -0.666 p = 0.506 

Medium-SV 186 224 10.44 10.16 t(408) = 1.708 p = 0.088 

High-SV 101 90 15.46 14.98 t(189) = 2.216 p = 0.028 

 

The spatial visualisation scores for boys and girls were sorted separately in ascending order 

and plotted in Figure 2(a). Noteworthy, the gap between genders in spatial visualisation 

ability begins to appear as the score on the PFT crosses 10 points. 
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Gender differences on the C-OSIVQ questionnaire. In terms of cognitive styles, there 

were significant gender differences between the spatial imagery (t(741) = 11.555, p = 

0.000) and verbal information processing dimensions (t(758)=  -2.500, p = 0.013). For 

spatial imagery, the male scores were higher; for verbal processing, female scores were 

higher (see Table 1). Further, boys gave higher ratings to their spatial-imagery encoding 

and processing preferences than their verbal information processing preferences. The 

opposite tendency was observed for girls. No significant gender differences were observed 

for the object imagery dimension (t(754) = -1.543, p = 0.123). In their study, Blazhenkova 

et al. (2011) noted a similar pattern for the spatial imagery dimension, however they did 

not find differences in verbal information processing but rather on the object dimension, in 

favour of girls.  

In Table 2, we observed that there were significant correlations between spatial-

imagery and PFT for both boys and girls. Figure 2(b) shows in further detail how the level 

of spatial visualisation ability is related to spatial-imagery differentially for boys and girls. 

In Figure 2(b), the vertical axis represents the percentage of boys and girls whose scores on 

the spatial-imagery scale were higher than the group median. Thus, this category of 

students would be regarded as having a preference for spatial imagery. Across all three 

levels of spatial visualisation ability, there were almost twice as many boys as girls who 

had spatial imagery scores above the median. Further, the percentage of boys and girls who 

preferred to use spatial imagery were higher in the high spatial visualisation (High-SV) 

group than in the low spatial visualisation (Low-SV) group. This gives further evidence 

that there is a relationship between spatial visualisation ability and spatial imagery as a 

cognitive style. 

 

(a) 

 

(b) 

Figure 2. Differences between boys’ and girls’ scores on (a) PFT, and (b) spatial-imagery scores 

Research Question 2: Does Gender Interact with Cognitive Style on Spatial 
Visualisation Ability? 

Students were grouped in 8 categories, depending on whether they were below or 

above the medians in each of the three dimensions of the cognitive style (2 object x 2 

spatial x 2 verbal). We coded the scores below the median as 1 and above the median as 2. 

For example, a student who scored low on the object-imagery, spatial-imagery and verbal 

information processing respectively, was coded as 111 while a student whose scores were 

above the median in all the three categories was coded as 222. This categorisation 
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partitioned the sample into 8 classifications of students as shown in Table 4. The majority 

of boys and girls were either in the category 111 or 222. Boys who had high spatial 

visualization ability were primarily from group 222 (high object imagery, high spatial 

imagery and high verbal information processing) and similar girls were from 111 or 222. 

Table 4  

Distribution of Students by Cognitive Style 

Cognitive 

Style 

111 112 121 122 211 212 221 222 

Boys (%) 20.1 6.6 17.4 7.5 4.2 3.3 12.9 27.9 

Girls (%) 30.2 9.8 3.3 5.2 9.3 19.1 5.7 17.4 

Total 
(students) 

178 58 70 44 48 81 64 156 

High-SV 

Boys (%) 

13.8 2.3 21.8 8.0 1.1 1.1 16.1 35.6 

High-SV 
Girls (%) 

25.9 11.1 7.4 2.5 4.9 14.8 9.9 23.5 

 

A factorial ANOVA was carried out with spatial visualisation as dependent variable 

and cognitive style and gender as independent variables. There was a significant main 

effect of cognitive style F(7, 683) = 6.110, p < 0.000, ω
2
 = 0.05), indicating that it 

influenced the participants’ score on the spatial visualisation test. The non-significant 

effect for gender (F(1, 683) = 2.564, p < 0.110) showed that it did not influence the spatial 

visualisation scores, other things being equal. However, the significant interaction effect 

between gender and cognitive style (F(7, 683) = 2.142, p < 0.037, ω
2
 = 0.01) demonstrated 

that the influence of cognitive style on spatial visualisation was different for male 

participants than it was for females. Figure 3 shows the variations in cognitive style against 

performance in PFT. 

 

Figure 3. Variation in cognitive style and spatial visualization score 
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Conclusion  

We make two conclusions in terms of gender differences in spatial visualisation ability, 

cognitive style and their interactions. Firstly, in contrast to research findings (e.g., Battista, 

1990), there were no gender differences overall in spatial visualisation ability for this 

cohort of Singaporean students. The only significant differences were among students with 

high spatial visualisation ability, in favour of boys. One possible explanation for the 

absence of gender differences overall for the Singaporean students (as compared to the 

general trend), is that visualisation is explicitly emphasised in the Singaporean curriculum 

(Ministry of Education Singapore, 2012). Thus, the nature of the mathematics curriculum 

may be an influential factor in explaining gender differences related to spatial ability.  

Secondly, in terms of cognitive style, boys gave higher ratings to their spatial imagery 

information processing mode in contrast to girls. Further, as the level of spatial 

visualisation increased from low, medium to high, the percentage of boys and girls who 

used spatial imagery increased. This consolidates the finding that spatial imagery 

information processing is related to spatial visualisation. Correlations between spatial 

visualisation and spatial imagery were higher for boys than for girls. The significant 

interaction between gender and cognitive style suggests that spatial-imagery may be 

operating differently for boys and girls. Although the present findings do not provide 

strong evidence for a direct relationship between spatial imagery and spatial visualisation 

ability, the results do suggests that cognitive style is an influential factor in manipulating 

mental images as is characteristic of spatial visualisation. It is acknowledged that there are 

other factors besides cognitive style that explains why boys and girls performed differently 

on spatial visualisation tasks.  

The results of this study are dependent on the operational definition of constructs and 

instruments that were used to measure spatial visualisation and cognitive style. We focused 

on cognitive style from the object-spatial-verbal dimension while we measured spatial 

visualisation from only one instrument, i.e., the PFT. As we make further attempts to 

understand the ways in which cognitive style plays out in spatial visualisation, it is 

important to use different instruments and consider diverse conceptual underpinnings to 

unfold the link between unobservable constructs as in processing mathematical information 

and spatial skills. For instance, it may be insightful to qualitatively follow boys’ and girls’ 

responses to the spatial visualisation tasks in the PFT in future interview-based 

investigations.  

The current study contributes in expanding the knowledge base on gender differences 

on spatial reasoning based on a relatively large sample of students. It revisits an issue that 

requires the attention of educators. Methodologically, it highlights the necessity to perform 

analysis by level of students to understand the underlying structure or to reveal patterns 

that may not be visible otherwise. 

As we design curricular experiences to develop spatial skills in school mathematics, it 

is important to understand general trends in which boys and girls may differ in processing 

spatial information. Due to its methodological approach the current study may not provide 

direct instructional guidelines but the disparities in spatial visualisation ability and spatial 

imagery cognitive style between boys and girls do suggest that there is a necessity to 

support girls more explicitly so that they develop a spatial habit of mind, an aspect that 

may not be explicitly fostered socially and educationally.  
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This paper describes a pilot study investigating Teacher Aides (TAs) in primary 

mathematics classrooms. Three teacher/TA teams were investigated. The teachers were 

asked about the role of TAs in their classrooms, and the TAs were asked about their 

confidence in mathematics and in the desirability of professional learning. The TAs 

indicated a need to update their knowledge of mathematics content and terminology. It is 

also suggested that more research to investigate methods of assisting students with learning 

difficulties is required.  

In Australian Schools Teacher Aides (TAs), also known as Teacher Assistants, are 

employed to assist teachers in classrooms; this assistance may be in the form of support for 

students with disabilities, support for students with learning difficulties, or support in 

preparing materials (Forlin, 2010). These TAs may have completed TA training, may be 

qualified teachers, or may have not received any training. They may be employed to assist 

a specific student, a group of students, or as general classroom aides. They may work 

within the classroom or work with students in a separate environment. It has been 

demonstrated, however, that even if they are employed to assist one particular student, they 

influence the whole class environment, as they usually interact with students around them 

(Blatchford, Russell, Bassett, Brown, & Martin, 2007).  

Research has shown that whilst the presence of TAs in a classroom is seen as beneficial 

by teachers, this presence does not necessarily lead to improved academic outcomes for the 

students in mathematics (Farrell, Alborz, Howes, & Pearson, 2010). There is also research 

to suggest that their presence may be detrimental to students’ mathematical outcomes 

(Webster et al., 2010). This paper describes a pilot study of TAs and teachers to investigate 

the role of TAs in Tasmanian primary schools. 

Literature Review  

In 2011 there were approximately 6900 teachers and 1900 Teacher Aides (TAs) in 

Tasmania (Garsend, 2011). Although this means that there are approximately two TAs for 

every seven teachers, previous research in other countries shows that many teachers have 

no training in working with TAs during their pre-service courses (Webster, et al., 2010). In 

addition, in Tasmania it is not essential that a TA should have any training in instruction 

(Department of Education [DoE], 2008). Despite this lack of training for TAs, it is part of 

their duties to “Prepare teaching aides and other material to support teaching and learning 

programs including supporting the implementation of individual student education and 

behaviour programs” (DoE). As evidence from overseas shows that TAs may be employed 

to help students with learning difficulties in mathematics, the most vulnerable of students 

may be receiving the least qualified help (Gerber, Finn, Achilles, & Boyd-Zaharias, 2001).  

TAs have been found to have a positive effect on the classroom environment. Teachers 

assisted by a TA report higher job satisfaction, as the support from the TA lowers the 

teacher’s level of stress and workload by relieving them of their administrative duties. The 
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presence of TAs also reduces off-task behaviour and disruption and allows the teachers 

more time to teach. TAs can also have a positive impact on the personal and social 

development of pupils, and can encourage parental involvement in their children’s learning 

(Woolfson & Truswell, 2007). 

When TAs are prepared and trained, and have support and guidance from the teacher, 

TAs can also have a positive effect on the academic progress of the students (Webster et 

al., 2010). Blatchford, Russell, Bassett, Brown, and Martin (2007) show that well trained 

TAs can improve the learning outcomes in literacy for students when they are running 

targeted programs. The results in relation to numeracy, however, are less positive (Farrell, 

Alborz, Howes, & Pearson, 2010). In fact, there is evidence that shows that TAs may have 

a negative effect on the academic progress of the students they assist. This result persists 

even when the results are controlled for level of disability and socio-economic status. Even 

more disturbing is that the negative effect is more pronounced for the students with more 

serious problems. Students with TAs may have worse academic outcomes when compared 

to similar students without a TA (Webster et al, 2010). 

It has been posited that one of the reasons for these reduced academic outcomes is that 

TA-supported pupils become separated from their teachers and the curriculum as a result 

of spending more time with the TAs (Radford, Blatchford, & Webster, 2011). Another 

reason for these reduced academic outcomes may be the type of interaction that takes place 

between the student and TA. It has been demonstrated that whereas “teachers spent more 

time explaining concepts, provided more feedback, linked the current lesson to students’ 

prior knowledge, and attempted to promote students’ thinking and cognitive thinking in a 

task” (p. 328), TAs are reactive – responding to the needs of the student and lesson at the 

moment. As a result, they may give confusing and inaccurate explanations. In addition, 

they found that whereas teachers tend to ask questions in a lesson that encourage students 

to open up and to offer their opinions, TAs tend to close down discussion. This may be 

because the TAs believe that teachers place a greater value on written work completion 

rather than discussion. In addition, because TAs may wish to help their students avoid 

failure, they often supply the answers without any scaffolding questions. This problem is 

exacerbated by the TAs’ lack of mathematical knowledge. 

It is clear from the statement of duties from the DoE in Tasmania that TAs should be 

working under a teacher’s supervision. It is of concern that this may not always be the 

case. This research was partly prompted by the researcher’s experience as a mathematics 

teacher educator. At the institution where the researcher teaches there are many students, 

from all over Australia, who are TAs working towards a full teaching qualification. It is 

clear from posts on the discussion boards that at least some of these students are finding 

the material they use for mathematics interventions themselves, without the assistance of a 

teacher.  

The literature on the use of TAs in Australia is sparse outside of the area of giving 

assistance to students with physical disabilities. One aim of this study was to examine the 

practice of TAs giving assistance in mathematics classrooms in primary schools to find out 

where more research is needed. The other aims of the study were to examine TAs’ 

confidence in mathematics instruction, to examine TAs’ use of questioning, and to 

determine if there is a need for professional development for TAs in mathematics.   

Methodology 

This investigation was carried out via a case study. Case studies involve the collection 

of detailed data on an entity to enable understanding of that entity. Case studies are often 

517



Reaburn 
 

  

carried out via observation and interviews, and allow “an investigation to retain the holistic 

and meaningful characteristics of real life events” (Burns, 2000, p. 460). They can be 

useful as pilot studies, as they may “bring to light variables, phenomena, processes and 

relationships that deserve more intensive investigations” (p.460). It was intended that the 

close examination of a small number of participants would allow the investigator to collect 

data that would enable a well-targeted broader study in the future. The investigation was 

also carried out using a grounded theory approach (Strauss & Corbin, 1998). With this 

approach, the “researcher begins with an area of study and allows theory to emerge from 

the data” (Strauss & Corbin, 1998, p. 12).  

The participants were three volunteer Teacher/TA teams from three government 

primary schools. Each teacher took part in a semi-structured interview. Each TA took part 

in a semi-structured interview, an observation of a lesson, and then a follow up semi-

structured interview. All the interviews were carried out on an individual basis. All of these 

interviews and observations were audio-recorded. 

The teachers were asked about the level of TA support they received, the guidance they 

gave the TAs, the selection of materials and resources, and whether or not they found the 

presence of TAs beneficial. In addition, they were asked about any training they had 

received in working with TAs. The TAs were asked about their training and qualifications, 

the length of time they had been working as a TA, the nature of their work, the level of 

guidance they received from the teachers, their confidence in working in mathematics, and 

if they would like training in mathematics instruction.   

The transcripts of the interviews and observation were analysed using the process of 

open coding and grouping (Strauss & Corbin, 1998). As a consequence the results were 

categorised as follows: Confidence, Resources, Questioning of Students, Awareness of 
Student Needs, Relationships with Teachers, and The Desire for Training. In addition 

another category, Other Issues, was added to describe themes of interest that did not fit 

into the other categories.  

Results  

The levels of experience, the time taken by each TA in mathematics instruction, and 

their qualifications are summarised in Table 1. All of the TAs and teachers in the study 

were females.  

Confidence  
The TAs were asked about their confidence in mathematics instruction. TA1 and TA2 

both stated that they were confident in their mathematics instructions, although TA2 stated 

that she had been less confident when she had been an Aide in Grades 5 and 6 in previous 

years. TA3, who was new to mathematics instruction, was less confident, stating that she 

didn’t know if she was “doing it right”. She had more experience in literacy support and 

felt more confident in this area. For both literacy and numeracy, however, she stated that 

she would be “very keen to get some feedback”. TA1 was confident in working with the 

books in the mathematics program used at her school (Go Maths, Origo Education) and 

was careful to follow the resources provided in this program when required. She felt that 

her mathematics knowledge had increased by following the books in the program. All of 

the TAs stated that they did not teach first concepts but helped to reinforce learning of 

work previously taught.  
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Table 1 

Details of Teachers Aides in the study 

 Years of 

Experience  

Qualifications Time spent on 

mathematics 
instruction 

Grade Place of 

work 

Number 

of 
students 

TA1 16 years Certificate IV 
in education 

One one-hour 

session five 

days per week. 

Grade 6 Outside of 

normal 

classroom 

2 

 

TA2 19 years Certificate III 

in business, 
First Aid 

One session 

per day five 
days per week.  

Preparatory 

Grade 

Within 
classroom 

4-5 

 

TA3 5 years * 40 minutes to 

one hour once 
per week 

Grade 1 Outside of 

normal 
classroom 

8 

* Information not collected 

Resources 
The TAs were asked to identify the resources used and how they accessed them. They 

identified computer and hands-on learning tools such as dominoes, blocks, unifix blocks, 

paddle-pop sticks, card games and computer games. TA2 also used workbooks that were 

part of the Go Maths program.  All three TAs stated that these resources were chosen by 

the teacher, although they would occasionally make their own suggestions. For example, 

TA1 made the suggestion that her students use magazines to cut out pictures and make a 

shop in the classroom. The level of independence given to the teachers in the use of these 

resources varied. TA2 was the most highly supervised, and her teacher stated that she 

modelled all the work for the TA before any resources were used.  

Questioning of Students 
Each TA worked with a small group of children during a lesson that was observed by 

one of the investigators. TA2 played a card game with the students that involved the 

terminology of “tall, short and medium”. In this lesson, cards were used which had pictures 

of pictures with different colours and different sizes. She gently reminded the children to 

use these words when they had a tendency to use the words “big” and “little” and then 

asked them to choose which word they would use.  

Student: I got two pencils, the small one is green. 

TA2: Small or short? 

Student: Short. 

TA2: Good! 

TA1 conducted one-on-one lessons with two boys that involved fractions and graphing. 

It was noticeable that this TAs used prompting questions to assist the students to come to 

the answer.   

Student 1 (reading from text book): If it takes ten hours to sail around an island, how long does it 

take to do it twice? 

Pause 
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TA1: What’s twice – how many times do you do something if you do it twice? 

Student 1: Two times 

TA1: So what’s the answer? 

Student 1: 20 hours! 

TA1: Good, how did you know? 

Student 1: 2 times 10 is 20.  

Student 2 (working on multiplication tables): 8 times 6 – I can’t work it out.  

TA1: What is 8 times 3? 

Student 2: I can’t work it out. 

TA1: What is two times 8? 

Student 2: 2 times 8 is sixteen. 

TA1: Can you add 8? 

Student 2: 24. 

TA1: Good! What is double 24? 

Student 2: 48.  

TA1: Good, so 8 times 6 is 48. 

Awareness of Student Needs 
All the TAs were keenly aware that they were dealing with students who had varying 

levels of learning ability and to be aware of the students’ needs. For example, TA2 stated 

she kept constant watch for tiredness and made sure that she had a variety of activities 

planned. One of her students very much disliked changes in routine so she generally kept 

the structure of each day alike. She felt that it was very important to know the students well 

as individuals. In addition, she had become aware to allow the students “thinking time” 

after questions were asked. TA1 was aware that some of the children took longer to 

understand a concept but she needed to balance that with “slogging over the same thing” 

each day. TA3 was strongly aware that one of her students was “lower than the rest” and 

had trouble grasping the concepts.   

Relationships with Teachers 
All three TAs stated that they were very happy with the relationships they had with the 

teachers they worked with. All felt they could ask for help, clarification and advice when 

needed, that they could make suggestions, could talk about lessons they felt did not work 

well, and had regular meetings with their teachers. These meetings were usually held at the 

end of the lesson or at the end of the day. The teacher of TA2 stated that she encouraged 

the TA to “use her initiative” but always wanted to know what had happened. Occasionally 

she felt the TA had missed the point of the lesson. All TAs felt that they were treated as 

equals by the teachers and all the teachers spoke very appreciatively of their current TAs. 

However one teacher indicated that while she had a good working relationship with her 

present TA she had had problems in the past with TAs who overstepped their role. She was 

concerned that “some TAs do not realise they are not the teacher, and it is not their job to 

interfere with a child’s behaviour and work”.  
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Desire for Training 
All three TAs were keen to have further training in mathematics support. It was 

interesting to note that TA1 used computers extensively in her instruction, but TA2 felt 

that she needed training in Interactive White Boards, computers and Ipads. She noticed that 

the students were confidently using IWBs and felt inadequate because she could not. All 

TAs stated that mathematics methods had changed since they were at school. TA2 spoke 

about her time as an Aide in Grade 5 and her problem with subtraction: 

TA2: [My problem was that] subtraction had changed, completely altered. We would take ten from 

down the bottom, and now it’s the other way around. When we first did it I said to the children: 
That’s not right! And they looked at me like I was quite alien. 

All were keen to have more training in the language of mathematics because they did 

not feel confident that they were using the terminology correctly. TA3 stated this 

forcefully: 

TA3: Any training, any feedback, even if it’s little. Any guide as to what I am doing, someone who 

speaks the same language as the teachers do. I want to give the same message to the children that 

they get from [their] teachers.  

Interestingly, the teacher of TA3 stated that the TAs in the school had all worked in the 

school “enough to understand the models and language.” 

Other Issues 
The teachers of TA2 and TA3 expressed their concern, quite strongly, that recent cuts 

in education funding had resulted in the employment of fewer TAs in Tasmania. The 

teacher of TA3 expressed her concern that the TA did not have time to sit in on 

mathematics lessons where she was not involved, so she could observe lessons with the 

whole class. She also stated that there was a high demand for her assistance so that the TAs 

in her school were “spread very thin.” TA2 also spoke of the variety of work she was 

required to do that might include changing a nappy to helping with instruction.  

Discussion 

An area of particular interest with this study was the use of questioning and prompts 

used by the TAs. Radford, Blatchford and Webster (2011) suggest that the questioning 

methods used, and the tendency for TAs to “do” their work for the students, was actually 

detrimental to the students’ learning. For these three TAs, however, this was not observed. 

All three avoided giving answers directly to their students and were careful to give 

prompting questions only. However, it was not clear during the observation that when TA2 

asked the student to “double 24” he was aware of how this strategy worked.  

The TAs were concerned about their lack of current mathematical knowledge. They 

were usually, although not always, confident that they knew the content that they were 

required to teach, but not confident that they were using current terminology and methods. 

TA1, who had access to the materials used by the whole school, was much more confident 

in this area as she had learnt from the Go Maths books that were being used by the school 

as a whole. It is apparent that while the teacher of TA2 always modelled the work the 

students were doing in front of the TA the other teachers expected their TAs to carry out 

work they were given without such modelling. This research suggests that teachers may 

need to take more care to give more explicit instruction. This, however, will take more 
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time and it is apparent that, like teachers, TAs may already be working under a tight 

schedule.  

This research has brought up some issues that need consideration by teachers. Farrell et 

al. (2010) found that teachers believed they benefited from having TAs in their classes, and 

the three teachers in this study all spoke enthusiastically about the help they received. It 

was evident, however, that there was a gap between the teachers’ confidence in their TAs 

and the TAs confidence in their own knowledge. Whereas one of the TAs always worked 

within the classroom, two of the TAs were working outside of the main classroom for 

extended periods. For these TAs the teachers could not be sure that the TAs were using the 

appropriate mathematical language or were always accurate in their explanations, and these 

TAs were acutely aware of this and concerned that they might be making errors.  

All of the TAs were aware of their limitations and were keen to have professional 

development in the area of mathematics instruction. Hurst and Sparrow (2012) 

demonstrated that TAs whose content knowledge increased after professional development 

then experienced increased confidence in their teaching. All of the students observed in 

this research had learning difficulties of some kind, some severe. It is of concern that some 

of the most vulnerable students are given mathematics instruction by people with little to 

no training in the area.  

It could be argued that these students with learning difficulties should be instructed by 

teachers with specialised knowledge of teaching such students. This needs to be balanced, 

however, by the importance of involvement of TAs who are from the same community as 

the school students. For example, in Hurst and Sparrow’s study it was important that there 

was involvement by the local Aboriginal and Islander Education Officers in the schools. In 

cases such as these the involvement of community members may well outweigh the 

benefits of specialist teachers, and the running of professional development to increase the 

skills and knowledge of community members could be the option. 

Conclusion 

It was apparent from the interviews with the TAs that they were all keen to give their 

students the best learning experiences possible. They were very aware that most of the 

students they were instructing had difficulties in some way. They were also aware that they 

might be doing something different to the teachers and were concerned that they might be 

doing something detrimental to their students’ learning. In particular, they were concerned 

about their use of mathematical language.  

From this small study it appears that TAs involved in mathematics instruction are keen 

to have professional development in this area. More research into the content and type of 

this professional development is required. In addition, more research into the best ways of 

giving instruction to students with mathematical difficulties is also needed. Should we 

continue as now, where TAs give instruction with varying levels of supervision, should we 

put resources into the professional development of TAs, or should all such instruction be 

given by specialist teachers?  
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The research presented in this paper focuses on the cognitive diagnostic strategies that 
prospective elementary mathematics teachers (PTs) use in their reflections of one-on-one 
diagnostic interviews with children in grade one. Thereby, it responds to the detected lack 
of knowledge regarding qualitative facets of diagnostic proceeding in interview 
assessments. Results include facets of collecting data and facets of interpreting within a 
diagnostic micro-process. The discussion takes up the relevance of these findings for 
teacher education.  

The challenges of every-day classroom situations include the design of appropriate 
learning opportunities, which refers to adaptive teaching competence and includes 
diagnostic competence (cf. Wang, 1992). To meet these demands, beginners and 
experienced teachers benefit from a constructivist view of their students’ individual 
progress in developing mathematical concepts. A powerful method to gain particular 
information on children’s mathematical conceptions is provided with diagnostic one-on-
one interviews which stem back to the clinical method of interviewing developed by Jean 
Piaget (cf. Ginsburg, 2009). Standardised task-based interviews enable access to the range 
and depth of children’s thinking as (in-service) teachers actively explore qualitative facets 
of children’s approaches to mathematical tasks. Prepared interview tools and empirically 
based growth points for the analysis may guide through these one-on-one interviews and 
thereby foster teachers’ professional development (e.g., ENRP task-based assessment 
interview/CMIT/EMBI; cf. Clarke, 2013; Bobis et al., 2005; Peter-Koop et al., 2007). 

 Additionally, there is a need to sensitise prospective elementary mathematics teachers 
(PTs) for the variety, range, and depth of young children’s mathematical thinking and to 
qualify them for informal formative assessment. In this sense, preparing, conducting, and 
analysing students’ mathematical conceptions in one-on-one interviews offers substantial 
learning opportunities and supports the development of PTs’ diagnostic attitude (cf. Peter-
Koop & Wollring, 2001; Prediger, 2010; Sleep & Boerst, 2012). Yet, qualitative facets of 
the diagnostic proceeding during a one-on-one interview have only been scarcely studied 
so far. This includes facets of interpretation and facets of data collection; that is, the 
question how actions or utterances are taken up before being used for interpretation. 

Theoretical Framework 

The Concept of Diagnostic Competence and Domains of Teacher Knowledge 
Recent studies on diagnostic competence mainly focus on measuring the accuracy of 

teachers’ judgments (cf. Südkamp et al., 2012). With an emphasis on those numerical 
indicators, diagnostic competence is most often “operationalized as the correlation between 
a teacher’s predicted scores for his or her students and those students’ actual scores” 
(Helmke & Schrader, 1987, p. 94). Here, questions of qualitative aspects of diagnostic 
competence and its acquisition remain unanswered, and processes of diagnosing which 
lead to the evaluation of an individual student’s development are not taken into account. 
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Ball et al. (2008) suggest that pedagogical content knowledge (PCK) includes 
knowledge about common mathematical conceptions or misconceptions that are frequently 
encountered in the classroom. Options to achieve this kind of knowledge may arise from 
analysing individual cases, which refers to knowledge of content and students (KCS) 
defined as subdomain of PCK (Ball et al., 2008, p. 403). Thus, the capability of “eliciting 
and interpreting individual students’ thinking” can be found among the set of “high-
leverage practices” novices should be familiarised with (cf. Ball et al., 2009; Cummings 
Hlas & Hlas, 2012). Sleep & Boerst (2012) conceptualise this particular “high-level 
practice” as subcomponent of the domain “assessing student thinking” (p. 1039). In this 
sense, analysing an individual’s mathematical concept may contribute to a deeper 
understanding of widespread (mis)conceptions. It may develop KCS, improve a teacher’s 
practices in terms of diagnostic attention, and thereby enrich his or her diagnostic 
expertise. 

Modelling Phases of the Diagnostic Process 
In the field of elementary mathematics education research (which intensely deals with 

qualitative aspects of children’s wide-ranging learning developments), expertise in this 
area reaches beyond teachers’ accuracy in measuring children’s achievements. It 
additionally includes rather vague aspects like diagnostic sensitivity, curiosity, an interest 
in children’s emerging understanding, and learning or the aptitude to gather and interpret 
relevant data in non-standardised settings (e.g., Prediger, 2010). Following this process-
oriented attitude towards diagnostic competence, activities of formative assessment in a 
one-on-one interview can be seen as a multidimensional cyclic process (Klug, 2011; Klug 
et al., 2013). According to this model, a pre-actional phase (e.g., considerations of 
preparing diagnostic activities; choice of tasks or methods) prepares an actional phase 
(including data collection and data interpretation), which is followed by a post-actional 
phase. The latter implies taking the necessary action from data collection/interpretation, 
which leads to the design or the evaluation of a concept for an individual support in a 
repeated run through phases of this diagnostic macro-process. 

 
Figure 1. The macro-process of diagnosing and differentiation of the micro-process in the actional phase 

Researchers in mathematics education have partially specified the challenges that 
teachers face within such diagnostic macro-processes. Focusing on micro-processes within 
the actional phase of diagnosing, collecting data, interpreting, and drawing further 
conclusions have deep impact on the diagnose via an interview and are based on different 
kinds of knowledge (e.g., KCS, see Figure 1). In this sense, proceedings in a one-on-one 
diagnostic interview are vitally influenced by cognitive processes and a person’s (verbal) 
articulation (e.g., ways of questioning, confirming) and intentional decisions (e.g., 
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switching between tasks) may reveal facets of these ongoing internal considerations: When 
conducting a one-on-one interview, there is no direct access to students’ conceptions. 
Instead and in terms of cognitive activity, those conceptions “must be reconstructed by 
interpreting their utterances” (Prediger, 2010, p. 76). Yet, we have little knowledge on how 
this interpretation takes place or what is taken into account when an interviewer is 
“gathering information” (Klug et al., 2013, p. 39). This refers to collecting and interpreting 
within the actional phase of the diagnostic process.  

Collecting as a Source for Interpretation and Conclusion 
Collecting valuable information is obviously of high importance as this information is 

the source for interpretation and conclusion. Sleep & Boerst (2012) point out that the 
available information initially relies on the (previous) choice of tasks for the diagnostic 
situation as tasks “yield sound and useful information about student learning of particular 
content” (p. 1038). For one-on-one interviews, these tasks are usually chosen in the pre-
actional phase, but they obviously influence opportunities for data collection in the actional 
phase, too. Moyer & Milewicz (2002) identified general questioning categories (check-
listing/instructing/ probing and follow-up questions) used by PTs while collecting data in 
one-on-one interviews. Furthermore, interpreting within any diagnostic situation is also 
based on a substantial perception of the diagnostic situation. This “includes the ability to 
structure the situation cognitively, the ability to change the focus of attention and the 
willingness and ability to adopt other perspectives” (Barth & Henninger, 2012, p. 51). 
Thus, attention and the capability to focus this attention tend to be crucial prerequisites for 
collecting within the actional phase. Attending as integral element of “professional 
noticing of children’s mathematical thinking” refers to the skill of “being able to recall the 
details of children’s strategies” (Jacobs et al., 2010, p. 172).  

In the actional phase of diagnosing in a one-on-one interview, noticing and collecting 
includes the motivation to listen and watch, the ability to observe with keen eyes, the 
capability to detect important details, or the attitude to value particular aspects in children’s 
utterances or actions. Yet, little is known about the facets of collecting PTs use in one-on-
one interviews they prepare and conduct with children: How is all this information 
gathered, what kind of information is it and what characterises PTs’ interpretation as they 
act systematically? 

Research Questions 
Aiming at an empirically grounded theoretical framework for a qualitative view on 

PTs’ cognitive activities in one-on-one interviews with children, the main purpose of the 
project diagnose:pro is to detect traits of diagnostic strategies: We intend to find out what 
cognitive elements characterise the PTs᾿ diagnostic strategies when they diagnose 
individual arithmetic approaches in one-on-one mathematics interviews with first-graders 
and try to reconstruct how these strategic elements interact. This paper directs the attention 
to facets of collecting and interpreting PTs use in their diagnostic proceeding: 

• What kind of information is collected to supply an interpretation and conclusion 
during the actional phase of the diagnostic process? 

• What differences in the way this information is collected can be detected? 
• What facets of interpreting occur? 
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•  (How) do differences concerning the choice of collected information, concerning 
the way of collecting or facets of interpreting influence the type of diagnostic 
strategies that can be reconstructed from retrospective interviews?  

Methods 
In the sense of theoretical sampling (Corbin & Strauss, 2008), data collection was 

intended to capture the range of PTs’ practices and proceedings and focused on re-
interviews of one-on-one diagnostic interviews. All PTs attended mathematics methods 
courses in the last year of their university studies (Master of Education). In cooperation 
with an elementary school, these courses provided the opportunity to prepare, conduct, and 
analyse individual diagnostic interviews with up to 6 first-graders per PT. Drafts for these 
interviews were prepared at the beginning of the course where the PTs could make use of 
theoretical work on concepts of arithmetic learning trajectories and the method of task-
based mathematics interviews (e.g. EMBI; Peter-Koop et al., 2007). Until Autumn 2013, 7 
PTs from these courses agreed to take part in retrospective interviews that focused on the 
video-recording of an interview they had conducted shortly before.  

With a deliberately general advice at the beginning of the retrospective interviews, the 
PTs were asked to analyse the interview while watching the video-recording. The 
interviewee was requested to stop the video at any scene in order to comment on the 
diagnosis he or she would derive from this specific situation. If comments were rather 
short or pure in detail, the interviewee was asked to explain what knowledge, information, 
or evidence warranted his or her uttered hypothesis. In addition to this concrete task 
(diagnosis of the child’s conception or knowledge), the PT reflected on his or her 
proceeding in a more general way. Referring to the preliminary design of the interview, the 
PTs were asked to comment on the choice of some selected tasks, on the wording of 
questions, on their own gestures, or on deviations from the sketch: What prompted them to 
react to a child’s response? What was taken into account to confirm a diagnosis? These 
retrospective analyses of diagnostic interviews offered the chance to narrow the focus and 
to pay attention to details. In this sense, PTs’ data collection and interpretation obviously 
differed from real-time practice in an interview that requires being concurrently aware of 
many more details.  

The analysis of all interviews was based on Grounded Theory methodology; therefore, 
codes were derived from data via open, axial, and selective coding or contrasting 
comparison of the data. Use of the software ATLAS.ti enabled video-data to be coded 
directly. To approach the aim of capturing identified characteristics of diagnostic 
proceeding in whole range (“saturated”, Corbin & Strauss, 2008, p. 143), we also include 
data which consists of written comments of 31 PTs (collected in 2011) and 
video/audiotaped peer-talks among 28 PTs about video-scenes of diagnostic interviews 
(collected in 2012). 

Findings 
Analyses of the study’s data supported the notion that cognitive elements of PTs’ ways 

of diagnostic proceeding in one-on-one interviews often resemble processes in qualitative 
data analysis. This includes acts like collecting, interpreting, and concluding within 
diagnostic micro-processes (see Figure 1). The findings also contribute to the identification 
of sub-categories of collecting, interpreting, or concluding and to interrelations among 
these sub-categories that hint at distinct types of diagnostic strategies. 
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Facets of Interpreting: Comparing, Contrasting, Coding 
Excerpts from re-interviews with Ann and Sue, Masters students in their last year of 

studies, display exemplary facets of interpreting within the diagnostic micro-process of the 
actional phase.  

In her interview with six-year old Tom, Ann offers empty boxes for ten eggs and some 
chestnuts. The boxes of ten are partitioned in four fields (see Figure. 2, cf. Besuden, 2003) 
since Ann intends to find out how children use these structures for counting or for 
abbreviated enumeration (i.e., counting strategies including subitising parts of an amount).  

 
Figure 1. Structured box used in one-on-one interviews Ann and Sue conducted with first-graders 

During the re-interview, Ann stops the video and comments on a scene where she has 
just put five chestnuts into the box (forming a row). Tom is asked to add further chestnuts 
in order to get a result of eight and fills two, then one more into the box. Answering Ann, 
he remarks, “Because I left two free, one more’d be nine, then ten.” 

Ann (07:08):  And there I noticed that he, eh, always took ten as a starting point for the 
higher numbers, well, for eight and a moment ago for nine. He remembers, 
okay there are ten in the package, and then he always counts backwards. 

In her comment, Ann compares and refers to Tom’s previous work (“a moment ago”). 
Comparing details to a child’s previous utterances or actions, to that of others or to the PTs 
own concept may also occur in terms of contrasting different scenarios: 

Ann (08:30):  Here, he saw, okay, there are four in one box and there are another four in the 
second box, well, four plus four equals eight, but he didn’t do it that way in 
the next task. There he’d count single ones, it was done quite differently. 

Sue uses the same kind of tasks in her interview with six-year old Ben. She wants him to 
find out how many chestnuts have to be added to four chestnuts (which are presented in the 
“square” on the right side of the box) to get a result of seven. Ben replies by first adding 
two (forming a “rectangle”), then one more to reach seven (Ben: “These are six, then 
seven.”). Sue codes these actions by creating the new term “auxiliary calculation”: 

Sue (05:40):  “Responding to my enquiry, how he’d done this, now, how many he’d add, 
actually, I only wanted to hear ‘three’, well, he would seize on his, let’s say 
auxiliary calculation, six plus one equals seven.” 

PTs are similarly coding observed phenomena as they try to grasp unfamiliar, but 
obviously central aspects of a child’s conception. Codes are often referred to later in the 
interviews (e.g., Sue’s reference to the code “auxiliary calculation”, 22:30) and may also 
substitute established terms (e.g., “shortcut” instead of subitising). 

Facets of Collecting: From Observing to Tracking, Recognizing or Sorting 
Findings of the study also reveal that collecting information within the actional phase 

of a diagnostic micro-process may vary concerning the type of collecting and concerning 
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the choice of information, as the following excerpts display. In our analyses of the PTs’ 
process-oriented analyses we took into account that facets of data collection may include 
observations which are not mentioned by the PTs. Subconsciously grasped information 
(e.g., on a child’s hidden insecurity, fear to fail when working on the given task, or 
motivation while working on a task) could also have an influence on a conclusion which is 
drawn later on. In this sense, we are restricted to focus on the mentioned items. Besides, 
there is no way to tell data collection in the interview from data collection that can 
definitely be assigned to the re-interview. 

PTs’ data collection was coded as observing when we considered the PTs to watch 
closely what was happening in the diagnostic situation. All PTs did listen attentively to the 
child’s utterances. They paid attention to significant details, but they most often (also) 
noticed the (singular) occurrence of micro-incidents that were only loosely connected. In 
this sense, data collection included various details (see list in table 1) and often ended up in 
collections that resembled a “colorful bunch of flowers”.  

On a higher level, facets of collecting coded as tracking refer to the skill of following a 
series of activities or utterances. This includes to follow a child’s action over a longer 
sequence and to maintain attention during the diagnostic situation. This can be seen in the 
following protocol of Lisa’s re-interview on an interview with 6-year old Sam. Sam is 
asked to take five chips (one side blue, the other side red) and comment on possible ways 
of displaying an addition with these manipulatives. Sam starts with spreading the chips 
over the table and starts to sort them, “Three red ones and two blue ones”, as Lisa stops the 
video: 

Lisa (01:51):  To comment on this, I’d say he separated red and blue from the beginning 
and named what was lying on the table. 

Later on, Lisa tracks this idea and collects further information from subsequent situations 
that refer to this issue (sorting and considering position of colors). 

Lisa (02:16):  Here, it is clear that he separated the colours from the beginning.” 

Lisa (10:20):  We wanted them to find that sorting the possible additions helps to find all of 
them, yes and he is arranging them in any kind of structure, but … not the one 
we had intended them to find … But in a way he does sort the possible 
arrangements because in this corner here, the blue ones are closer together. In 
the next row, the blue ones stick closely together, too, and there the red ones.” 

PTs’ data collection was coded as recognising when they repeatedly identified details 
they had already noticed in previous situations. In contrast to tracking, this was restricted 
to single incidents. Sorting in PTs’ data collection was identified when they found or 
intentionally searched for groups or patterns in children’s utterances or actions. A further 
analysis of PTs’ comments also reveals a wide range of mentioned details (see examples in 
Table 1). 
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Table 1  
Various sources for interpretation: What is collected? 

Collected Example  
Verbal utterance  “This boy, he was able to identify the summands and he 

said, ‘This number and this number equals this number.’” 
(Anne) 

Activity “He’s drawing a circle around this piece of the pattern.” 
(Pam) 

(In)correctness of solution “He was supposed to draw a circle around repeating parts 
of the pattern, but he failed.” (Pam) 

(Elements of) strategy “He used counting strategies, saw 4 and continued counting 
from that first summand.” (Sue) 

Eye movement “He hesitated and looked the other way.” (Anne) 
(Subtle) movements of lips, 
head or hands 

“I see he is nodding and I guess he’s counting up to five 
here.” (Lisa) 

Emotional state “I got the impression he’d start crying.” (Anne) 
Interviewer’s behaviour “Okay, I liked what I did in this situation as we decided to 

accept ‘wrong’ answers, too.” (Sue) 

Discussion 
The study responds to the detected lack of knowledge regarding qualitative facets of 

diagnostic proceeding in one-on-one interviews and thereby contributes to strengthen the 
“power of task-based one-on-one interviews” (Clarke, 2013) in daily practice. Even if the 
reported findings are restricted to a certain type of tasks (arithmetic issues) and that they 
refer to a rather small number of participants (n=28 in peer-talks; n=7 re-interviews), the 
study takes a look behind the scenes”of PTs’ diagnosing in one-on-one interviews. 

PTs’ attention was most often attracted by children’s obvious or prominent activities or 
utterances. Items were also collected if the PTs found surprising deviations from what they 
had expected before. Furthermore, other incidents obviously exactly matched what they 
had expected. This emphasises the importance of KCS (e.g., knowledge of common 
(mis)conceptions) as both deviation and alignment can only be stated if there is knowledge 
which can be used for this comparison. Additionally, this underlines the close relationship 
between collecting data and reasoning about the collected details (interpreting and 
concluding). Yet, this relationship does not necessarily appear as a linear process in PTs’ 
diagnostic proceeding. Instead, PTs may run through these intertwined micro-processes in 
circles: a type of diagnostic strategy we call a branched interpretation. At the same time, 
we detect other diagnostic strategies, namely the strategy descriptive collector, when the 
PTs focus on collecting and describing the child’s actions and neglect both interpreting and 
concluding.  

This reveals hidden diagnostic practices that have to be uncovered in order to make 
them explicit. They are assumed to be of great importance for teacher education. Hence, 
further investigations in the project diagnose:pro will explore, for example, how elements 
of diagnostic strategies and types of strategies can be taken up in discussions of university 
courses. This includes making explicit what problems may occur when the strategy 
descriptive collector is predominant. Prospective research in this field will have to examine 
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if awareness of (elements of) diagnostic strategies and types of diagnostic strategies 
(including awareness of strategic diagnostic tools) may contribute to appropriate 
interpretations of children’s utterances in interviews. This might help to identify a 
theoretical and practically relevant framework for high-leverage diagnostic practices 
(including various facets of collecting and interpreting) to cope with diagnostic challenges 
in the classroom. 
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As part of a project that is examining how to support teachers in the use of challenging 
tasks and those teacher actions that encourage students to persist, we focused on the 
activities of students and teachers during seatwork. We describe the nature of teacher 
interactions with students, student behaviours when working on challenging tasks, and the 
relationships between the two. Interactions that seemed most beneficial were brief, and 
usually preceded by the teacher watching and listening to the students at work. 

Background 
The Encouraging Persistence Maintaining Challenge (EPMC) project has been 

investigating the ways teachers can be supported to use challenging tasks in mathematics 
and what teacher behaviours might encourage students to persist (Sullivan et al., 2011). We 
use the term persistence to describe student actions that include students concentrating, 
applying themselves, believing that success is possible, and making an effort. We describe 
tasks as challenging in that they allow for the possibility of sustained thinking, decision 
making, and risk taking. 

Three elements considered key to helping students engage with, persist at, and learn 
from challenging tasks are “the ways in which the tasks are posed, the interactive support 
for students when engaged in the tasks and collaborative reviews of the class explorations” 
(Sullivan et al., 2013, p. 1). The research team has previously reported on a proposed 
structure of the lesson (Sullivan et al., 2014), ways of introducing challenging tasks 
(Cheeseman, Clarke, Roche, & Walker, under review), and the effective use of the 
summary phase (Walker, 2014).  

The three key elements mentioned tend to occur in one of the three phases of the 
lesson: Launch-Explore-Summarise (Lampert, 2001). In this paper, we examine one aspect 
of these key elements or lesson stages: the explore phase. Japanese teachers use the term 
kikan-shido to mean between desk instruction, describing that phase in the lesson when 
students participate in seatwork, sometimes individually or in groups, while the teacher 
roams around the classroom, providing support and interacting with students as necessary. 
The activities and function of these interactions have been documented across several 
countries in the secondary context (O’Keefe, Xu, Li Hua, & Clarke, 2006). O’Keefe et al. 
(2006) developed a list of teacher activities during kikan-shido that were common across 
12 countries in 8th grade classrooms. The four principal functions for these activities were: 
(1) monitoring student activity; (2) guiding student activity; (3) organisation of on-task 
activity; and (4) social talk. For a detailed description of each function and the related 
activities, refer to O’Keefe, et al. (2006).  

Stein, Grover, and Henningsen (1996) examined the extent to which the 
implementation of a task remained consistent with how it was set up and the factors that 
appeared to be associated with the decline of task demand, particularly when the task had 
high cognitive demand. Some of the reasons for the demand declining were teachers over-
explaining the task, students failing to engage with the task, and teachers providing too 
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little time for students to explore and think about the task. 
As students work in small groups to solve problems, Yackel, Cobb, Wood, Wheatley, 

and Merkel (1990) asserted the importance of social interactions (between teacher and 
student and among students) that provide opportunities for students to explain their 
thinking and to understand one another’s thinking.  

The research questions that guided this aspect of the project were: 
1. What is the nature of teacher interactions with students as they are working in pairs 

on challenging tasks? 
2. Which teacher interactions seem to be the most productive for student work? 

The Project Context and Data Collection and Analysis 
In 2014, 47 teachers from Years 3 and 4 at 13 Victorian primary schools began their 

involvement in the project. The data reported in this paper were collected from two Year 3 
classrooms in an independent girls’ school. Each class consisted of 16 students. The 
teachers in these classrooms were each videotaped teaching three of the ten lessons 
provided by the EPMC project during a professional learning day. The content for the ten 
lessons was addition and subtraction, with an emphasis on mental strategies. As well as a 
single camera on a large tripod set up to capture the teacher’s movement and words, four 
small cameras were placed on tables to capture pairs of students as they attempted to solve 
tasks. The five cameras enabled us to film the teacher interactions with eight students in 
each classroom. The students completed a pre- and post- online test on similar content to 
the lessons. The teachers were interviewed after each lesson about their perceptions of the 
students’ engagement and learning, and these interviews were transcribed. Work samples 
were collected from all students in every lesson. 

Each lesson consisted of a main task, possible prompts, and a consolidating task. An 
important feature of the lesson documentation was the inclusion of enabling prompts for 
students who have difficulty making a start on the main task and extending prompts for 
students who finish quickly. The intention was that the student who succeeds on the 
enabling prompt(s) could then proceed with the original task (see Sullivan, 2011). During 
the professional learning day, the teachers were introduced to the idea that a lesson may 
have three phases: Launch, Explore, and Summary phases. The Explore phase was 
suggested as the time when the teacher would roam around, observe students, and ask them 
to explain their strategies.  During this time, the teachers were encouraged not to tell 
students how to solve the problem, but rather to provide enabling or extending prompts as 
required, to select students for sharing at the summary phase, and to allow students time to 
struggle with the task and not to intervene too quickly. One helpful idea we have used 
throughout the many iterations of this project is the zone of confusion. Teachers were 
encouraged to discuss with their students the notion that for genuine learning to occur, it is 
likely that at some stage they will be in this zone of confusion. Teachers reported that 
students responded very well to this notion. 

For brevity, only one of the three lessons (for each teacher that was observed) will be 
discussed. This lesson was called Finding ways to add in your head and the main task was: 
Work out how to add 298 + 35 in your head. What advice would you give someone on how 
to work out answers to questions like this in your head? The enabling prompts were: 

• Work out the answer to 28 + 7 in your head. 
• Work out the answer to 98 + 7 in your head. 
• Work out the answer to 198 + 7 in your head. 
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The extending prompts were: 

• Work out how to add 98 + 97 + 67 in your head. 
• Work out how to add 295 + 96 + 79 in your head. 
In relation to the main task (298 + 35), Fuson et al. (1997) provided a very detailed 

analysis of students’ methods in multi-digit addition and subtraction calculations, grouping 
them into two primary classes (decompose tens and ones, and begin with one number 
methods), as well as a third category of mixed strategies. In discussions of the task at the 
professional learning day, we anticipated the following strategies, and used the names 
given in parentheses: 

• (Change both numbers) (298 + 2) + (35-2) = 300 +33 = 333  
• (Overshoot) 300 + 35 – 2 = 333 
• (Jump)  298 + 10 + 20 + 3 = 333 
• (Split) 200 + (90 + 30) + (8 + 5) = 333 
• (Other partitioning) e.g., 290 + 35 + 8 = 333 

Interestingly, using Fuson et al.’s categories, the fourth strategy involves decomposing, the 
third involves beginning with one number, and the other three are mixed strategies. 

The consolidating task consisted of a worksheet of four additions (each a 3-digit plus a 
2-digit number), with the request to show in writing how they worked it out. No student 
was given the consolidating task in the lessons we observed. 

All conversations in which the teacher participated during kikan-shido were 
transcribed, and two coders independently classified the teachers’ actions, using the 16 
categories of O’Keefe et al. (2006). Where the coders disagreed, discussion eventually 
yielded agreement. The videos of the pairs of students were observed and three that 
demonstrated a range of success on the task were transcribed for further analysis. 

 

Results 
We now describe three aspects of the data: the teacher activities and their frequency 

during kikan-shido; descriptions of some students’ strategies and behaviours during seat 
work; and pre- and post-test results on an item of similar content to that of the lesson. 

Teacher Activities During Kikan-shido 
Drawing upon O’Keefe’s four principal functions during kikan-shido and their related 

teacher activities, Table 1 shows the frequency of these activities in each of the two 
teachers’ lessons (lessons A and B) and the time spent on kikan-shido and the proportion 
of the lesson spent on kikan-shido. 

Not surprisingly, there are similarities and differences in the number of occurrences of 
each activity between the two lessons. Given the lessons were being recorded for the 
purposes of the project and were at Year 3 level (not Year 8), we were not surprised that 
there was no time spent monitoring homework completion or arranging the room. In 
neither lesson did the teacher need to re-direct a student who was perceived to be not 
paying attention. In both lessons, all students appeared to maintain engagement with the 
task. It was interesting to note that in these lessons neither teacher chose to Give advice at 
the board during kikan-shido. This was the case in all of the six lessons we observed. 
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Table 1 
The Frequency of Kikan-shido Activities Across Two Lessons  

In lessons A and B, the teachers made 42 and 35 visits, respectively, to pairs of 
students at tables and on 10 and 5 occasions, respectively, the teachers looked and listened 
to students working on the task and left without speaking to them (one type of monitoring 
progress).  

For our analysis, we chose to code the teachers’ action of providing an enabling or 
extending prompt to a student or pair of students as Giving instruction/advice at desk. In 
both lessons, all students received one or other of the prompts during kikan-shido. 

It is clear that while the teachers spent similar amounts of total time on kikan-shido, 
Lesson A had a much greater frequency of activities generally, and of monitoring progress, 
questioning students, and answering questions, in particular. 

Student Behaviours During Seatwork 
The students were sent to their seats to write their solution strategies for 298+35. Prior 

to this, they had had quiet, individual time on the floor to come to a solution without pencil 
and paper. At the request of the researchers, each pair of students was given one A3 page 
with the main task, so that they might share their strategies aloud. The eight students in 
each class filmed during seatwork were spread across the room with the intention of 
varying which students were observed over the three lessons that were videotaped.  

We now provide some examples of student strategies and teacher interventions. Due to 
space constraints, only three pairs of students will be discussed. In each case, the student 
behaviours prior to a teacher’s interaction (and its code), including the teacher action of 
providing a prompt (coded as giving instruction), and the subsequent student actions as a 
result, are described. We now describe the three events, and then reflect on them. 

 

 Lesson A 
20 mins (40%) 

Lesson B 
17 mins (30%) 

M
on

ito
rin

g Selecting work for sharing 2 0 
Monitoring progress 15 7 
Questioning student 10 2 
Monitoring homework completion 0 0 

G
ui

di
ng

 

Encouraging student 12 7 
Giving instruction/advice at desk 15 9 
Guiding through questioning 2 4 
Re-directing student 0 0 
Answering a question 12 5 
Giving advice at board 0 0 
Guiding whole class 0 4 

O
rg

an
is

at
io

-n
al

 

Handout materials 0 0 
Collect materials 2 0 
Arranging room 0 0 
School related 1 0 

So
ci

al
 

ta
lk

 Non-school related 3 1 
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Event 1. Molly and Gene wrote two methods for solving 298+35 after first checking 
the correctness of their mental solution by using the conventional vertical written algorithm 
(described as algorithm from now on). Molly used a jump strategy and wrote: You could 
do 298+30 which equals 328, then you add 5 which equals 333. Gene wrote: You could 
work systematically so 298+10=308; 308+20=328; 328+2=330; 330+3=333.  

At 9 minutes into seatwork, the teacher asked them to describe their solutions and then 
left them to think about whether there was a more efficient way. This interaction was 
coded as questioning student and lasted 70 seconds. At 13 minutes, Gene (using the 
strategy of changing both numbers) said, “You could go plus 2 is 300. Let’s do it an easy 
way. Take the five apart into 2 and 3”.  She wrote: Take the five apart into two and three 
and then go 298+2 = 300, then add 30 equals 330, then 330 + 3 = 333. 

At 16 minutes, the teacher approached and asked them to explain their most efficient 
strategy and then gave them the extending prompts. This interaction was coded as 
questioning student and giving instruction. Molly read the first one aloud (“Work out how 
to add 98+97+67 in your head”). They thought silently for 89 seconds. Gene said, “I 
haven’t got the answer but if you have, what is it?” Molly answered, “257”. Gene used the 
algorithm to check and got 262. Seatwork ended at this point. 

Event 2. Sue and Nell began by discussing possible strategies for adding 298 and 35. 
Nell explained her strategy (other partitioning) and wrote: First I had 298 and then I took 
away the 8 and added the 35 from the number. I added 8 and got 333. Sue was unable to 
come up with any solution strategy. She suggested, “Counting on the ones in your head 
and then adding the tens.” She also indicated the possibility of using an empty number line, 
but Nell wondered how this would be possible in your head. Sue suggested that the 
algorithm would also be hard in your head and that counting-on by ones “would take 
ages.”  

At 9 minutes, the teacher approached and asked them if they were ready for something 
“tricky”. The girls enthusiastically said, “Yes.” The teacher gave each girl a copy of the 
extending prompts, without first reading their solutions or asking them to share what they 
had written on the main task. Both girls were visibly perplexed by the new tasks. Sue said, 
“Okay, this is a bit harder than I thought it would be. … I’m in the zone of confusion.” 
Nell said:  

How do you work this out? … I can imagine inside my head there’s a big box and there’s no doors 
and I’m trying to find my way out … I can just see it. Me in a box and I’m trapped … it’s like, help. 

At around 13 minutes, Sue showed her paper to the camera, which demonstrated she 
had written two incorrect answers. At 16 minutes, the teacher asked them to “tell me what 
you did for 98+97+67.” Nell responded by describing a strategy that adds the numbers left 
to right in this way: “98+2=100; that leaves 95; 95+5=100; that leaves 62.” At this point 
(before Nell added the 100+100+62 that she had created), the teacher asked Nell to 
describe the steps again. During Nell’s responses, the teacher asked eight clarifying 
questions, gave one piece of advice and made four affirming statements. This was coded as 
guiding through questioning. In the second iteration of Nell’s explanation, she came to the 
conclusion that 64 remained on the last step, hence leading to an incorrect solution. The 
teacher noticed this wasn’t the same as Nell’s first response and suggested she try again. 
This interaction lasted 2 minutes. Seatwork ended about one minute later. 

Event 3. Zita and Sandy demonstrated solving the main task using the written 
algorithm and seemed unable to move beyond this solution strategy. Zita wrote the 
algorithm and explained the steps as: “8+5=13; so you put the 3 there, put the 1 there; 
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10+3 is 13; 2+1 is 3.” However they both agreed this wasn’t an easy method “to explain 
how you did it in your head.” At 9 minutes, the teachers asked them to explain their 
strategy (questioning student). The teacher commented that they were using an algorithm 
and left them to think about how they might do it in their head. After 16 minutes, without 
advancing any further in their thinking, the teacher intervened and provided the enabling 
prompts (28+7; 98+7; 198+7) (giving instruction). Both girls discussed their thinking and 
agreed on an appropriate mental strategy (overshoot; 28+10=28; 28-3=35).  For 3 minutes, 
Zita wrote (while Sandy waited): I first turn the seven into a ten. Now you know that 
28+10 =38, Now you know that 7 is 3 away than 10 so now it’s 38 take away 3 and that is 
35. She repeated this method for the next two prompts. Seatwork ended here. 

Reflection 1. Gene and Molly seemed to benefit from the teacher not providing any 
additional explanation on how to solve the task other than “there may be a more efficient 
way.” This appeared to inspire the students to consider more options, leading to their 
discovery of one of the most efficient strategies for this addition. From the lengthy silence, 
it was clear that the extending prompt was challenging for the students. Neither student had 
trouble putting their solution strategies in writing as well as engaging with the task with 
minimal teacher support. However, seat work ended before they completed the extending 
prompts. 

Reflection 2. The two students were originally clear about what it meant to solve 
something in their head, as opposed to a written method, though only Nell described a 
mental method to actually solve 298+35. Providing the extending prompts for both 
students caused a challenge as noted by their comments, and they clearly were in the zone. 
However, Sue’s lack of progress on the main task meant the extending prompt was likely 
to be too great a challenge and this proved correct. It may be that the enabling prompt 
would have been more helpful for Sue to make progress. We also noticed that the teacher’s 
desire for clarification by asking many questions interrupted Nell’s thinking and made it 
hard for her to keep the steps of her solution in her head.  It may be the teacher was 
struggling with making sense of Nell’s strategy on the run. 

Reflection 3. Zita and Sandy struggled to move beyond the written algorithm on the 
main task, but the provision of the enabling prompt seemed to provide just the right 
challenge so that Zita could access a successful mental strategy. She then proceeded to use 
it for all three prompts. Sandy did not solve the main task, and was left waiting as Zita 
solved and recorded the enabling prompt. Seatwork ended before they could go back to the 
main task. It may be that sharing the worksheet as a pair (as per the authors’ request to the 
teacher) may have contributed to some students waiting for their turn to write a solution. 

 

Student Pre and Post Test Results 
The students were pre- and post-tested using an online assessment that included ten 

mathematics items and some survey items. The item most closely connected to the lesson 
Finding Ways to Add in Your Head, was: What is 5 + 5 + 5 + 295 + 295 +295? All six 
students discussed earlier were incorrect in the pre-test on this item. All but two (Sandy 
and Sue) were correct in the post-test. In the two classes, overall, four of the 32 students 
were correct on the pre-test (12.5%), increasing to 16 on the post-test (50%). This 
compared to an increase across all Year 3s in the project from 22.2% (n=752) to 47.9% 
(n=624). 
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Discussion 
We have only reported three events of teacher and student activity during seatwork, but 

they support some general points and challenges that have emerged from these and other 
lessons we and our colleagues observed and analysed in the broader study. 

In both lessons, the teachers did a number of things well. They held back from telling 
students how to solve the problems, selected students for sharing, and allowed students to 
struggle. The introductions (though not discussed here) were engaging and provided 
motivation for students to engage with the task, and for most students the task demand was 
maintained. In both classrooms, the students were familiar with the term zone of confusion 
and they understood when they were in it. In most cases, the teacher interventions were 
brief, and sometimes the intervention involved only watching and listening. Both teachers 
commented in a pre-interview that their students had had not much experience writing 
down their thinking and that they anticipated it might be “a challenge.” However, we 
noticed that most students did this well. It was clear in both classrooms that the students 
were encouraged to share their thinking and listen respectfully. As one teacher said to the 
whole class, “When people were talking to each other they were looking at each other in 
their eyes, and they were really explaining to each other. Who thinks they learnt something 
from their partner?”  

During the project’s professional learning day the project team had encouraged 
teachers to allow students time to work on the task, first by themselves, then in pairs or 
groups. We noticed that even in pair work, during genuine struggle the students chose to 
think quietly by themselves. That is, without being prompted by the teacher, the students 
naturally took that silent time to think through the task by themselves first. 

We also noticed some challenges for the teachers and students. One challenge was how 
to help students move beyond the written algorithm in attempting to solve tasks like these. 
While most students seemed to have no trouble differentiating between a solution strategy 
obtained mentally and a written method, some students initially struggled with deriving a 
mental strategy. It seemed in one instance at least, that providing a task with smaller 
numbers (the enabling prompt) was enough to help students make this transition. While the 
use of enabling prompts assisted student thinking in the lessons described, seatwork ended 
before there was time to revisit the main task. On some occasions we noticed that the 
decision to give an extending prompt without first checking students’ success or 
understanding of the main task seemed unjustified and unhelpful for the students’ progress.  

Sometimes we noticed that making sense of a student’s strategy and attending to the 
mathematics in what they were saying was difficult. Successful improvisation (Borko & 
Livingston, 1989) is more likely when the teacher has taught the content before and can 
anticipate students’ responses more easily. This lesson and its structure were new for these 
teachers. We noticed sometimes that extended teacher questioning (coded as guiding 
through questioning) interrupted the student’s flow of thinking, and added unnecessarily to 
their working memory. It seemed that the most productive teacher interactions were short, 
well-timed interventions and preceded by respectful watching and listening (Fennema, 
Carpenter & Peterson, 1989).  

We were very encouraged by the two classes’ post-test results on an item of similar 
content. We noted that some students who seemed to struggle but had some success (even 
if the success was not on the main task, but on the easier enabling prompt) were also 
successful on the post-test item. We cannot be sure of course that the learning that 
contributed to such improvement on this item only occurred as a result of this lesson.  

In summary, we have added to the body of knowledge on kikan-shido, with our focus 
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on Australian primary mathematics classrooms. However, a number of questions still 
remain. The desirable amount of time allocated to seatwork, the recommended proportion 
of students who receive prompts, and the appropriate balance between individual and pair 
work are all areas worthy of further research. 
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Programming and the use of robotics present affordances for mathematics learning with 
application across a broad range of ages. However, realising these affordances in the classroom 
requires educators to recognise and build apron these potential opportunities for learning. This 
paper reports one component of a larger study, examining teacher discourse in semi-structured 
focus group as they review engagement with robotics. Data highlights limited engagement in 
mathematisation and the key role of mathematical pedagogic content knowledge (PCK). 

Background 

Robotics in Mathematics Learning 
The use of robotics and programming has a long-standing history in mathematics 

education with tools such as ‘turtle’ geometry or Logo explored in classrooms for over three 
decades. Here, research suggests that children engaging with programming robots to move 
have opportunity to explore spatial concepts, problem solving, measurement, geometry, and 
engage with meta-cognitive processes (Clements & Meredith, 1993; Yelland, 1994). Papert’s 
seminal work in this area suggested that Logo programming, and the visual nature of this tool, 
was a way to “externalize” learner’s ideas and make concepts “more accessible to reflection” 
(Papert, 1980, p. 145). The visual nature of these tools, and the use of dynamic representation 
enables engagement in mathematics learning and opportunities for exploration of both content 
within mathematics and processes of mathematics learning. 

A growing number of studies promote the use of robotics in engaging children in problem 
solving and learning (Bers, 2010; Bers & Ettinger, 2012; Bers, Seddighin & Sullivan, 2013; 
Horn & Jacob, 2007; Horn, Solovey, & Jacob, 2008; Horn, Solovey, Crouser, & Jacob, 2009; 
Sullivan & Bers, 2012). These studies suggest that robotics can be engaging learning 
opportunities (Kazakoff, Sullivan, & Bers, 2013; Stoecklemayer, Tesar, & Hoffman, 2011) 
and promote collaboration and problem solving, with tangible interfaces and hybrid graphical-
tangible tools enabling participation both younger and older learners. Highfield’s research, 
using simple robotics with young children, suggests a range of mathematical content that can 
be explored and highlights the key role of the task in promoting mathematics learning 
(Highfield, 2010; Highfield & Mulligan, 2009). Goodwin and Highfield (2013) suggest that 
the manipulable nature of these tools affords opportunity for problem solving and reasoning; 
with the task at hand, combined with the tool, enabling mathematical thinking. However, 
robotics alone do not enable mathematical engagement, with the key role of the educator, the 
task, and the context of learning also playing integral roles in extending mathematics learning. 

 

Pedagogical Content Knowledge for Teaching  
The role of the teacher in mathematics learning is essential, with research suggesting the 

intersecting domains of pedagogical knowledge, and content knowledge as particularly key in 
mathematics learning (Ball, Thames, & Phelps, 2008; Hill, Ball, & Schilling, 2008). While a 
teacher of mathematics must know how to solve the problems they provide to their students, 
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such knowledge of content alone is insufficient. A teacher of mathematics must also know 
how to represent a solution to such a problem with a picture, explain why the solution works, 
and identify common mistakes made by students as they solve such problems (Hill, Rowan, & 
Ball, 2005; Hill, Blunk, Charalambous, Lewis, Phelps, Sleep, & Ball, 2008). Thus, 
pedagogical content knowledge is comprised of both knowledge of content and pedagogy, 
and would be displayed by one knowledgeable of the best ways of representing some concept 
for students, as well as the ability to explain such concepts in order to address students’ 
conceptions (Schulman, 1986).  

Ethnomathematics as a Tool to Examine Mathematical Engagement 
Savard’s (2008) ethnomathematics model presents different context in the mathematics 

classroom: mathematical; sociocultural; and citizenship. This framework presents the starting 
point of a lesson as situated in the sociocultural context, where an object or a phenomenon 
was studied within a situation. The mathematical modelization of the situation brings students 
into the mathematical context. The implications of the mathematical results are studied within 
the sociocultural and the citizenship context.  Formulation of results during the classroom 
discussions can help students develop citizenship competencies such as critical thinking 
reflection and decision-making (Savard, 2008). Thus, within this robotics project, we studied 
different contexts in the teachers’ discourses to situate their epistemological point of view, as 
well as opportunities for students to develop their mathematical competencies. The robotics 
project was considered as the sociocultural context in which the sociocultural objects were 
studied in order to develop different kind of knowledge.  

Given this, the robot itself might be studied using movies, stories or visual arts. The tasks 
to be performed by the robot, that is, the missions, are also parts of the sociocultural contexts. 
Coding the robot using mathematics is part of the mathematical context. The citizenship 
context is interpreted as what is involved living in society, including political, economic, and 
societal rules. The mathematical context is rich and offers huge potential when it is time to 
code a robot. However, this could only be realised if teachers were able to recognise and 
engage with this mathematical context and learning afforded. The study drew on this 
framework and examined the following research questions: 

1. What was the focus of teacher attention when planning and implementing a robotics 
project in the classroom? 

2. To what extent were teachers able to identify and articulate the mathematical context 
within this robotics project?  and 

3. How did teachers identify and extend on mathematics learning?  

Based on that, we could define the nature of the teachers’ sensitivity to the milieu 
(DeBlois, 2006; Savard, Freiman, Larose, & Theis, 2013) when they used inquiry-based 
learning to integrate mathematics in the robotics project. The teachers’ sensitivity to the 
milieu might be defined by what teachers are paying attention to when planning, teaching, or 
evaluating students. 

Methodology 
The robotics project took place in September 2010 and ended in June 2011. Six French 

Canadian elementary school teachers from Grades 1 to 6 volunteered and registered for this 
project offered by their School Board. The School Board provided all the robotics material. In 
addition, two mathematics consultants and two computer technology consultants provided 
training and support for the teachers. The training and the support were provided over six 
days of meetings through the school year with computer technology consultants and 
mathematics education consultants alternating presentation and attendance at meetings. 
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Within this project the researcher acted in the role of mathematics consultant and conducted 
the semi-structured focus group.  

The project focused on two main points of data collection including: (1) data collected 
from the classroom context, including teacher plans and robotic tasks, referred to as 
“missions”; and (2) a semi-structured focus group with the teachers was also conducted to 
explore teachers’ implementation of the project in their classroom. This paper refers only to 
this second data component. Within the focus group, teachers began by discussing how the 
robotic project was conducted in their classrooms, more specifically outlining what they did 
with their students. The discussion was held in French. This discussion was video-recorded 
and transcribed by a research assistant and translated into English. The teachers’ discourse 
was analysed using the afore mentioned framework (Savard, 2008) to explore teacher’s 
sensitivity to the mathematical context and to mathematisation of learning with robotics. 

Results and Analysis 
Through the discussion among elementary schools teachers, three School Board 

consultants, and the researcher, two milieus emerged from our corpus of data.  

The First Milieu: Learning Opportunities for Students 
The first milieu that emerged from our data is related to the learning opportunities for 

students. The robotics project enabled students to learn about and use different kinds of 
robots, to explore and their use as well as constructing and programming robots using Lego 
NXT or Lego WeDo. The learning opportunities are in fact activities that are related to the 
content to be learnt within the robotics activities. Along with technologies, those teachers 
identified mathematics, language arts, and visual arts as content to be learnt by students. 

For technologies, teachers mention robots as one item of content. Here, they wanted 
students to learn about robotics, especially what makes a robot a robot, such as sensors.  They 
also paid attention on how to program or code the robot, using a computer-program. As one 
teacher stated:  

Then, I went to the computer lab to look at the program SCRATCH with the students, looking at the 
different colours, controls and movements. (Grade 1 teacher Sophie). 

Mathematics was an articulated goal for some teachers when using the robotics with 
students. First, the tasks involved mathematical knowledge such as geometry and 
measurement. For example, in Grade 6, the robot had to do a path made of square of one-
meter squared or a rectangle where the lengths needed to be double the width.  

Then, there were some mathematical concepts needed to code the robots:   
Just before the holidays, I showed them the program on the board and the little presentation. I created 
four small missions, for example one of them was to make the robot move forward in a straight line for 
a meter. For the second mission, the robot needed to turn by a quarter. We worked on that in Math, the 
rotations by a quarter to the left or right. The second mission was only on rotation, then I had planned 
to make them do a square, but we did not get to that. (Grade 4 teacher Priscilla). 

In the above example, the task outlined facilitated engagement with measurement content, 
with the teacher demonstrating an understanding of pedagogy and content in mathematics 
learning, harnessing the robotic tool to facilitate mathematical engagement. 

Language arts were also outlined, with some teachers identifying the need to have 
students know the vocabulary associated with the robot. Thus, students learnt the names of the 
pieces used for building the robot, because they need this information to build it. In one of the 
Grade 1 classroom, those words were studied along with the regular vocabulary words: 

I focused really on the vocabulary and the right terms. It is not a thing, but actually a bolt for example. 
The importance of using the right term, where it is appropriate.  (Grade 1 teacher Nancy). 
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In one Grade 4 classroom, students had to write a story about robots doing mission on Mars. 
The robotics gave a nice theme to explore for students: 

They will imagine it as if it occurred for real that the robot landed in Mars. Then, many imaginary 
things would be able to occur. Their robot can even have emotions; we bring the project to the next 
level. Here we continue by focusing on French and expression. (Grade 4 teacher Priscilla). 

 In addition to the Language Arts focus, one Grade 1 teacher mentioned visual arts: she asked 
her students to build a robot in team of two using recycling material as the starting point of 
the project:   

I started with a Visual Arts activity. I asked them first what a robot was in their opinion, and I also 
asked them to bring recycled materials that they would use to make their artwork in groups. (Grade 1 
teacher Sophie). 

The Second Milieu: Learning Conditions 
The second milieu that emerged from our data is related to the learning conditions for 

implementing robotics. Teachers referred to time, material, classroom management, and 
motivation for students as main learning conditions. 

Time was discussed as the length students used to complete some tasks with the robots. It 
is also related to plan the use of the computer lab, as well as the material. Because students 
were required to build the robots using Lego bricks, they have to carefully plan the time 
allowed to it: 

When we are at the point of programming, it is not necessary to do it all at once. Like classifying the 
pieces, we have no choice, but to do it all at once. The construction part too, I found it hard to cut that 
part in two. When we do a bloc, we get settled and everything is there, ready to build it all, but for the 
missions one period and “one flapping time” is enough. (Grade 4 teacher Priscilla). 

The material brings also one constraint: as there was not enough material for every student; 
they had to share the material. This led teachers to talk about teamwork and classroom 
management: 

 It is possible that we do robotics all together, but for the mathematics aspect of it I prefer that they are 
only two to work on the robot. After that, it was the construction of the robot itself. It was not easy for 
them to be on the same page and to each respect their own role. You give out the pieces, you build, etc. 
Half of the students were able, but the other half was not. There was always one that wanted to hold on 
to the pieces. Teamwork is hard and they do not have the maturity. (Grade 4 teacher Priscilla). 

 The Grade 6 teacher talked about how students divided the work of building the robot, 
coding and testing with the robot: 

They assigned each other the tasks, but they rotate. It is not always the same person doing programing; 
therefore, they each get to try different tasks. (Grade 6 teacher Phil).   

Finally, they spoke about how the robotics project motivated students: they were thrilled 
to work with the robots. As a grade 1 teacher said: 

Yes, boys just like girls were really motivated. They had their eyes wide open. They were eating the 
information. Afterwards, I presented the robots with a PowerPoint presentation once again. (Grade 1 
Teacher Nancy). 

The Grade 4 teacher Priscilla expressed how those learning conditions were tied together: 
The first two missions everyone had the chance to complete them. The third one only one team almost 
completed it. They did not want to stop. It was December 22nd in the afternoon and we were working on 
robotics. Usually we do other things, but I said that we would work and have fun while working on 
robotics. They were very happy. Even though they had something hard to do and that they were tired, it 
went well. But at the end, they could not take it anymore.  (Grade 4 teacher Priscilla).  
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Discussion 
Overall, an analysis of dialogue in this focus group indicates that the teachers spent more 

time discussing the learning conditions than the learning opportunities for their students. 
Outlined above as the second milieu data from this focus group suggests that teachers were 
paying more attention to the implementation of the robotics project than the learning process 
of their students. Thus, those learning conditions seemed very important for them to share 
among their colleagues. We can look at those learning conditions as important aspects to 
consider facilitating the learning opportunities. It seems that the pedagogical knowledge for 
teaching involved was important for facilitate students learning, but it was not directly aimed 
toward some specific concepts to be learnt, such as addressing students alternative 
conceptions (Savard, 2014). In this case, the milieu they were paying attention belongs to the 
citizenship context, where all learning conditions refers to how to live in society: planning 
time, dividing work, rules and norms as a group and motivation to do something.  

When they discussed the learning opportunities for their students, they talked more about 
the tasks completed than the mathematics concepts to be learnt. It is also surprising that they 
did not mention learning science and technology at all. While it was evident that teachers 
could address some arts (languages and visual) around the robots, there were no scientific or 
technical concepts involved in the projects described with this focus.  

Again, the pedagogical knowledge for teaching mathematics present in the discussion was 
quite superficial. Discussion of mathematical context and mathematical opportunities was 
limited. The teachers did mention mathematics as a task to be performed by the robot and the 
role of problem solving as students planned and represented code for the robot to perform the 
task. Here, the mathematics involved to perform the task, i.e. the robots’ mission, can be 
considered part of the sociocultural context because it is the mission to be performed by the 
robot. From an epistemological point of view, it does not involve any use of mathematics 
other than mathematics as cultural symbol or artefact. It could be any symbols on drawn on 
the floor for the robot roll into. The mathematical meaning given to these representations has 
to be connected to coding the robot to do that. On the other hand, the mathematics involved in 
coding the robot is part of the mathematical context because is all about using mathematics to 
code the robot to perform the task. There is mathematization or modelization of the situation. 
There are different processes involved and mathematical reasoning is absolutely necessary to 
code the robot in relation to the task to be performed. In our data, this is missing in teachers’ 
discussion. They knew that the robotics project was about mathematics because they were 
taught and trained in this direction. But this is what they were less sensitive too. For instance, 
they did not talk about this knowledge on how to assess it. But it might be because they were 
not ready yet to think about it in their implementation process. In this case, they were not 
paying attention at that time. Another reason might be because they are still learning about the 
robots, how to code and the mathematics involved. Thus, knowing how long the robot needs 
to rotate in order to follow a path into a maze is not a mathematical knowledge written into 
the provincial curriculum and thus, they might not be familiar with. 

Concluding Remarks 
While this study is limited due to its small size and focus on one data set its findings are 

relevant, highlighting the challenges teachers face in implementing technology in classrooms. 
Within this study teacher’s focus on the use of the tool, rather than on the mathematics 
learning afforded by the tool suggests. In that case, how can we support teachers to do both? 
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Statistics is a domain that is taught in Mathematics in all school levels. We suggest a 

potential in using an interdisciplinary approach with this concept. Thus the development of 
the understanding of a situation might mean to use both mathematical and statistical 

reasoning. In this paper, we present two case studies where two middle school Mathematics 

teacher taught a lesson in Statistics where the students had the task create a pie graph 

representing the data. Results show us that their procedural vision of Statistics lead them to 

focus more on a graphical representation and thus led to avoid all statistical reasoning 

development (Garfield, 2002).  

Introduction 

In the 21st century, citizens must be able to solve complex problems that cannot always 

be done by applying one strategy or a particular algorithm. More creative approaches that 

require using high cognitive level thinking are needed in order to bring solutions to these 

problems. Do students have the necessary opportunities to develop the abilities needed to 

adapt themselves and be productive citizens in their society? Do they have the 

opportunities to develop their mathematical competencies along with citizenship 

competencies (Savard, Manuel & Lin, 2014)? We argue that students should be exposed to 

rich tasks in Mathematics and Statistics classrooms for them to be better prepared to face 

the realities and problems in society. Such tasks include problems that are: open-ended 

(can have multiple answers and can be solved using various strategies); complex (require 

many steps to find answers; require to investigate a particular situation or to pose a 

question to investigate; ask to make choices and justify them; or require to find patterns, 

generalise and prove results.); ill defined (missing necessary data that prompt students to 

search or define them to find answers); have different interpretations; and are 

contextualised (Manuel, 2010; Manuel, Freiman & Bourque, 2012). However, 

Mathematics and Statistics are still often taught in a way where students develop 

procedural understandings of concepts. Using these traditional teaching methods tends to 

have students see mathematics as a school subject that consists of rules, formulas, 

equations and algorithms to apply, thus enabling them to make links between mathematics 

and the real world or even between different mathematical concepts (Boaler, 2009). Yet, 

studies suggest that students who experience any form of rich inquiry-based learning tasks 

seem to enjoy learning mathematics, develop more conceptual understandings of 

mathematical ideas, achieve better in standardised testing, and develop the necessary 

abilities to solve unfamiliar and more complex problems (Boaler, 1998, Boaler & 

Humphreys, 2005). 

In this paper, we examined how two middle school teachers support students in making 

interdisciplinary links between statistics and mathematical concepts, and between statistics 

and the context of the tasks they were solving. We suggest that a very large number of rich 

tasks could be used in order to study ideas in statistics, and interdisciplinary and intra 

disciplinary links could be developed while solving those tasks. The teachers selected 

come from another larger nationwide study on pedagogies used by middle school 
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mathematics teachers in regions of Canada. Both teachers taught a lesson on pie charts. 

One of the teachers who teach Grade 7 mathematics in Quebec proposed a task to compare 

the frequency of the colours of candies found in Halloween bags (the lesson was conducted 

a week prior to October 31). The other teacher who teaches Grade 8 mathematics in New-

Brunswick used technology to support her teaching and proposed problems for students to 

solve in her lesson. Kader and Perry (1994) argue that students can also develop statistical 

concepts and problem solving strategies using technology. The goals of our study were to 

examine the interdisciplinary links the teachers made between statistical ideas and 

mathematical concepts, and between statistics and the context of the tasks presented in 

their lessons. We also examined the teachers’ representations of statistics to investigate if 

their representations guided their actions during the lesson. We defined representations as 

an intersection between a situation and the knowledge mobilised by a person according to 

this situation (Brun & Conne, 1990). The following questions guided our study: 

 What links did the teachers created between statistical and mathematical ideas in 

their lessons? 

 What links did the teachers create between statistics and the context of the tasks 

and/or other disciplines? 

 What are the teachers’ representations of statistics? 

Theoretical Framework 

The idea of integration curriculum orientation is not new in education (Lowe, 2002). In 

the context of major worldwide changes during in the last decades and new complex 

phenomena, it is essential to take into consideration the new social realities. Thus, instead 

of integrating disciplines as stand-alone school subjects, like it was suggested in the 70’s 

(Lenoir & Sauvé, 1998), the new realities bring forth the need for interaction between them 

(Legendre, 1993). These interactions might be called interdisciplinarity and could be 

considered as a negotiation between disciplines, where the development of one discipline 

contributes to the development of others (Fourez & Larochelle, 2003). It can offer an 

extended perspective and allows disciplines to support each other. For example, collecting 

and interpreting statistical data might contribute to understand social or scientific 

phenomena. 

Instructional curricula in Statistics, also known as data analysis (National Council of 

Teachers of Mathematics (NCTM), 2000), focus on exposing students to a statistical 

approach, where students from K-12 should develop the abilities to: 1) formulate questions 

that can be addressed with data and collect, organise and display relevant data to answer 

them; 2) select and use appropriate methods to collect data; and 3) evaluate inferences and 

predictions based on data (NCTM, 2000). Throughout this progression, it is aimed that 

students develop statistical reasoning where they will be able to use descriptive Statistics in 

order to clearly interpret data with fidelity and with rigor (Ministère de l’Éducation du 

Québec, 2010; Ministère de l’Éducation et du Développement de la Petite Enfance du 

Nouveau-Brunswick, 2012). Both the Quebec and New-Brunswick curricula align with the 

NCTM standards for Statistics. In this paper, we consider that Statistics and Mathematics 

are two different disciplines, because they have different epistemologies. The reasoning 

behind those disciplines is not the same. Statistics focuses on an interpretative reasoning 

that depends on variability, while Mathematics focuses on a deterministic reasoning 

(Savard, 2014). Statistical reasoning involves a conceptual understanding of important 

statistical ideas (delMas (2004; Garfield (2002). However, Mathematics might be used to 

solve statistical problems (delMas, 2004). We understand that in school systems, Statistics 
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are considered as a branch of Mathematics, but in opposition with Carvalho and Solomon 

(2012), we do not consider that developing Mathematics and Statistics together as a form 

of intradisciplinarity, where topics or concepts in a same discipline are related to each 

other. 

Method 

Context and Participants 
This study is a part of a larger nationwide study conducted with middle school (Grades 

7 or 8) Mathematics teachers in four different regions of Canada. Four Anglophone 

teachers from Alberta, four Anglophone teachers from Ontario, four Anglophone and four 

Francophone teachers from Quebec, and four Francophone teachers from New Brunswick 

took part in this nationwide study in which the main objective is to describe regional 

differences in mathematics teaching and underlying pedagogies in Canada, and to relate 

these to differences in student achievement in mathematics. 

In the nationwide study, each teacher had to video-record three lessons: one he/she 

considered as typical in his/her classroom; one that he/she considered as an exemplary 

lesson in his/her classroom; and an introductory lesson on an idea related to fractions. 

Members from the research team would then edit each video keeping the best 15-20 

minutes of each lesson. The four teachers from each region and linguistic group would 

then meet with the research team for focus group meetings. During the meetings, they 

would watch the edited videos of each of their lessons and discuss the practices and 

pedagogies they observed in the videos. These discussions would follow a similar protocol. 

At first, the teacher would explain the lesson he/she did and answer preliminary questions 

(mostly clarifications about the lesson) other members of the group may have had. Second, 

they would watch the edited video of her lesson. Third, the teachers and the members of 

the research team would discuss the lesson. During that time, all the members of the group 

could ask questions, ask for clarifications, point out practices and strategies that they 

thought where great and give suggestions. We were members of the research team for three 

groups: the Quebec Anglophone teachers, the Quebec Francophone teachers, and the New 

Brunswick teachers.  

One Francophone Grade 7 teacher from Quebec and two Grade 8 teachers from New 

Brunswick made a lesson on pie charts as their typical lesson for this project. We analysed 

the lessons from the Quebec teacher and one of the New Brunswick teachers. The teacher 

from New Brunswick is technology oriented. During the group discussion on their lessons 

(after watching the video), we took the opportunity to ask them about their representation 

of Statistics. The video of those lessons and the focus group discussions (for those lessons) 

were transcribed. We used pseudonyms for naming them. 

The Lessons and Data Analysis 
The two cases we selected permitted us to compare between a teacher who didn’t use 

technology in her class and one that did.  

The teacher from Quebec, Ida, designed the lesson in three parts. In the first part, she 

presented the task by giving each group of thee students a bag of coloured candy and 

constructed the question they had to investigate with them (how much candy of each 

colour their bag contained). She then went over the steps for completing the table that 

helps construct the pie chart with the students. In the second part, the students solved the 
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task. In the last part, the teacher discussed the task with the students by doing an example 

using the data from one group. We will mostly focus on the last part because this is where 

the links were made.  

The teacher from New Brunswick, Danya, gave three problems on pie charts for her 

students to solve. The teacher focuses on three practices with her students: observe, 

practice and teach. On the previous day, they discussed how to create a pie chart 

(observing part). This part was not video-recorded. The two problems were for them to 

practice. They would then teach the concept to a partner. Unfortunately time ran out so the 

teacher had to do this part on the next day. The teacher and all the students have access to a 

laptop. The teacher thus used various technologies. She showed her students her blog and 

informed that they she placed a video that shows how to construct a pie chart in it. She 

informed her students that it was the best video she found on the internet and those who 

needed a guide should go on her blog and watch it. She also encouraged her students to get 

out their diagnostic test that they did at the beginning of the trimester (she gives a 

diagnostic test at the beginning of each trimester on the content she will cover in order to 

see where her students are at and guide her teaching throughout the semester) and use it as 

a guide. The students had to solve the first problem individually and then compare with 

their neighbour. The task is shown in Figure 1 (translated from French): 

 

The artistic activities of Canadians are the following: photos, 46%, videos, 21%, 
drawing, 13%, and dance and piano, 10%. Draw a pie graph that represents the 
artistic activities of Canadians.  

Figure 1. First Problem the teacher gave. 

When the students finished solving the first task, the teacher would give them a second 

problem. She explained to her students that this one would serve as a formative evaluation 

so she could see who understands how to create a pie chart. The problem consisted of a 

table representing the number of students who used different means of transport to get to 

school. The students had to create the pie chart using the data. The teacher also challenged 

the students to create 2 questions about the data from the pie chart. However, the students 

did not have to answer the questions they invented. When the students finished solving the 

second task, they would have a longer problem to solve on their laptop. The teacher posted 

a problem on Google Doc. The students had to access it from their laptops and solve it. She 

also mentioned that it was an example of problems they could find on the final exam. The 

task is shown in Figure 2 (translated from French): 

 

Julie will start university next September. She has a monthly budget of $ 1,000. Her 
expenses include: $ 90 recreation, 20% rent, transportation 2/10 and twenty-five 
hundredths for food budget. The remainder will be spent on other personal expenses. 
Construct a pie chart from the data above. 

Figure 2. Second Problem the teacher gave. 

The teacher constantly walked around the classroom during those tasks and guided the 

students if needed. She insisted a lot on clearly communicating the process while solving 

the tasks.  

We used the corpuses to analyse and interpret the specific interdisciplinary and 

intradisciplinary actions related to knowledge building (Savoie-Zajc, 2000). In the results, 

we present the actions and the links made by the teachers.  
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Results 

Intradisciplinary Links between Statistical Ideas and Mathematical Concepts 
In the last part of the lesson, Ida discussed about the effectif (the number of candy in a 

certain colour in a bag), the frequency (a/b) for each coloured candy (data expressed as a 

fraction) and the relative frequency (data in percentage). She made links with numbers, 

fractions and percentages. She reminded the students that the total should be found using 

addition of the numbers representing the frequency. For the frequency (a/b), she came back 

to the definition of a fraction, which is a part of a whole. Ida explicitly asked the students 

why we write 3/9 and made it clear that 3 is the number of red candies and the 9 is the total 

number of candies in the bag. At the very end, she asked the students about how to fill the 

relative frequency column of the table but she did not give much importance to it. Ida 

focused her lesson on the representation and the organisation of data using mathematical 

notations. When it came to the idea of constructing a pie graph, Ida made links with 

fractions, the circle and with angles. She started off by asking the students what they knew 

about a circle. The students answered that it had a 360-degree angle. Following that, she 

asked the students how to determine the angle of the sectors for each coloured candy in the 

pie graph. A student answered that, “for the red candy, you can do 3/9 of 360”. Ida made it 

explicitly clear that we can use fractions in other contexts. She claimed, “It is not for 

nothing that we discussed about fractions, fractions of a number and so on before this. 

Now you see that we can apply fractions in other contexts other than in arithmetic”. She 

then went over different strategies of doing this calculation by saying that you could use 

proportional reasoning. Then she did an example with the class, focusing on the strategy of 

dividing 360 by 9 in order to get the measure of 1/9 and then multiplying the quotient by 3. 

She proceeded that way because a student suggested that strategy. She seemed very 

responsive to students’ strategies.  

In conclusion, Ida created interdisciplinary links between the representation and the 

organisation of data (Statistics) and Mathematics: mathematical notation, proportional 

reasoning, geometrical representation and measurement. But, as delMas (2004) pointed 

out, the lesson did not go beyond the learning of procedures and thus did not develop 

explicitly a statistical reasoning. 

Danya supported students who struggled with changing angles into degrees, finding 

fractions of a number, such as 2/10 of $1,000 and transforming quantities into degrees 

(angles). She would question students to support them in understanding why they use 

particular algorithms, but she didn’t make any links between the concepts involved. The 

entire lesson focused on making calculations to construct pie charts. It is possible that 

some links were made in the previous lesson, but we cannot make this conclusion since 

that lesson was not recorded. It is possible that Danya did put an emphasis on the 

interpretation of data when she challenged her students to make questions about the data on 

the graph. However, we did not have the students’ work to make any conclusion. During 

the discussion on her video, we questioned her about this. However, she didn’t remember 

what she did with the questions. She recorded the lesson 7 months prior to the meeting and 

did not remember what she did because she used different approaches with her students.  

In conclusion, although Danya had moments where she could have made links between 

statistical ideas and mathematical concepts; she didn’t take this opportunity to make them. 

The entire lesson focused on finding data by calculation and representing them on a pie 

chart.  
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Interdisciplinary Links between Statistical Ideas and the Context of the Problems or 
Other Disciplines 

Ida did not make explicit links between statistical ideas and the context of the problem 

or other disciplines. She simply focused on the procedure of representing the data on a pie 

graph. After she finished constructing the pie graph on the board, she stopped her lesson by 

asking the students if they had any questions. When there were none, she ended the lesson 

by giving the student problems to solve in the textbook. It seemed that Ida’s focus was on 

creating a pie chart correctly because during the discussion, she put a lot of emphasis on 

how she corrected problems on assessments and what she needed to see to be able to give 

marks. It is possible that she chose this action because there was less than 10 minutes 

remaining. During the discussion group, the other members noticed the fact that she didn’t 

spend time on the interpretation of data (NCTM, 2000) and they made that suggestion to 

her. The other members mentioned that for example, they could have compared the data 

between groups, they could have made a set of data of the whole class and them see how 

the data of each group is similar and different from the whole class data, and to make links 

with probability, business, economy and other fields that would be interesting to discuss.  

In conclusion, Ida focused her lesson on the idea of representing data (NCTM, 2000). No 

inference or predictions were made based on the data.  

Danya did not make explicit links between statistical ideas and the context of the 

problems or other disciplines. When the students worked on the problem on Google Docs, 

she mentioned that this is where she can see if you can do French along with Mathematics 

at the same time. However, that comment was focused on students being able to 

understand the problem since its text was longer than the others and it was more complex. 

During the discussion group, Danya did realise that she did not put enough emphasis on 

interpreting data. In conclusion, Danya, just like Ida, focused her lesson on the idea of 

representing data (NCTM, 2000). No inference or predictions were made based on the 

data. 

Teachers’ Representation of Statistics 
Ida had a clear representation in mind: “My representation of Statistics is to be able to 

represent and compare the data. In this activity, I wanted them to be able to use the data 

and create a graph with it”. However, when related to the three ideas of Statistics grounded 

by the NCTM (2000), we noticed that the ideas of evaluating inferences and making 

predictions were not in her representations. She saw Statistics as a way to collect, organise, 

represent and analyse data although the question was built with the class at the beginning 

of the lesson and that she didn’t spend time on analysing the data at the end of her lesson. 

She didn’t mention the ideas about formulating questions in her representation of Statistics. 

However, in the first part of her lesson, we observed that she spent a good quantity of time 

stressing the importance of creating clear and rigorous questions. The classroom had a 

small debate on this aspect. They struggled a bit with creating the question. Ida would 

often ask if the idea proposed was a good question or not. For example, one mentioned that 

just saying the representation of the coloured candy is not enough so that it is important to 

say where the candy came from. The students added the ideas together to create the 

question. In conclusion, Ida showed a procedural vision of Statistics and her lesson focused 

on a graphical representation and thus led her to avoid all statistical reasoning development 

on the stochastics process (delMas, 2004; Garfield, 2002). 
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Danya also had a clear representation in mind. To her, Statistics was a branch of 

Mathematics. “It is collect and an organisation of data, interpretation and display them. In 

this activity, I wanted them to be able to interpret, analyse and display data”. However, in 

her lesson, she only focused on displaying data. In all the tasks, the data was given to the 

students. We could argue that she focused on interpreting data when she challenged her 

students to invent two questions about the data. We did not have access to the necessary 

data to make this specific claim. In conclusion, although Danya’s goals for her lesson were 

aligned with the NCTM (2000) standards, the ideas of making predictions and inference 

were missing from her representations. She saw Statistics as data given to students in order 

to display them and compare some of them. She also showed a procedural vision of 

Statistics. 

Conclusion 

This study compared two lessons on pie charts by two Francophone teachers from two 

different provinces and using two different types of lessons. Ida used an experimental 

approach where students collected data (the colour of the candies in their bag) and 

represented the results, while Danya used problem solving tasks for her students to practice 

creating pie graphs. The results revealed that both teachers had a similar representation of 

Statistics. However, their representations did not seem to influence their attempt to make 

interdisciplinary links with Statistics. Ida made intradisciplinary links between statistical 

ideas and mathematical concepts, but Danya seemed to approach Statistics as a stand-alone 

concept. Both lessons were oriented on procedural understandings instead of the 

interpretation of a phenomenon. Some factors may have influenced our results. We only 

had access to one recorded lesson. We had no knowledge of what happened prior and after 

both lessons were video-recorded. It is possible that intra- and interdisciplinary links were 

made during those times. Also, it is possible that the milieu influenced the choices the 

teachers made. For instance, in Danya’s case, all Grade 8 students from New Brunswick 

have to write a provincial exam at the end of the school year. Questions related to statistics 

on this exam are only on representing data and in some cases interpreting data. It is thus 

possible that Danya focused her attention on the procedural aspects of creating pie charts to 

prepare her students for that assessment. These results highlighted some important 

questions to consider. First, how do teachers’ actions and representations affect students’ 

learning of Statistics? Second, how does technology support students in making intra- and 

interdisciplinary links with Statistics? More research is needed in order to bring insight to 

these questions. 
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This article reports the findings of research involving more than 30 teachers and their Year 
5 and 6 students in 16 Victorian primary schools. The participants experienced an 

educational intervention where the “Money and Financial Mathematics” substrand of the 

“Number and Algebra” content strand was taught and learned through challenging worded 

mathematical problems involving realistic financial contexts. Data related to one such 

example, a task involving three friends sharing the cost of movie tickets and food, are 

discussed. Insights into the nature of student  

This article explores the outcomes of financial literacy education in Australia, and the 

potential of challenging worded mathematical problems involving realistic financial 

contexts to connect students’ social and mathematical understandings. In 2012, the 

Organisation for Economic Cooperation and Development (OECD) Programme for 

International Student Assessment (PISA) included a Financial Literacy Assessment for 15-

year-old students. While media reports have been congratulatory, emphasising that 

Australia ranked in the top five of 18 participating countries, a strong relationship between 

student socioeconomic background and performance was evident (Thomson, 2014). 

Students in metropolitan schools achieved more highly than students in provincial and 

remote schools; and non-Indigenous students significantly out-performed their Indigenous 

counterparts (Thomson, 2014). Essentially, financial literacy is no different from numeracy 

or literacy where disparities in educational achievement are associated with socioeconomic 

marginalisation (Snyder & Nieuwenhuysen, 2010). While the results point to effective 

financial literacy education taking place in some contexts more so than others, there is 

limited Australian research what might be done to improve outcomes for students in 

marginalised communities. Furthermore, consumer, economic, and financial socialisation 

research together with behavioural economics research build a compelling case that human 

financial behaviour may depend as much on intrinsic psychological attributes and social 

understandings learned at home as knowledge and skills acquired at school (de Meza, 

Irlenbusch, & Reyniers, July 2008). 

Ajzen’s (1991) theory of planned behaviour provided a theoretical framework to 

explore this proposition. The theory of planned behaviour argues that attitudes, subjective 
norms (expectations or perceived social pressure from socialising agents including parents 

and teachers), and perceived behavioural control (resources, opportunities, and 

confidence) have a direct effect on intentions and an indirect effect on behaviour through 

intentions. Since values also seem to be important to the formation and development of 

attitudinal and behavioural tendencies (Homer & Kahle, 1988), the possibility that they too 

might contribute to students’ financial problem-solving and decision-making was 

considered. Values are understood to mean “...the principles and fundamental convictions 

which act as general guides to behaviour, the standards by which particular actions are 

judged as good or desirable” (Halstead & Taylor, 2000, p.169). Later, I describe how these 

definitions guided the data collection and analysis. 

There were three assumptions. The first was that financial problem-solving and 

decision-making would be indicative of financial behaviour. The second was that 
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classroom research examining the impact of attitudes, subjective norms, perceived 
behavioural control, and values on students’ responses to mathematical problems situated 

in realistic financial contexts might give insights into the social and mathematical 

dimensions of student financial literacy. The third was that these insights might inform 

how financial literacy is conceptualised, taught and learned at school. 

The Encouraging Persistence Maintaining Challenge (EPMC) project involved an 

educational intervention featuring five challenging mathematical problems situated in 

realistic financial contexts – termed “financial dilemmas” - as the basis of money and 

financial mathematics lessons. Financial dilemmas are open-ended, require students to 

draw on both social and mathematical understandings simultaneously and in synergy, 

involve multiple solutions, and invite students to share and explain their reasoning. 

Importantly, the tasks involve situations that 10-12 year old children might be familiar with 

and/or interested in and/or able to imagine. They are “realistic” in the sense that they 

feature practical, applied and contextual mathematics. The financial dilemmas were 

intended to be used together with the following researched pedagogies and practices that 

have been argued to enhance mathematics learning: 

 Establishing the relevance of the task to everyday life beyond school (Mandell & 

Klein, 2007) and explaining the importance of both social and mathematical 

thinking to informed financial problem-solving and decision-making. 

 Building a strong lesson introduction through literacy and other strategies that give 

students confidence to begin problem-solving (Draper, 2002). Strategies that seem 

to be particularly helpful to students include the use of role play and concrete 

materials (i.e., notes and coins). 

 Emphasising problem-solving tools and strategies that might help students, 

including creating tables to organise information and/or drawing pictures (Goos, 

Dole, & Geiger, 2011). 

 Providing time for individual thinking and problem-solving, followed by small 

group collaboration where students can share and discuss their problem solving 

approaches and solution/s (Smith & Stein, 2011). 

 Facilitating critical whole-class discussions, including: all the while ensuring that a 

range of options (mathematical workings and explanations) are recorded, and open, 

sometimes provocative questions are asked to stimulate different ways of thinking 

(Walker, 2014). 

The research question is: What insights into the social and mathematical dimensions of 

student financial literacy can be gained from using financial dilemmas for mathematics 

teaching and learning? 

Some Relevant Prior Research 

The following literature provided insights that shaped the snapshot of the EPMC 

project reported in this article. Various researchers have explored the use of worded 

mathematical problems involving realistic contexts and have argued the potential for these 

to: enhance student motivation (Middleton, 1995); provide opportunities to apply 

mathematical knowledge and skills (Verschaffel, deCorte, & Lasure, 1994); engage 

students in productive exploration of mathematics (Christiansen & Walther, 1986); provide 

students with opportunities to develop deeper and stronger mathematical understandings 

(Zbiek & Conner, 2006); and help students to see the relevance and importance of 

mathematics beyond school (Sullivan, 2011). These outcomes are desirable in that they 

contribute to educating functionally numerate citizens. Students need to be able to apply 
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mathematics to a variety of contexts, whether in the classroom, on standardised 

assessments, or in the ultimate “high stakes” test – everyday life beyond school. 

However, finding meaningful contexts in which to situate mathematics teaching and 

learning can be difficult. Borasi (1986) emphasised that students are the ultimate judge 

whether a problem is appealing enough to attempt to solve it, and they make this 

judgement based on the level of difficulty they perceive in the problem, their interest in it, 

and the importance they ascribe to it. Meyer, Dekker, and Querelle (2001) outlined a 

number of characteristics of high quality contexts, which included that a context should: 

support the mathematics and not overwhelm it; be real or at least imaginable; be varied; 

relate to real problems to solve; be sensitive to cultural, gender and racial norms; not 

exclude any group of students; and allow the making of models. However, they agreed 

with Borasi (1986) that a context that interests and motivates one student might hold no 

interest for another. 

Stillman (2000) investigated the impact of prior knowledge of context on senior 

secondary students’ approaches to application tasks. She classified three sources of prior 

knowledge: academic knowledge; general knowledge of the world; and episodic 

knowledge derived from personal experiences outside school or in practical school 

subjects. Stillman (2000) found that episodic or experiential knowledge is particularly 

influential in shaping the extent to which students may engage with a task context. 

Jorgensen and Sullivan (2010) have also written about this phenomenon, drawing on their 

experiences in remote Aboriginal settings. They highlighted ways by which social heritage 

converts to academic success, giving specific examples of items about money that were 

included on the 2008 Australian numeracy assessment. They argued that while particular 

contexts may be realistic for some students, they are well outside the everyday experiences 

of others, and so create opportunities for ‘scholastic mortality’ among those who are 

already disadvantaged (Jorgensen & Sullivan, 2010). 

Realistic Mathematics Education (RME) in The Netherlands provides an example of 

how mathematics teaching and learning can be conceptualised. RME is based on the view 

that mathematics “must be connected to reality, stay close to children and should be 

relevant to society” in order to be of human value (Freudenthal, 1977 in van den Heuvel-

Panhuizen, 2003, p.9). RME proposes that the imagination can serve to enhance task 

authenticity. This suggests that students who do not have what Stillman (2010) describes as 

episodic or experiential knowledge related to a context can still access unfamiliar or novel 

task contexts provided pedagogies that help them visualise the context are used. 

On one hand, the above perspectives underline the importance of taking into 

consideration different understandings about money students bring to school from home 

based on their financial realities, and situating teaching and learning in realistic contexts 

that connect with students’ experiences. On the other hand, if schooling is to redress the 

apparent disparity in financial literacy levels associated with socioeconomic background, 

there is merit in posing contexts that are at least imaginable and perhaps might expand 

students’ experiences. The educational intervention intended to use realistic financial 

contexts as the key to strengthening students’ disposition to connect social and 

mathematical thinking as part of their financial problem-solving, the assumption being that 

doing so would likely contribute to informed financial decision-making. 

Methodology and Methods 

The EPMC project is an example of a design-based research (DBR) project. Anderson 

and Shattuck (2012) draw on a range of definitions of DBR to explain it as: 
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 being situated in a real educational context; 

 focusing on the design and testing of a significant intervention; 

 using mixed-methods; 

 involving multiple iterations; 

 involving a collaborative partnership between researchers and practitioners; and 

 promoting design principles that have an impact on practice. 

DBR has become recognised as a valuable methodological approach to study, 

transform and evaluate the practice of mathematics teaching and learning. It is a practical 

research methodology that seeks to increase the impact, transfer, and translation of 

educational research into improved teacher practice (Anderson & Shattuck, 2012). 

A series of classroom investigations took place to study the implementation of the five 

financial dilemmas that were included in the EPMC project (the educational intervention). 

Each financial dilemma included enabling, consolidating, and extending versions 

(Sullivan, Mousley, & Jorgensen, 2009). This article reports on data collected about one 

financial dilemma, “Anna and her friends”, which involves three friends sharing the cost of 

movie tickets and food. The classroom investigation explored the use of this task by two 

experienced educators (pseudonyms Cara and Cate) team-teaching 55 Year 6 students in an 

open learning environment in a government school in provincial Victoria. The teachers 

described their students as being from diverse socioeconomic backgrounds. Data collected 

included audio and video recordings of the instructional and summary phases of the lesson, 

hand-written observational notes made by two researchers, and students’ completed 

worksheets. 

Post-intervention surveys were also completed online by more than 30 Year 5 and 6 

teachers in 16 Victorian primary schools. The sample included teachers from Government 

and Catholic, metropolitan and regional primary schools. The teacher participants were 

asked to respond to a series of brief statements by indicating the extent to which they 

agreed on a 5-point Likert scale (strongly disagree, disagree, unsure, agree, strongly agree). 

The statements related to financial literacy education (in general), lesson planning, lesson 

structure, and pedagogies. For each of the five financial dilemmas, there were a further 10 

brief statements that required the teacher participants to reflect upon the effectiveness of 

the tasks as the basis of money and financial mathematics lessons. The teachers were also 

invited to give feedback about the tasks and pedagogies through five open-ended 

questions. Responses to two particular questions with reference to “Anna and her friends” - 

“What is your reaction to the lesson overall?” and, “Is there a particular story you would 

like to share with us?” – are reported in this article. 

Drawing on the theoretical model described earlier, the classroom investigation and 

post-intervention survey data were analysed and categorised as indicating attitudes, 

subjective norms, perceived behavioural control, and values (as per the definitions outlined 

earlier). This process was undertaken with a view to understanding the nature of the social 

understandings that became evident through the use of “Anna and her friends”, and 

describing how these seemed to impact the way students connected with the mathematical 

dimensions of the task. For example, where data reflected a particular ideal, these data 

were interpreted to indicate a value. Where patterns of behaviour became apparent, it was 

inferred that subjective norms were influential. Scrutinising the data sources with EPMC 

project colleagues helped to ensure validation. In the section that follows, synergies 

between the data sets are examined to seek insights into the social and mathematical 

dimensions of financial literacy. 

“Anna and her friends” was presented as follows: 
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 Task 1: 

Anna, Bernadette and Carol are going to the movies together. Tickets cost $12 each, but 

there is a special offer for everyone who books and pays online - buy two tickets, get the 

third ticket free. Anna booked and paid for the tickets online. 

When they arrived at the theatre, they noticed the pricelist at the shop. The price list 

reads as follows: 

Bottled Water       $4 

Icecream        $4 

Medium Popcorn       $8 

Bottled Water, icecream & popcorn combo  $12 

 
Anna wants to buy a bottle of water, Bernadette wants the ice-cream and Carol wants the 

popcorn. Anna pays for the combo. 

What might Anna say to Bernadette and Carol about how much they owe her? 

 

Task 2: 

This version of the task requires students work in dollars and cents, and account for an 

online processing fee of 30c per ticket purchased. 

 

This task was considered relatable to Year 5 and 6 students since children this age are 

likely to have visited the cinemas before, and may have been responsible for paying for 

their transactions upon doing so. In Task 1 (the learning task), the calculations required 

were intended to be straightforward for Year 5 and 6 students, compared with Task 2 (the 

consolidating task) where students work in dollars and cents, and account for an online 

processing fee of 30c per ticket purchased. In both scenarios, notions of friendship and 

“fairness” – described as social understandings - are important considerations. There are 

multiple ways to approach this financial dilemma, which is critical for creating an 

awareness of alternative possibilities, and fostering critical whole-class discussion and 

debate about financial problem-solving and decision-making. Readers are invited to tackle 

these tasks before proceeding. 

Findings 

In the classroom investigation, two important issues emerged that were reinforced by 

the post-intervention survey responses by the broader group of teacher participants. First, 

the task involving a realistic financial context that 10-12 year old children might be 

familiar with and/or interested in and/or able to imagine seemed to contribute to students 

being actively engaged in the lesson. Second, “Anna and her friends” revealed that Year 5 

and 6 students have sophisticated social understandings about money that are at the 

forefront of their thinking during financial problem-solving and decision-making. Each of 

these findings is elaborated below. 

The Importance of the Choice of Context and the Lesson Introduction 
“Anna and her friends” involving a realistic financial context that 10-12 year old 

children might be familiar with and/or interested in and/or able to imagine seemed to 

contribute to the success of the lesson. The following comment reflects the view of many 

of the teacher participants: 

The kids had all been to the movies, so were able to relate to this task. They were also getting used 
to discussing deals, value for money, and “fair share”. 

Interestingly, context familiarity was not assumed or taken for granted in the lesson by 

Cara and Cate. This is important, since attending the movies as entertainment is beyond the 

realms of affordability for some students. In launching the lesson, they set up an 

impromptu role play involving three classmates in the roles of Anna, Bernadette, and 
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Carol. The students, in role as the characters, casually conversed about how much each 

person should pay towards the movie tickets and combo. This worked well to showcase 

two different approaches to sharing the cost. The student playing the role of Anna said, “I 

got my ticket for free. So if you pay me for your tickets, I’ll pay for the combo.” The 

student playing the role of Bernadette had another idea, “I think we should split the cost of 

the movie tickets - $8 each – and then pay for our own share of the combo. Carol will have 

to pay $2 more because the popcorn is worth a little more.” Inherent in this brief exchange 

were different attitudes and values about sharing costs. Cara and Cate’s pedagogical choice 

to use role play seemed to activate students’ imaginations and make the task more 

accessible to the class.  

Social Understandings are at the Forefront of Students’ Financial Problem-Solving 
and Decision-Making 

When it came to distributing the costs of the movie tickets and food, students preferred 

to equate “fairness” with sharing equally, at least in the first instance. On the post-

intervention survey, one teacher described this approach as “taking the easy option”. 

Related to this, another commented that some students “were keen to get a maths answer 

without justifying their thinking” in relation to the context. This phenomenon suggests that 

students were initially motivated by a perceived need to adhere to a particular subjective 
norm – a social convention that “fair” means sharing equally. Furthermore, this motivation 

influenced their choice of mathematics. 

As the following comments by two different teachers reveal, the teachers reported 

provoking or extending their students to revisit and discuss the complexities of the context: 

The students were engaged, but most were happy to split the [cost] evenly. As the teacher, I needed 

to get the conversation moving by throwing in a few controversial ideas. 

They didn’t realise the popcorn was worth more than the water and ice-cream. They wanted to split 

the cost three ways - $12 each. I questioned them, “Is that fair?” 

In these ways, pedagogy was pivotal to stimulating new learning. In the classroom 

investigation, Cara and Cate encouraged students to debate the idea that costs can be 

shared equally (or “evenly” – the term interchangeably used by teacher participants) or 

proportional to the value of items to be received. They asked students to consider, “Is 

sharing evenly always the fairest thing to do? Is it fair to split the cost of the combo evenly 

given that Carol will receive the most valuable item (popcorn)?” These questions were 

addressed nicely by one student, who tabulated two different solutions how much 

Bernadette and Carol owed Anna, as shown in Figure 1. One solution is described as 

“Equal,” the other as “Fair”. 

On the post-intervention survey, one teacher outlined students’ diverse values and 

responses to this problem saying, “Some strongly believed that Anna should have 

benefited from the discount/saving, while others believed she should have [paid for] her 

friends”. These examples highlight how values can influence students to take different 

mathematical approaches to financial problem-solving and decision-making: if Anna 

retains the free movie ticket and the cost of the food is shared equally, she pays as little as 

$4 for the outing compared with Bernadette and Carol who pay $16 each. By contrast, if 

Anna pays for herself and her friends, she spends as much as $36. 

In the classroom investigation, the ideas students contributed to whole class discussion 

and recorded on their worksheets demonstrated sophisticated social understandings about 

money. During Cara and Cate’s lesson, one student explained to the class that Anna should 

receive the free ticket but pay for the online processing fee and combo. He justified his 
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thinking that Anna should pay slightly less than her friends ($10.90 compared with $13.50) 

by saying, “Paying this makes it fair in the sense that Anna did all the work.” Other 

students also made reference to perceived social conventions (subjective norms). For 

example, one wrote, “If they were really good friends and went to the movies often, then 

they could just take it in turns paying the total price.” Another seemed to see the 

opportunity for Anna to conceal the free ticket from her friends, noting on her worksheet, 

“I think that it really depends on how good [a] friends they are because if Anna booked the 

tickets online and paid for them she could have the free ticket and the two others would 

pay $12 each.” In each of the above-mentioned options, students valued and were 

motivated by different notions of friendship and “fairness”. 

 
Figure 1. Student worksheet: The difference between equal and fair. 

Since financial dilemmas involve multiple solutions, the onus is on students to produce 

and defend an argument that is socially acceptable / “fair” and mathematically precise. 

Requiring students to draw on their social and mathematical understandings 

simultaneously and in synergy when explaining an argument revealed what attitudes, 

subjective norms (expectations), and values about money were motivating students. These 

factors could then be considered as part of critical whole-class discussion aimed at 

promoting more informed financial problem-solving and decision-making. 

Conclusion 

The findings reveal insights that might inform the way financial literacy is 

conceptualised, taught, and learned at school. “Anna and her friends” exposed that Year 5 

and 6 students have sophisticated social understandings about money that, when set against 

realistic financial contexts, can be productively leveraged to facilitate engaging money and 

financial mathematics lessons. While social understandings such as attitudes, values and 

subjective norms seem to be at the forefront of students’ thinking during financial problem-

solving and decision-making, particular pedagogies and practices including role play and 

open, if not provocative questions posed by the teachers during critical whole-class 

discussion can help students identify and evaluate alternative ways that costs might be 

shared. In this way, the educational intervention served to strengthen students’ disposition 

to connect social and mathematical thinking and, by extension, make more informed 

financial decisions. 

The critical implication is that while financial dilemmas appeal to what Stillman (2000) 

describes as students’ episodic knowledge, posing contexts that are at least imaginable can 

expand students’ experiences as well as their toolkit of social and mathematical 
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understandings. Financial dilemmas do not “stand alone” – their power lies in the 

associated pedagogies and practices that bring them to life. If teachers are to create and/or 

select realistic but perhaps unfamiliar or novel financial contexts as the basis of money and 

financial mathematics lessons, they need to know their students’ family backgrounds, 

characteristics, and interests. Broader and successful implementation of the educational 

intervention will rely on further research of this nature, whereby new financial dilemmas 

are developed, trialled, studied and refined in collaboration with teachers. Professional 

learning opportunities designed to build teachers’ capacity to use the associated pedagogies 

and practices with confidence will be critical. Such research is currently underway in 

Indigenous, rural and remote communities. 
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The guiding philosophy of this theoretical work lays in the argument that mathematics 
teachers’ professional knowledge is the integration of various knowledge facets derived 
from different sources including teaching experience and research. This paper goes beyond 
past trends identifying what the teachers’ knowledge is about (content) by providing new 
perspectives, in particular, on how the knowledge is structured and organised (form), on 
what teachers’ draw on their knowledge (source), and whether the knowledge is stable and 
coherent or contextually-sensitive and fluid (nature).  

Introduction 
The guiding philosophy of this work is the assumption that teachers draw on a wide 

range of sources as they do their work, using and transforming these in various ways for 
the purposes of their teaching and for the needs of their students. Thus, one of the key 
theoretical concerns arising in the realm of teachers’ professional learning and 
development is the question on which sources teachers draw on their work. Researchers 
have reflected on resources (including knowledge), identifying them, among orientations 
(including beliefs) and goals, as critically important determinants in what teachers do, and 
why they do it (Schoenfeld, 2010). The sources of particular significance for the teaching 
enterprise are, from the author’s perspective: (a) knowledge; (b) teaching; and (c) research 
(see Figure 1). These three sources are viewed as playing a complementary role in relation 
to each other; for instance, research can inform and enhance teachers’ knowledge about 
particular instructional strategies, as well as equipping the teacher for the rich reflection 
required in professional judgement. At the same time, research itself can be enriched 
through greater insights into the challenges and complexities of educational practice.  

The last few decades have produced a considerable body of literature that describes, 
theorises, and conceptualises knowledge as a source for teachers doing their work. 
Shulman (1987), for instance, identified three dimensions of knowledge needed for 
teaching; namely content knowledge (knowledge of the subject matter per se to be taught), 
pedagogical knowledge (knowledge of how to teach in general terms), and pedagogical 
content knowledge (knowledge of how to teach that is specific to what is to be taught). In 
this and further work, Shulman (1987) makes clear that the knowledge base necessary for 
teaching comprises teachers’ knowledge of content in the domain being taught, knowledge 
of learners’ common conceptions, and difficulties that learners may have when learning 
particular content, and knowledge of pedagogical strategies that can be used to address 
learners’ needs in particular classroom circumstances. However, less emphasis has been 
put on teachers’ knowledge of students’ learning. To put it in other words, what is missing 
in Shulman’s (1987) contribution on various dimensions of teachers’ knowledge, as argued 
in this work, is teachers’ knowledge of learning, in particular, teachers’ knowledge of 
theoretical frameworks of knowing and learning. However, knowledge of approaches to, 
and research on, learning mathematics is taken as a crucial component of mathematics 
teachers’ resources, and a particular focus of the theoretical work reported here.  
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Another source of teachers’ professionalisation is the personal experience of being 
taught, or of teaching. In analogy to phenomenological primitives arising from experience 
with the physical world as described in detail by diSessa situated in his knowledge in 
pieces framework ( e.g., diSessa, 1993), pedagogical primitives arise from experiences of 
being taught or of teaching. They provide powerful, mental resources useful for sense-
making in the education instructional context, formed through a process in which 
individual teacher’s ways of teaching are strongly shaped by their personal experience of 
being taught or of teaching. Researchers may refer to this as craft knowledge or practical 
knowledge to distinguish it from what others have referred to as didactical knowledge’ or 
mathematics education knowledge, in particular, knowledge derived from research 
reported in the field. Knowledge derived from research (in short, research-based 
knowledge) is considered as a further source of teachers’ professionalisation. In particular, 
research-based knowledge on: (a) students’ ways of understanding and thinking; (b) ways 
of learning mathematics; and (c) ways of teaching particular mathematical concepts are 
viewed as providing a rich source for teachers’ doing their work. Teachers need to engage 
with research, in the sense of keeping up to date with the latest developments and findings 
in research on students’ ways of thinking, understanding, and learning, and on effective 
instructional techniques to inform their pedagogical content knowledge. In addition to the 
latest research findings, teachers should become familiar with the implications of this 
research for their day-to-day practice, and for education policy and practice more broadly. 
With this perspective, research is viewed as a key source of teachers’ broader professional 
identity, one that reinforces other pillars of teacher quality: notably teachers’ knowledge 
base and teaching experience. 

 

Figure 1: Sources of teachers’ professionalisation 

It is this conceptualisation of sources of teachers’ professionalisation that enables an 
elaboration of knowledge resources for teaching mathematics. Consequentially, in contrast 
to any narrow or simplified view, the idea of teachers’ professional knowledge essentially 
conveys the need to integrate knowledge from various sources including knowledge 
derived through teaching experience/practice (pedagogical primitives) and research 
(research-based knowledge and instructional theoretical frameworks).  
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Lessons from Past Approaches Conceptualising Mathematics Teachers’ 
Knowledge 

Over the past decades, a range of research work on conceptualising teachers’ 
knowledge has been developed often taking Shulman’s initial work as a point of departure, 
a considerable number of which has been located in mathematics education research (e.g., 
Adler & Davis, 2006; Ball, Thames, & Phelps, 2008; Blömeke, Kaiser, & Lehman, 2010; 
Even, 1990; Ma, 1999; Fennema & Franke, 1992; Kilpatrick et al., 2006; Rowland et al., 
2005; Schoenfeld & Kilpatrick, 2008), and how such knowledge can be operationalised 
and measured (Baumert et al., 2010; Blömeke et al., 2014; Hill et al., 2007; Schilling et al., 
2007; Tatto et al., 2008, 2012). Crucial lessons we have learned from these and related 
work on conceptualising mathematics teachers’ knowledge have been identified and 
described elsewhere (Scheiner, 2015). In short, Shulman’s (1986, 1987) conceptualisation 
of domains of teachers’ knowledge, in particular, subject matter knowledge (SMK) and 
pedagogical content knowledge (PCK), has been made specific to teaching mathematics. 
The distinction between SMK and PCK, although being ambitious in empirical 
investigations, continue to be widely used, in particular since it is considered as a useful 
tool in describing teachers’ knowledge for research purposes and in devising pre-service 
teachers’ and professional development programs. The multidimensional nature of 
mathematics teachers’ knowledge has been demonstrated by further refining the categories 
SMK and PCK and accentuating sub-dimensions that are specific for the purposes of 
teaching mathematics, such as describing and conceptualising a particular kind of 
mathematical content knowledge considered as unique for teaching mathematics.     

In this work, the author wants to point to a further aspect that is about the dominating 
and guiding idea of most of the approaches on conceptualising mathematics teachers’ 
knowledge developed in the past, namely the idea about teachers’ unpacking of 
mathematics content in ways accessible for their students. In doing so, past approaches 
have centred their focus on the mathematics content; making the mathematics content a 
point of departure. Approaches guided by this philosophy often use the notion of 
mathematical knowledge for teaching in describing the teachers’ knowledge base. From 
the author’s perspective, the use of the notion of mathematical knowledge for teaching is 
insufficient since it seems not to capture other dimensions besides the subject content. 
Thus, this work calls for using the notion of knowledge for teaching mathematics including 
an epistemological, a cognitive, and a didactical dimension in addition to the subject 
content dimension. In doing so, it is intended to extend the current perspective on teachers’ 
knowledge in the sense of going beyond a more or less purely content perspective by 
taking into account several other perspectives important in in this issue. 

Conceptualising Mathematics Teachers’ Knowledge: Past Trends and New 
Perspectives 

In the past, the literature concentrated its focus on what the teachers’ knowledge is 
about. In doing so, the literature limited its focus on the content teachers do or should 
possess. Research has made progress in identifying various facets of mathematics teachers’ 
knowledge arguing that teachers’ subject matter knowledge is about substantive and 
syntactic structures of the discipline (Schwab, 1978); and mathematics teachers’ content 
knowledge, in particular, seems to be about ways of understanding and ways of thinking 
(Harel, 2008), or school mathematical knowledge and academic content knowledge 
(Bromme, 1994), among others. Mathematics teachers’ knowledge, as argued in the 

565



Scheiner 

 

literature, is about the epistemological foundations of mathematics and mathematics 
learning (see, Bromme, 1994), students’ cognitions (Fennema & Franke, 1992), in 
particular, knowledge of students’ common conceptions (see Shulman & Sykes, 1986), 
knowledge of students’ cognitive difficulties involved in concept construction (Harel, 
2008), and the interpretation of students’ emerging thinking (Ball et al., 2008), as well as 
“the most useful ways of representing and formulating the subject that make it 
comprehensible to others” (Shulman, 1986, p. 9), including teachers’ illustrations and 
alternative ways of representing concepts (and the awareness of the relative cognitive 
demands of different topics) (Rowland et al., 2005) and knowledge of the design of 
instruction (Ball et al., 2008), among others.  

However, what seems to be missing in the current landscape on various approaches of 
conceptualising mathematics teachers’ knowledge are efforts in going beyond what the 
knowledge for teaching mathematics is about by taking into account: (1) how the 
knowledge is structured and organised; (2) on which sources teachers’ draw on their 
knowledge; and (3) whether the knowledge is stable and coherent or contextually-sensitive 
and fluid. In short, the major issues that need better resolution if we are to understand 
teachers’ acquisition of an integrated knowledge base are questions concerning: (1) the 
form; (2) the source; and (3) the nature of mathematics teachers’ knowledge.  

The Form of Teacher Knowledge  
The initial point in this issue is the assumption that examining teacher expertise may 

help to advance our understanding of what makes the knowledge for teaching specialised 
since expert teachers are considered as focal elements in the movement towards excellence 
in education (Sternberg & Horvath, 1995). Findings in research on expert teachers, and, in 
particular, on expert teachers’ knowledge show that the concept of domain-specific 
knowledge structures is vital. Among various differences, Sternberg and Horvath (1995) 
consider knowledge as “perhaps the most fundamental difference between experts and 
novices” ( p. 10). The same authors conclude that research findings indicate that an expert 
in the domain of teaching differs from a novice not only in the amount of subject matter 
knowledge and pedagogical knowledge but also in the organisation of their domain-
relevant knowledge.  

Magnusson, Krajcik, and Borko (1999) illustrate one way (among several possible 
other ways) to think about the interaction of the domains of knowledge in the development 
of pedagogical content knowledge. They suppose that the knowledge bases (subject matter, 
pedagogical, and contextual knowledge) may unequally influence the development of 
pedagogical content knowledge due to differences in the amount of knowledge in each 
domain. However, taking the research findings on expert teachers’ knowledge into 
account, it may be suggested that after a certain amount of subject matter knowledge, 
pedagogical knowledge, or contextual knowledge these knowledge bases do not have a 
higher relative influence on PCK. Rather, as shown in Figure 2a, it is not merely the 
amount of knowledge in each knowledge domain (subject matter knowledge, pedagogical 
knowledge, or contextual knowledge) that matters most but the degree of integration of the 
knowledge bases. Expert teachers, from this point of view, would show a greater overlap, 
symbolising increased integration of the three knowledge bases, than novice teachers (see, 
Figure 2b).  
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Figure 2: The (potential) impact of the dominance of a particular knowledge base and the degree of 
integration of knowledge bases on PCK 

The Source of Teacher Knowledge  
A further aspect in conceptualising the knowledge specialised for the purposes of 

teaching mathematics is to examine the constituent knowledge bases that influence this 
particular kind of knowledge. In the past, Shulman’s pedagogical content knowledge was 
considered almost always as the only form of knowledge unique for the purposes of 
teaching. In Shulman (1987), pedagogical content knowledge was defined as “that special 
amalgam of content and pedagogy … It represents the blending of content and pedagogy ” 
(Shulman, 1987, p. 8, italics added). However, this perspective is problematic for many 
reasons, including the fact that the amalgamation of content and pedagogy leads not only 
to a too broad category but lacks in both subject- and context-specificity. Still, the 
mathematics education research community has identified specific dimensions built upon 
Shulman’s initial work on PCK. The various refinements of PCK seem to converge in 
three dimensions, namely: (1) knowledge of students’ mathematical understandings 
(KSU); (2) knowledge of learning mathematics (KLM); and (3) knowledge of teaching 
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mathematics (KTM). The former two refer to a cognitive and an epistemological 
perspective, while the latter refers to a didactical perspective on this issue. In this work, 
knowledge of students’ mathematical understanding (KSU), knowledge of learning 
mathematics (KLM), and knowledge of teaching mathematics (KTM), together with 
mathematical content knowledge per se (MCK per se) and mathematical content 
knowledge for teaching (MCK for teaching) build the knowledge bases that constitute the 
particular kind of knowledge that is considered as specialised for the purposes of teaching 
mathematics. In doing so, past and current approaches in research on mathematics 
teachers’ knowledge are turned on their heads in the sense of taking the identified (and 
refined) knowledge dimensions as building blocks for the construct of knowledge for 
teaching mathematics.  

The Nature of Mathematics Teacher Knowledge  
Certainly, approaches mentioned above do not converge on a clear conceptualisation of 

PCK.  Indeed they portray differences of opinion and a lack of clarity about the nature of 
PCK and its development. Research approaches consider PCK as a knowledge dimension 
on either: (1) a cross-subject level; (2) a discipline-specific level; (3) a domain-specific 
level; or (4) a topic-specific level. Some researchers also hold the view that PCK can be 
considered as a knowledge dimension regarding several levels. In recent studies, PCK 
seems more often to refer to a broad and general form of knowledge, sometimes even 
losing its discipline-specificity. Fernández-Balboa and Stiehl (1995), for instance, analyse 
PCK in professors across several fields, including biology, business, and education, among 
others. However, in line with Hashew (2005), the author argues that PCK seems to have 
lost one of its most important characteristics, namely its topic-specificity. The work by 
Smith, diSessa, and Roschelle (1993), for instance, reminds us that knowledge is concept-
specific and highly context-sensitive. For instance, the knowledge in pieces framework 
developed by diSessa calls for viewing knowledge as microstructures coming in a loose 
structure of quasi-independent, atomistic knowledge pieces.  

Final Remarks: Future Directions  
Although the various frameworks and models on the construct of mathematics 

teachers’ knowledge have provided crucial insights on what mathematics teachers’ 
knowledge is about, several of the discipline-specific frameworks represent 
conceptualisations of mathematics teachers’ knowledge by a very general approach that 
seem ad hoc. The author, by contrast, does not believe in the existence of a general 
framework on teachers’ knowledge but rather thinks that in investigating the form and 
nature of teachers’ knowledge various frameworks may be discovered, which will be quite 
specific to particular mathematical concepts and individuals.  

The author calls for paying attention to investigating what in this paper is called 
knowledge for teaching mathematics considered as a pool of personal and private 
constructed pieces of knowledge that have been transformed along a variety of knowledge 
bases identified by previous research investigating the multidimensionality of teachers’ 
knowledge. In more detail, this work emphasises the view that teachers’ professional 
knowledge specialised for teaching mathematics is the repertoire of knowledge atoms that 
have been transformed along: (1) knowledge of students’ mathematical understanding 
(KSU); (2) knowledge of learning mathematics (KLM); and (3) knowledge of teaching 
mathematics (KTM), taking (4) mathematical content knowledge per se (MCK per se) and 
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(5) mathematical content knowledge for teaching (MCK for teaching) as the cornerstones 
(see, Figure 3). Notice that: (i) the notion of transformation implies that the constituent 
knowledge bases are inextricably combined into a new form of knowledge that is more 
powerful than the sum of its parts (form); (ii) in contrast to Shulman and his proponents’ 
work, it is KSU, KLM, and KTM, together with MCK per se and MCK for teaching that 
build the knowledge dimensions that serve as the constituent knowledge bases for teaching 
mathematics (source); (iii) the notion of knowledge atom indicates that knowledge is of a 
microstructure, highly context-sensitive, and concept-specific and has to be considered as 
of a fine-grained size (nature); and (iv) The notion of repertoire indicates that knowledge 
is personal and private and that teacher education programs can only provide (as good as 
possible) rich resources for building up a fruitful repertoire of knowledge atoms.      

KTM

KLM

KSU
MCK per se
MCK for teaching

 

Figure 3: The knowledge atom 
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This paper reports part of an ongoing investigation into aspects of pre-service teachers’ 
geometric knowledge. One hundred and fifty-two Australian pre-service teachers 
responded to a series of questions that reflect the type of knowledge teachers are expected 
to know and teach. Analysis of their responses shows that teacher knowledge can be 
understood through the interplay between individual teachers’ formal figural concepts and 
personal figural concepts. Errors and misconceptions of geometric properties can be 
addressed by strengthening the link between formal and personal knowledge through 
visualisation. 

Introduction 
As one of the oldest disciplines, the learning of geometry is an important aspect of 

developing intuition in mathematics, spatial reasoning and visualising skills, deductive 
reasoning, logical argument, and proof (Jones, 2002). Spatial reasoning, the capacity ‘to 
see, inspect and reflect on spatial objects, images, relationships, and transformations’ 
(Battista, 2007, p. 843) are linked to many technological advances and scientific 
discoveries. It consistently plays a critical role in influencing educational and occupational 
outcomes of individuals who go on to achieve advanced education credentials in science, 
technology, engineering, and mathematics (Graham & Pegg, 2011). Despite its importance, 
there has been scant attention given to research in geometry when comparing to content 
such as number, algebra and measurement (MacDonald, Davies, Dockett & Perry, 2012). 
The declining research emphasis has direct and significant impact on the teaching of 
geometry at all school levels.  

To begin, the introduction of new topics in mathematics such as probability, statistics, 
and computer science has resulted in a reduction of time devoted to the study of geometry 
in many mathematics classrooms (Mammana & Villani, 1998). Beginning teachers taught 
under curricula that neglected geometry are likely to overlook the importance of visual and 
spatial reasoning, as seen in the absence of visual and spatial reasoning mentioned in the 
Australian Curriculum: Mathematics (Lowrie, Logan, & Scriven, 2012). Indeed, geometry 
learning today is characterised by memorising the vocabulary and applying formulae in 
routine arithmetic calculations (Barrantes & Blanco, 2006). There is also a lack of theories 
to support instructional design efforts. Much of the research into the development of 
geometric thinking is largely framed within the van Hiele levels (Owen & Outhred, 2006). 
These studies reported that many students struggle with recognizing geometrical shapes in 
non-standard orientation, perceiving class inclusions of shapes, visualising geometrical 
solids in 2D format, and solving problems that require spatial reasoning (Elia & Gagatsis, 
2003; Shaughnessy, 1986). Many pre-service and experienced teachers share the same 
misconceptions about geometry as the students whom they will eventually teach (Fujita & 
Jones, 2007; Wang & Kinzel, 2014). While the van Hiele levels have provided a general 
description of the geometric development, they lack the depth needed to inform 
instructional design (Battista, 2007). Specifically, van Hiele’s labelling of ‘visual’ to the 
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lowest level is problematic because visualisation is needed at all levels of development 
(Jones, 2002). 

While the key to supporting meaningful student learning lies in teachers possessing a 
number of identifiable and differentiable knowledge bases termed mathematical 
knowledge for teaching (Ball & Hill, 2008), codifying the type of geometric knowledge 
teachers need is difficult. As a discipline, geometry has grown to include more than 50 
different aspects and theories (Graham, Bellert, & Pegg, 2007). Disagreements abound in 
the aims, content and methods of teaching from primary years to higher education level. 
As such, ‘there has not yet been found – and perhaps there does not exist at all – a simple, 
clean, linear, “hierarchical’ path from elementary to the more advanced achievements of 
geometry’ (Mammana & Villani, 1998, p. 337). All types of geometric concepts appear to 
develop over time, becoming increasingly integrated and synthesised (Jones, 2002, p. 130). 
Secure knowledge of two and three dimensional shapes then acts as a conceptual glue that 
provides coherence and relevance to the learning of more advance geometry (Usiskin, 
2012).  

Much of the difficulties involved in learning two and three dimensional shapes are 
caused by a disjuncture between personal geometric knowledge derived from experience 
and formal geometric knowledge deriving from axioms, definitions, theorems, and proofs. 
Not so well known is the construct of visualisation and its role in bridging this gap to 
support learning. Available research suggests that learners tend to be better at drawing a 
correct image of a shape than providing a definition (Fujita & Jones, 2007). Many learners 
also have a tendency to make decisions based on figural constraints rather than on formal 
geometric knowledge (Fischbein, 1993). 

This paper reports part of an ongoing investigation into teacher geometric knowledge. 
The larger study focuses on developing frameworks that can contribute to the design of 
instructional sequences. The responses of 152 pre-service teachers are considered in order 
to: (a) determine the gaps between Australian pre-service teachers’ personal and formal 
geometric knowledge; and (b) the role of visualisation in the construction of geometric 
ideas. 

Theoretical Framework 
Geometry deals with mental entities constructed through the use of geometrical 

representations. In the form of points, lines, angles, and shapes, these are not simply 
representations of actual objects experienced in the world. Rather, they are used in an 
attempt to take an abstract concept and make it concrete (Phillips, Norris & Macnab, 
2010). Geometric representations encompass both figural and conceptual characters 
(Fischbein, 1993). Figural characters depict properties that represent a certain shape and 
can be classified as external (embodied materially on paper or other support) or iconical 
(centred on visual images) (Mesquita, 1998). According to Mesquita, figures can also be 
determined in terms of ‘finiteness’ (referring to specific forms) and ‘ideal objectiveness’ 
with no reference made to specify its forms. For example, the image  may be considered 
as a square with the unit of 3 (finiteness) or a quadrilateral with no reference made to its 
form (idea objectiveness). On the other hand, conceptual characters are concept image - the 
collective mental pictures, their corresponding properties and processes that are associated 
with the concept (Vinner, 1991). Such an image represents an ideal phenomenon, bound by 
its formal concept definition - a form of words used to specify that concept (Tall & Vinner, 
1981, p. 152), and developed through the process of visualising.  
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Phillips, Norris, and Macnab (2010) found 23 definitions and explicit statements 
relating to visualisation. They point to a three-fold distinction between physical objects 
serving as: visualisations; mental objects pictured in the mind; and cognitive processing in 
which objects are interpreted within the person’s existing network of beliefs, experiences, 
and understanding. Individuals develop their own personal concept images and concept 
definitions through experience. They may be referred to as personal figural concepts 
whereas ‘formal figural concepts’ refer to concept image and concept definitions that are 
based on the axiomatic system (Fujita & Jones, 2007). Problems with visualisation may 
create disjuncture between personal figural concepts and formal figural concepts. A 
learner’s first encounter with any geometric ideas is often through the use of objects or 
geometrical figures. Definitions are used to help form a concept image. Once the image is 
formed, the definition becomes dispensable or even forgotten (Vinner, 1991). From a 
didactical point of view, the role visualisation play in the interaction between personal 
figural concepts and formal figural concepts may help to understand how geometric 
knowledge is constructed and thereby inform pedagogical and curricular decisions. 

Method 
A total of 152 Australian primary pre-service trainee teachers in the third year of a 

four-year primary teacher education course participated in this study. The participants had 
undertaken two method courses on number, measurement, geometry, probability, and 
statistics and were reminded of the geometry topics they have studied prior to the study. 
Five multiple choice and two short answer questions were presented to the participants and 
relate to pi, angle, and properties of two and three dimensional shapes. They represent a 
sample of concepts participants are expected to know and teach. Details of the questions 
together with the analysis of the data are presented below. 

Results and Discussions 
The results of participants’ correct responses on five multiple choice questions are 

summarised in Figure 1. No questions obtained 100% accuracy. The best performance was 
question 2 while the poorest score was question 3. 

  
 

 

 

 

 
Figure 1. The amount of correct responses on the five questions 

The first question asked the participants to select the most appropriate statement about 
π. It then asked participants to describe an activity that develops an understanding of this 
relationship. Knowledge of ratio written as a fraction and the relationship between 
circumference and diameter, through visualisation, can help participants to deduce the 
correct answer. The results spread across the four options (Table 1). Two thirds of the 
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participants understood the relationship between circumference and diameter whereas 50 
participants taught it is related to circumference and radius. Some participants scribbled 
down πr2 = C, d = r2, 2πr, π = r x 3.14, d = 3 x C or πr2 to help them determine the right 
answer. Others drew diagrams (Figure 2). None of these participants answered correctly. 

Table 1  
Breakdown of Responses for Question 1 

Questions:  Responses  
1. Select the correct statement about pi  

a. Pi is the ratio of circumference to radius in a circle 
b. Pi is the ratio of circumference to diameter in a circle 
c. Pi is the ratio of radius to circumference in a circle 
d. Pi is the ratio of diameter to circumference in a circle 

(No.) 
16 
52 
34 
50 

 
11% 
34% 
22% 
33% 

 

         
Figure 2. Drawings of two participants. 

When asked to describe an activity to develop an understanding of this relationship, 
many participants mentioned measuring round objects of different sizes and then compare 
the results to establish the connection. However, a large number of descriptions, as shown 
below, lacked clarity and showed a lack of formal figural concept for the circle.  

Participant A: Pi is the relationship between the radius and circumference. Measure the diameter, 
half it and use the pi formula to work out the circumference. 

Participant B: The diameter is two times the radius, which is half the circumference. Students can 
measure different bottles and then half the total of the object measured.  

Participant C: Circumference is half double the diameter or diameter is half the circumference.  

Participant D: Circumference being the distance from one side to the other within the shape, and the 
diameter being the distance around the shape. I would draw a large circle on the ground and have 
students use formal and informal or standard and non-standard units to measure the two and see the 
difference. 

During the method course, many pre-service teachers were intrigued by the history of π 
and methods used by mathematicians to determine the ratio. While almost all could recite π 
as equal to ‘three point one four’, few understood that it is an expression of a relationship 
between the circumference of a circle and its diameter. It would appear that despite the 
course work, many participants continued to demonstrate a lack of formal figural concept 
for pi. They did not understand the relationships the formulas they have written sought to 
express. They also could not infer from the diagrams that since the circumference of any 
circle is about three times larger than its diameter (based on visualising), the correct 
answer will have to be ‘b’ - pi is the ratio of circumference to diameter (based on number 
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understanding). Several participants viewed the diameter as half the size of circumference, 
albeit confusing both terms. 

Question two assessed participants’ knowledge of two dimensional shapes. It received 
the highest correct response (Table 2). Among the 120 correct responses, 77 participants 
drew figures to obtain the answer. One participant drew and wrote ‘equal opposite sides 
that never meet’. Although the definition is not entirely correct, it showed her attempt to 
use both her personal concept definition and concept figure to obtain the answer (Figure 3).  

Table 2  
Breakdown of Responses for Question 2 

Questions:  Responses  
2. David thinks of a regular 2D shape. It has only 3 pairs of parallel sides. 

The shape could be  
a. A parallelogram 
b. A pentagon 
c. An octagon 
d. A hexagon 

(No.) 
 

17 
10 
5 

120 

 
 

11% 
7% 
3% 

79% 
 

 
Figure 3. Using definition and figures to deduce the right answer. 

 
Figure 4. A participant’s attempt to draw shapes to solve the problem. 

Seventeen (11%) participants answered parallelogram when asked to determine a shape 
with only 3 pairs of parallel sides. They could have assumed ‘parallel sides’ as synonym to 
‘parallelogram’. Those (10 participants, 7%) who chose pentagon could have confused the 
Greek prefixes of ‘penta’ and ‘hexa’ whereas it is unclear how five (3%) participants chose 
octagon. Among them, one participant drew the four options and attempted to identify the 
parallel lines (Figure 4). His drawing indicated that he understood parallel lines could be 
represented vertically (| |), horizontally (=), or diagonally (/ /). However, he could only 
identify one pair of parallel lines for hexagon base on his diagram. Since the other pair of 
lines (/  \ and /  \) did not rest on the same plane, he concluded that they are not parallel. 
Because the question asks for 3 pairs, he chose ‘octagon’ as it has more than six sides. In 
this case, his visual interpretation of the diagram was incorrect and he did not have 
sufficient formal figural concept for the regular hexagon.  

The participants’ knowledge of solids was weak and appears to be restricted to prism. 
Question 3 received the lowest score with 23 (15%) students responding correctly (Table 
3). Forty percent of the participants inferred that ‘deca’ means 10, ignoring the ‘do’, 
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deduced that a dodecahedron must have 10 faces. Fifty participants may have thought that 
tetrahedron is made up of triangles with three vertices and so gave the response ‘d’. These 
participants did not comprehend the Greek origin of these terms. Unlike the hexagonal 
prism, whose image is easier to be formed in the mind, the participants may not have had 
sufficient experience with the solids listed in question 3. As such, they were unable to 
represent three dimensional shapes using two dimensional diagrams. Their responses also 
suggested a lack of concept definition for three dimensional shapes. For question 5, 99 
(66%) participants comprehended that a hexagonal prism has 8 faces, 18 edges and 12 
vertices. Although 13 participants also knew that a hexagonal prism has 8 faces, they 
assumed that it has 16 edges instead of 18. This could be due to a counting error or that 
they were engrossed in the term hexagonal to mean ‘6’. Thirty-nine participants presumed 
that ‘hexagonal’ meant ‘six’ and chose either ‘b’ or ‘c’.  

Table 3  
Breakdown of Responses for Question 3 and 5 

Questions:  Responses  
3. Select the correct statement about 3D shapes. 

a. A dodecahedron has 10 faces 
b. An octahedron has 6 vertices 
c. A cube has as many faces as vertices 
d. A tetrahedron has twice as many edges as vertices 

(No.) 
61 
23 
17 
50 

 
40% 
15% 
11% 
33% 

5. A hexagonal prism has 
a. 8 faces, 18 edges and 12 vertices 
b. 6 faces, 16 edges and 10 vertices 
c. 6 faces, 12 edges and 10 vertices 
d. 8 faces, 16 edges and 12 vertices 

 
99 
10 
29 
13 

 
66% 
7% 
19% 
9% 

An angle is a form of measurement that calculates the amount of turn from one 
direction to another. Knowing that polygons can be viewed as containing triangles helps 
understand the patterns for finding the sum of the internal angles for a polygon. Few 
participants comprehend this idea. When asked to determine the internal angles of regular 
polygons (Question 4, Table 4), only 55 participants (36%) gave the correct answer.  

Table 4  
Breakdown of Responses for Question 4 

Questions:  Responses  
4. The internal angle of a regular pentagon is 

a. 120° 
b. 108° 
c. 110° 
d. 102° 

 
56 
55 
35 
5 

 
37% 
36% 
23% 
3% 

When asked how they would define an angle and demonstrate to a child that the sum of 
the interior angles of a triangle is always 180 degrees, a number of participants attempted 
to describe how an angle looks like rather than stating the nature and scope of an angle and 
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its relation to measurement (Figure 5). Also, they could not provide an activity to help a 
child construct this idea. 

Participant A: An angle is a particular line in which something can be of varying degrees for 
example the angle could be 90° or 180°. 

Participant B: An angle is the degree of two points of radius from a center (starting) point. 

Others simply ignored the definition and described how they would get children to draw 
and measure angles. One participant understood the sum of the interior angles of a triangle 
is always 180° but drew a triangle with three 90° (Figure 5), demonstrating a lack of 
concept image for triangles. 

 
Figure 5. An attempt to define ‘angle’ by one participant 

Conclusion 
Teaching for geometric and spatial reasoning requires teachers to have a conceptual 

understanding of the structures and properties of shapes and solids, their positions in space, 
and the connectedness between them in the formation of theorems and the learning of other 
mathematical concepts. The findings indicate that only a small group of pre-service 
teachers demonstrated sufficient formal figural concept knowledge relating to the topics 
addressed in this study. Many were not ready to teach geometry at the level required of 
them. While the van Hiele model suggests that these participants are still at level 2 or 
below and show a lack of geometrical reasoning ability, the constructs of personal figural 
concept and formal figural concept provides greater insights into individuals’ 
understanding of geometric ideas. 

Individuals’ personal figural concepts are constructed through experience with various 
geometric figures and the definitions attributed to these representations. The conceptual 
characteristics of a figure ares governed by its definition, which in turn is a statement that 
describes the nature, scope and meaning of a particular concept. For personal figural 
concept to be aligned with formal figural concept, well-developed concept image and 
concept definitions through visualisation are needed. The findings reveal that many 
participants’ mental images of geometric shapes showed a lack of conceptual 
understanding. For example, they were able to draw and identify circumference and 
diameter but did not have the concept definition needed to comprehend the relationship 
between them. They could describe how an angle looks like but were unable to reason 
using properties of triangles. Many also could not accurately visualise and interpret the 
figures they had drawn, assuming that diameter was half the length of circumference. They 
also lacked a personal figural concept for three dimensional shapes, suggesting the lack of 
knowledge to this topic.  

Similar to Fujita and Jones’ (Fujita & Jones, 2006) findings, regression has happened 
after participants have completed the method course. One explanation could be that the 
geometric ideas presented were new to them and have not influenced their underlying 
beliefs and cognitive processes. This, coupled with their school experience may be the 
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reason why participants can recite formulas but cannot provide the concept definition. This 
study only addresses a limited range of geometric ideas. Further research is needed to 
investigate the extent of teacher geometric knowledge and classroom practices, and how 
tasks can be designed to challenge and promote visualisation in the construction of formal 
figural concepts. 
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In this study we examine the use of cumulative and exploratory talk types in a year 5 

computer supported collaborative learning environment. The focus for students in this 
environment was to participate in mathematical problem solving, with the intention of 

developing the proficiencies of problem solving and reasoning. Findings suggest that 

students engaged in exploratory talk may more regularly attempt the use of technical (tier 

3) mathematical vocabulary.  

Introduction 

The development of mathematical language is essential to student understanding and 

growth in mathematics; see for example (Austin & Howson, 1979; Morgan, Craig, 

Schuette, & Wagner, 2014). In this paper we will examine the use of mathematical 

language by Year 5 students, in the context of a Computer Supported Collaborative 

Learning (CSCL) environment.  

We were interested in the ‘talk types’ (Mercer & Wegerif, 1999) that would become 

evident during student online discussion. The three types we looked for in discussion were 

Mercer and Wegerif’s ‘disputational talk’, ‘cumulative talk’, and ‘exploratory talk’. Our 

primary intention in this paper is to answer the question; ‘will the density of use of Beck, 

McKeown and Kucan’s (2002) tier-three vocabulary (see below) be greater in identified 

examples of ‘exploratory talk’ compared with the other two talk types?’ A secondary 

question that we also aim to explore is, ‘Is there a relationship between students’ (teacher 

identified) mathematical ability and their use of tier-three mathematical vocabulary?’ 

Finally, we aim to investigate whether the density of tier-three mathematical vocabulary 

use changed throughout the intervention and also if there were any ability groups (below 

level, at level or above level) where changes were more obvious. 

Talk Types 

Mercer and Wegerif (1999) identified three broad talk types when they analysed many 

hours of videotaped discussion amongst British primary age students: ‘disputational talk’, 

‘cumulative talk’ and ‘exploratory talk’. Designating and analysing talk types in this way 

allowed the authors to consider the ways that students use language to collaboratively 

construct knowledge and problem solve. his approach to the analysis of student discussion 

since it is prominent within CSCL literature. We rely on Mercer and Wegerif’s (1999) 

definitions for the three talk types in this study: 

Disputational talk, which is characterised by disagreement and individualised decision making. 

There are few attempts to pool resources, or to offer constructive criticism of suggestions. 
Disputational talk also has some characteristic discourse features – short exchanges consisting of 

assertions and challenges or counter-assertions. 

Cumulative talk, in which speakers build positively but uncritically on what the other has said. 

Partners use talk to construct a ‘common knowledge’ by accumulation. Cumulative discourse is 

characterised by repetitions, confirmations and elaborations. 
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Exploratory talk, in which partners engage critically but constructively with each other’s ideas. 

Statements and suggestions are offered for joint consideration. These may be challenged and 

counter-challenged, but challenges are justified and alternative hypotheses are offered. Compared 

with the other two types, in exploratory talk knowledge is made more publicly accountable and 

reasoning is more visible in the talk (p. 85). 

The discourse analysed in this paper occurred in the online environment. That is, it 

occurred asynchronously in a discussion board. (However we use the term ‘utterances’ 

when referring to students’ statements.) Like Mercer and Wegerif, we were interested in 

gaining an understanding of how students jointly construct knowledge. Our interest in 

identifying and analysing the three talk types stemmed from the author’s speculation that 

CSCL environments designed to foster greater levels of exploratory talk are more likely to 

result in higher levels of higher order and critical thinking. We hypothesised that given that 

‘exploratory talk’ is represented by talk where public accountability is evident, in addition 

to reasoning being visible, a greater density of technical mathematical vocabulary may be 

present when students engage in this talk type.  

Vocabulary - The Three-Tier Framework  

Beck, McKeown, and Kucan (2002) established a basic system for the classification of 

vocabulary. In their system vocabulary is classified as tier-one, tier-two and tier-three. 

They established these terms as a means to frame teaching and learning in the area of 

vocabulary development. Their framework has since been appropriated by various 

researchers for the purposes of understanding aspects of mathematical language 

development, see for example (Marzano & Simms, 2013). 

Tier-one vocabulary encompasses everyday language. These words are the most basic 

and are used with a high degree of frequency, particularly in spoken language. Tier-one 

vocabulary includes such words as ‘warm’, ‘cold’, ‘talk’, ‘cat’, ‘dog’ etc.  

Tier-two vocabulary represents words that are primarily used in written language. They 

are words with a very high degree of utility. These words are generally utilised by more 

mature users of language. As a result of their usage primarily in written language, they can 

be more difficult for students to learn independently. Examples of tier-two vocabulary 

include, ‘proceed’, ‘following’, ‘retrospect’, ‘contradictory’ etc. 

Tier-three vocabulary includes words with a technical or domain-specific usage. 

Generally, these words are of a very limited usage, however in the case of this study we 

see them occurring more frequently because of the mathematical context of the study. They 

are generally the most difficult words for students to acquire because of the very limited 

opportunities students have to experiment with them. In the context of mathematics, Tier –

three vocabulary would include, for example: ‘formula’, ‘equation’, ‘symmetry’, ‘median’. 

Method 

The present study took place as part of a project in an Australian suburban primary 

school over a ten-week period. The first author had previously taught at this school and so 

was familiar with their curriculum and the students’ computer skills.  

Participants in the project were 54 Grade 5 students (ranging in age between 10 – 12 

years old). There were 26 boys and 28 girls between two classes. Thirty-two percent of the 

student participants are from a language background other than English (ACARA, 2015). 

This had implications for this study as working within a CSCL environment places 

significant demands on students’ general literacy abilities. The 54 students were placed in 

10 mixed ability groups within the online space. These groups were created on the basis of 
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teacher judgement (students were classified as either below level, at level or above level in 

mathematics). Teachers classified students on the basis of a series of tests they had 

conducted, assessing the students’ level of procedural and algorithmic fluency and general 

understanding across key areas of mathematics. 

Over the ten weeks in which the unit was delivered students collaboratively solved 

and/or investigated nine mathematical problems incorporating aspects of each of the 

content strands of the Australian Curriculum; namely, Number and Algebra, Statistics and 

Probability and Measurement and Geometry (ACARA, 2014). 

Through a one-to-one netbook program every student had their own access to 

Microsoft Windows so online collaboration generally took place at the students’ homes. 

This required an internet connection so if students did not have internet access at home, 

they were given the opportunity at lunch times to access the internet in their classroom.  

Students were expected to engage in iterative online discourse where they would build 

on each other’s ideas. This is a principal goal of collaborative mathematical problem 

solving. No online facilitator took part in the CSCL. This decision was taken in order to 

avoid discussion and communication between students being stifled by an ‘expert’.  

However the participants did receive support. Each week for the first 7 weeks, prior to 

the students commencing work on each online problem, an hour of standard classroom 

discussion was facilitated by the first author of this paper. This time was spent with the 

class performing three basic tasks: discussing expectations of behaviour, and appropriate 

approaches to collaboration within the online space; reviewing the previous week’s 

solutions and discussing challenges and successes that students perceived; explaining, 

reading through and discussing the following week’s problem. In weeks 8 and 9 a different 

pedagogical approach was taken. The level of support was greatly reduced, no discussion 

of the problems took place and students were asked to solve the problems in their class 

time but only through working in the CSCL environment. 

Analysis of data for this paper was undertaken using qualitative data analysis software 

NVivo (2014) and was based on two forms of coding. Firstly, all online discussion within 

each of the ten small groups was coded in terms of talk type. For this analysis one of the 

three talk types (cumulative, exploratory or disputational) was identified for each 

discussion, for each group, for each problem. As indicated by Mercer and Wegerif (1999), 

often this meant that whilst a predominant talk-type was identifiable aspects of the others 

were also present. In these cases we coded according to the one we believed was most in 

evidence. When disagreement within a group occurred in a manner that moved the group 

forward in their thinking we chose to classify these episodes as ‘exploratory’ talk rather 

than ‘disputational’ talk. We believe that the lack of disputational talk may be a result of 

regular teacher led classroom discussions about constructive modes of online 

communication. Secondly, all online discussion was coded for examples of tier-three 

mathematical vocabulary. This coding is undertaken at the word level. After coding the 

two respective approaches were cross-tabulated to detect patterns and associations. 

Results and Discussion 

Figure 1 shows an example illustrative of discussion from the online message board 

coded as exploratory talk with tier-three mathematical vocabulary bolded. The discussion 

in Figure 1 is provided verbatim (with pseudonyms) from the online space. In this example 

students worked on a problem where they were required to make a conjecture about 

whether cats’ names or dogs’ names are generally longer. The students researched a 
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number of the most common cats’ names and dogs’ names; calculated the mean, median 

and mode of these data, graphed results using Microsoft Excel and discussed their results. 

Interestingly, the only two talk types that we detected were ‘cumulative’ and 

‘exploratory’. In this example of exploratory talk we see the students attempting to decide 

upon appropriate mathematical vocabulary to describe the three common measures of 

central tendency. One student offers the word ‘maintain’ as a possibility. Eventually 

though, they are able to arrive at the conclusion that the words ‘mean’, ‘median’ and 

‘mode’ are the words that they have been seeking to find. This suggests that students’ 

vocabulary may benefit from the co-negotiation of definitions, trialling and 

experimentation with new terms that the context of this setting allows. 

 

Sunny  

 

I think dogs and cats are the same number of letters because in my 
graph it came up with 8 fives and eight fives each. 

So that my Information 

Please reply 

Thanks guys 

Sienna Hi Sunny, where is your graph? 

Sienna 

 

Hi everyone, i have done the exel spread sheet and the names that i 

have got are feamale and male. i am neally compleated. 

Holly  

 

Hey guys what do you do after you have writen down all the names 

and numbers? 

Sienna  

 

hi everyone. What are the three words that we have to do. They are 

the M words. What are they? 

Sunny 

 

Same I forgot about those m words I think one was maintain. 

I am not sure about if it is right. Please reply under 

Thanks guys 

Sunny 

 

Guys I know the m words they are mean, mode and median. 

I just remembered today. I hope this helps you in you bar graph, 

column graph and lastly line graph etc. Please reply if you are on 
edmodo. 

Thanks guys 

And see you tommorow 

Figure 1. Example of discussion coded as exploratory talk. 

Figure 2 shows an example from the online discussion where cumulative talk is apparent. 

This discussion is again taken from a small group of students attempting to collaboratively 

solve the previously described ‘Pet Names’ problem. In this example we see Annie 

positioning herself as ‘leader’ within the group. She repeatedly rephrases her desire for 

suggestions or agreements related to whether she should provide information about the 

various pet names. No constructive criticism is present, however eventually we see some 

‘common knowledge’ emerging. In this excerpt of discussion we see no tier-three 

mathematical vocabulary. The group did not present any analysis of their pet names. 
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Annie hey guys do we need to do male and female cats names if you do 

please post 

Kevin do you what me to rshoq 

Annie what is rshoq? 

Kevin that mans resuch 

Annie 

 

no i was thinking i have already done the female and the male cat 
names and they are french names is that alright with you guys 

Annie and you spell research like this. 

Sheldon hi 

Annie hi just tell me if you guys want to know the names and i will tell you 

Annie i will tell you anyway the female names are:  

Sassy Misty Princess Samantha Kitty Puss Fluffy Molly Daisy Ginger 

Midnight Precious Maggie Lucy Cleo Whiskers Chloe Sophie Lily 
Coco 

Annie And my male names are: 

Max Sam Tigger Tiger Sooty Smokey Lucky Patch Simba Smudge 
Oreo Milo Oscar Oliver Buddy Boots Harley Gizmo Charlie Toby 

Figure 2. Example of discussion coded as cumulative talk. 

Table 1 shows the number of examples of talk types identified and the number of 

examples of tier-three mathematical vocabulary. The dominant talk type throughout all 

discussion during the ten weeks of data collection was cumulative talk. Forty-nine 

examples of cumulative talk were identified, whilst only 27 examples of exploratory talk 

were identified. Across the data we see an average of between 7 and 8 mathematical tier-3 

words used during examples of cumulative discussions, whilst we see between 10 and 11 

examples of this type of vocabulary used in examples of exploratory talk.  This indicates 

that students engaged in exploratory talk were more likely to use tier-three vocabulary than 

when they are engaged in cumulative talk.  

Table 1  

Tier 3 Vocabulary use in Cumulative and Exploratory talk 

Talk Type Tier-three 

Vocabulary Used 

within Talk Types 

Identified examples 
of Talk Type 

Average No. Tier-

three Vocabulary per 

Example  

Cumulative Talk 361 49 7.4 

Exploratory Talk 284 27 10.5 

Table 2 shows the density of tier-three mathematical vocabulary use by differing 

ability levels of students. With the exception of the ‘at level’ boys a possible association 

can be seen between the density of mathematical tier-three vocabulary use and the student 

ability level. One possible explanation for the lower than expected use of tier-three 

vocabulary use in this group is that 7 of the 11 students in this group had a Language 

Background Other than English compared with 17 out of 54 overall. 
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Table 2 

Density of Tier three Vocabulary use in Student Utterances 

 No. Of 

Students 

Tier-three 

Vocabulary 
Use 

Total No. of 

Utterances 

Tier-three 

Vocabulary 

Use per 

Utterance 

Above Level Boys 5 129 198 0.65 

Above Level Girls 3 78 96 0.81 

At Level Boys 11 77 301 0.26 

At Level Girls 12 183 350 0.52 

Below Level Boys 7 35 96 0.42 

Below level Girls 9 128 308 0.42 

Table 3 shows the density of mathematical tier-three vocabulary use throughout the 

study. There does not appear to be any clear evidence of progressive growth in students’ 

use of mathematical tier-three vocabulary throughout the period. However each problem 

offered different opportunities. We have also indicated rates of online participation of the 

ten small groups throughout the period. We see that in weeks 2 and weeks 7 the fewest 

number of groups participated in online discussion. These weeks also correspond with the 

lowest number of tier-three mathematical terms used. It is possible to conjecture, that in 

these two weeks students found it more difficult to engage with the tasks. Even though 

there was a classroom introduction, including explicit discussion of the required 

mathematical language the mathematical content required was new and also difficult for 

some students. For example, in week 7, when they undertook the Pet Names problem, 

students were required to calculate a central measure (mean, median and mode). The 

development of skills and understanding in this area of statistics does not appear in the 

Australian Curriculum (ACARA, 2014) until year 7.   

It is also worth considering the change in pedagogical approach that took place in the 

final 2 weeks of the intervention. The classroom based support and facilitation that the 

students had benefited from, for the previous 7 weeks was withdrawn in the final two 

weeks for the purpose of gaining some understanding of whether students could transfer 

any of the learning that had occurred in the previous weeks without the same high level of 

support. Taking this into account, the average number of tier-three mathematical terms 

used per group (with weeks 2 and 7 removed) in the period of high support was 9.9 and in 

the final weeks without support it was 7.4. Our hypothesis that students should be able to 

transfer their learning after having received sustained support for the previous 7 weeks 

appears to be invalid. It is important to consider though the particular area of learning that 

we are assessing in this context. For each of the weeks before the final 2, the classroom 

facilitator (the first author of this paper), would introduce the new vocabulary and facilitate 

an extensive discussion and co-negotiation of these terms with students. Students were 

being ‘pre-loaded’ with the tier-three mathematical vocabulary required for the problem 

they would be discussing in the online environment before they were asked to collaborate. 

Naturally, they were able to better utilise this vocabulary, having been extensively 

prepared. As there was no specific mathematical content focus over the period of the 

intervention, each week a new and different set of vocabulary was required of the students. 

When the classroom support was taken away, so was the students’ opportunity to 
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familiarise themselves and become somewhat comfortable with vocabulary that would be 

of high utility to them in the online space in that week.  

Table 3 

Density of Tier three Vocabulary use throughout Intervention 

Week Examples of Tier-

Three Vocabulary  

Number of Groups 

Participating in 
Online Discussion 

Average Number 

of Tier-Three 

words per 

(participating) 
group 

Week 1  68 9 7.6 

Week 2  19 6 3.2 

Week 3 93 9 10.3 

Week 4  129 9 14.3 

Week 5  108 10 10.8 

Week 6  64 10 6.4 

Week 7  25 7 3.6 

Week 8  85 10 8.5 

Week 9  57 9 6.3 

Our final analysis allowed us some understanding of if there was any significant 

difference in the growth in density of tier-three mathematical vocabulary use amongst the 

ability groups. Weeks 2 and 7 were removed from calculations.  

Again, we do not believe that any the three groups showed clear progression in density 

of use of tier-three mathematical vocabulary over the period. However, some observations 

are possible. Firstly, all three groups on average used fewer tier-three mathematical words 

without classroom support than with support. The ‘above level’ group used 3.6 (per 

student, per problem) with support and 3.0 without. The ‘at level’ students used 1.6 with 

support and 1.2 without support and the ‘below level’ students used 1.5 with support and 

1.1 without support. It appears that the ‘above level’ students made the greatest gains when 

provided support and equally their rate of use of these mathematical terms decreased the 

most of all three groups (whilst still using a greater number of these words than the 

remaining groups) when support was removed. The average density of tier-three 

vocabulary use between the ‘at level’ and ‘below level’ students appears very similar both 

with and without support (in fact the change of 0.4 that was evident without support was 

identical). This however, must be considered alongside the marked difference in density of 

tier-three mathematical vocabulary detected between ‘at level’ boys and girls, which we 

have attributed partially to the high level of LBOTE students in the boys group. 

Implications include the importance of deliberately teaching mathematical vocabulary and 

providing opportunities for students to see the value of its use. 

Implications 

These observations lead to a number of implications for teaching and further research. 

We hypothesise that if an intervention was replicated over the same period where a single 

mathematical content area remained the focus, a theorised growth in the density of student 

tier-three mathematical vocabulary may occur. We also believe that whilst no clear 
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evidence of growth in student use of tier-three mathematical vocabulary is present, other 

areas of learning may have made clearer growth and student learning may have transferred 

from the period in which they received great support to the period of support being 

removed. These areas include the mathematical proficiencies of problem solving and 

reasoning, critical thinking and the level to which students engage in genuinely 

collaborative learning. Applying a more fine-grained approach to the coding and analysis 

of the talk-types, whereby each individual student utterance in the online space becomes 

the unit of analysis may prove to help investigate these matters.Error! Reference source 

not found.  

The data indicate that students will use tier-three mathematical vocabulary more 

regularly when engaged in exploratory talk than when engaged in cumulative talk. We 

have also shown that cumulative talk is likely to be the dominant talk type, given the 

conditions described. We suggest that it may be beneficial to specifically encourage the 

engagement of students in exploratory talk in order to prompt them to more regularly 

experiment with newly acquired vocabulary. Explicitly teaching students about the three 

talk types and discussing their various attributes and characteristics, including why 

exploratory talk might be the most productive talk type, may promote this. Such teaching 

would include an explanation of the importance of building a repertoire of technical 

mathematical vocabulary. It is envisaged that this may result in groups ‘self-regulating’ 

their discussion and being aware of when talk had become less productive.  

Additionally, data in this study suggests that a relationship exists between student 

levels of procedural mathematical achievement (as classified by their teacher) and the 

density of tier-three mathematical vocabulary use. Our data shows, that students classified, 

as ‘below level’ less regularly attempted the use of this type of vocabulary than their peers 

classified as ‘above level’. Furthermore, data suggests that LBOTE students are less likely 

to attempt this high level vocabulary. Further research would be required to test the 

hypothesis that a targeted approach to the teaching of tier-three mathematical vocabulary 

may lead to improved results in procedural assessments of mathematical ability. 
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There is an identified and growing need for a levelled diagnostic basic facts assessment tool 

that provides teachers with formative information about students’ mastery of a broad range 

of basic fact sets. The Individual Basic Facts Assessment tool has been iteratively and 

cumulatively developed, trialled, and refined with input from teachers and students to meet 

that need. The development of the tool, results from test trials, and our next steps are 

described in this article.  

The importance of students knowing their mathematics basic facts is not a new 

phenomenon.  The instant recall of basic fact knowledge is acknowledged as an important 

goal for mathematics education and an essential precursor for students’ success in 

mathematics (Boaler, 2012; Ministry of Education [MoE], 2007a; Tait-McCutcheon, 

Drake, & Sherley, 2011; van de Walle, 2009; van de Walle, Karp, & Bay-Williams, 2013). 

Students’ fluency with sophisticated tasks such as problem solving and higher-order 

processing is enhanced by their ability to instantly recall basic facts (Kilpatrick, Swafford, 

& Findell, 2001). Their short-term memory is freed-up and they are better positioned to 

focus on the more challenging strategic aspects of the task (Kling & Bay-Williams, 2014; 

Neill, 2008). Research has also acknowledged a strong correlation between basic facts 

fluency and mathematics achievement (Kilpatrick et al., 2001).  

While the importance of being able to recall basic facts is well established, how this is 

best achieved has not been well defined. Traditional testing of basic facts has occurred 

through timed tests of short duration whereby students attempt to solve a specific number 

of addition, subtraction, multiplication, and/or division problems, randomly written in 

terms of difficulty (Kling & Bay-Williams, 2014). For example 50 facts within three 

minutes (Clarke & Holmes, 2011). Such an approach to testing is problematic and unlikely 

to elicit a true picture of student achievement (Crooks, 1988).  

Evidence from previous research into the teaching, learning, and assessing of basic 

facts in New Zealand (Sherley & Tait-McCutcheon, 2008; Tait-McCutcheon et al., 2011), 

indicated that practice in schools, while changing, too often had the limited notion that 

learning basic facts meant learning the multiplication facts. Internationally, assessment 

tools and teaching interventions have focussed predominantly on multiplication facts 

(Clarke & Holmes, 2011; Kling & Bay-Williams, 2014; Skarr et al., 2014). As such, there 

is a strong possibility of a disconnect between the test content and student’s class work. 

Some students could be repeatedly tested on facts they already know whilst others could be 

tested on facts related to operations they have very little understanding of, or use for.  

Our stance is that basic facts are basic because they are fundamental and underpin the 

student’s next learning steps, not because they are easy. They are facts in that they are 

pieces of mathematical information that are committed to and can be retrieved from long-

term memory. The definition of basic facts in this research comes from Neill (2008) “any 

number or mathematical fact (or idea) that can be instantly recalled without having to 

resort to a strategy to derive it (p. 19). One implication of this definition is that the notion 

of basic facts is not a stable, fixed body of knowledge but is contextual as the facts being 

learned change with age and developing mathematical concepts. A second implication is 
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that because students need to continually increase their fact mastery, all teachers need a 

robust basic facts programme as an integral part of their mathematics curriculum.  

In relation to the issue of timed basic facts tests, McCloskey (2014) asked, “[C]ould the 

timed test be changed into a different form of performance with more meaningful 

assessment purposes and yet maintain the traditionalised purpose that teachers and parents 

seem to value?” (p. 35). This paper is a response to McCloskey’s question. It outlines the 

development and use of the Individual Basic Facts Assessment (IBFA), a tool for 

identifying a students’ current level of basic fact knowledge and fluency, an approach to 

basic fact testing referred to in Tait-McCutcheon et al. (2011). 

Uses, Utility, And Apprehension 

The authors concerns regarding the questionability of timed tests eliciting a true picture 

of student achievement have been documented in the literature. Three themes identified 

from the literature include: assessment measures and uses, what is valued, and the 

relationship between timed tests and math anxiety.  

One assumption commonly made about timed basic facts tests is that correct answers 

are derived from knowledge. However, because the time given is to complete the whole 

test students could immediately recall the answers they know and then use a mix of 

efficient or inefficient strategies to determine other answers (Tait-McCutcheon et al., 

2011). For example, Clarke and Holmes (2011) gave students three minutes to complete 

the test to ensure “knowledge rather than strategisation of solutions” (p. 205), but, this 

approach assumes that students used the same amount of time to solve each problem.  As 

Kling and Bay-Williams (2014), contended timed testing “offers little insight about how 

flexible students are in their use of strategies or even which strategies a student selects” (p. 

490).  

The dilemma of speed versus accuracy and what gets valued is the second theme 

identified from literature. Popham (2008) suggested there was no value in “pressuring kids 

to be math perfect in minutes” (p. 87). Seeley (2009) warned against “overemphasizing 

fast fact recall at the expense of problem solving and conceptual experiences” because 

such emphasis can give students “a distorted idea of the nature of mathematics and of their 

ability to do mathematics” (p. 2). The danger being that the speed in which the test was 

completed could be valued more than the accuracy of the answers, speed could be 

erroneously equated with mathematical ability or fluency, and students could interpret their 

responsibility as having to be quick (Boaler, 2012; Kling & Bay-Williams, 2014). 

The third theme is the relationship between timed tests and math anxiety. Boaler 

(2012) claimed a “direct link between timed tests and the development of math anxiety” (p. 

2). Timed tests have been shown to trigger math anxiety in all students and the claim from 

Kling and Bay-Williams (2014) is that “some of our best mathematical thinkers are often 

those most negatively influenced by timed testing” (p. 490). Stress can block students 

working memory, causing symptoms similar to stage fright and making even familiar facts 

unretrievable (Beilock, 2011). The more aware students became of their inability to recall 

known facts the more apprehensive they became about their performance and results. The 

stress or anxiety caused by the timed test conditions may pressure students to revert to less 

efficient strategies such as finger counting, head bobbing, or touch point counting (van der 

Walle, 2009). For some students the prospect of doing a timed test could be enough to 

elicit a negative emotional response, with many disliking “not only tests, but also math” 

(Popham, 2008, p. 87).  
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Despite the noted disadvantages of traditional timed tests, the assessment of student’s 

basic facts knowledge remains a requirement and expectation for many teachers and 

parents (McCloskey, 2014; Seeley, 2009). Our aim was to develop and trial an assessment 

tool that more accurately measured basic fact recall, provided cleaner data, identified the 

use of knowledge or strategy, and reduced anxiety.  

Method 

Design-based research (D-BR) was the most appropriate methodological frame for this 

research for the following reasons: the iterative, cumulative, and cyclic nature of the 

research and theory development, the positioning of the research within the naturally 

occurring phenomena of classrooms, and the flexibility of the research design 

(Gravemeijer & van Eerde, 2009; Kennedy-Clark, 2013). Gravemeijer and Cobb (2006) 

used the following adage to explore the underlying philosophy of design research: “if you 

want to change something, you have to understand it, and it you want to understand 

something, you have to change it” (p. 45). The researchers of this study determined they 

wanted to change the current tools for testing students’ basic fact knowledge recall. Once 

the affordances and limitations of current tools were better understood, we set about 

designing, trialling, understanding, and improving the IBFA tool.  

The theoretical rationale in this study was to understand the teaching, learning, and 

assessing of basic facts, the applied rationale was to use our empirically supported theories 

to influence how basic facts are taught, learned, and assessed in New Zealand schools. 

Context theory related to the challenges and opportunities presented in designing an 

alternative IBFA tool and outcomes theory related to the outcomes associated with the 

intervention to improve the teaching, learning, and assessment of basic facts. 

Research Settings and Participants 
Four schools participated in phases one or two of the IBFA tool design and 

development. Table 1 provides relevant data of the schools, teacher participants, and 

students.  

Table 1 

The research settings and participants  

 School Name 

(Pseudonym) 

Decile Category Teachers  Students  Year 

Group 

Ponga Primary  8 Full Primary  1 23 5 - 8 

Nikau Intermediate  4 Intermediate  4 96 7 - 8 

Nikau Secondary  6 Secondary  3 63 9 

Rimu Intermediate  8 Full Primary  3 81 7 - 8 

Data collection and analysis 
A mixed methods data collection occurred to allow for a more robust understanding of 

the learning environment (The Design-Based Research Collective, 2003). Forms of data 

included observations from researchers, teachers, and students, student test papers, and 

interviews between researchers, teachers, and students. Data were analysed immediately, 

continuously and retrospectively alongside literature reviews coupled with the systematic 

and purposeful implementation of research methods (Wang & Hannafin, 2005).  
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Patterns, thoughts, and items of interest were noted during the analysis phase. Data 

were eyeballed “to see what jumps out” (Miles, Huberman, & Saldaňa, 2014, p. 117). For 

example, each set of stage results were considered for unusual results and explored in 

relation to the Number Framework (MoE, 2007a), and items located in nearby stages. This 

process could lead to an item being moved between stages. The design and revision of the 

IBFA questions were based on the researchers’ anticipations of which stages to place each 

problem and in what order. As such, “each cycle in the study is a piece of research in 

itself” (Plomp, 2007, p. 25) that contributed to the growing body of knowledge.  

Formative evaluation of both quantitative and qualitative data informed the 

improvement and refinement of the IBFA tool and guidelines (Kennedy-Clark, 2013). This 

allowed us to measure the effects of the test and to develop richer pictures of teacher and 

student knowledge acquisition. A mixed methods approach increased the credibility and 

adaptability of the research allowing for retrospective analysis and formative evaluation. 

The positionings of the researchers and teachers within the study also ensured adaptability 

(Plomp, 2007). Researchers took on the roles of designer, advisor and facilitator without 

losing sight of being a researcher, and teachers took on the role of researcher, designer, and 

advisor without losing sight of being a teacher. The inclusion of different expert groups 

within the study provided an extended degree of rigor and mitigated issues of accessibility 

(Wang & Hannafin, 2005).  

IBFA Tool Design and Development 

The IBFA tool was designed, elaborated, trialed, and revised in an attempt to further 

understand and improve the educational processes of assessing basic facts. The guidelines 

for understanding and administering the tool are as follows: 

The response time for each item was aligned with the NDP expectations of what knowing means 

and allowed students 4 seconds to answer one question rather than 5 minutes to answer 100. The 

assessment includes basic-facts questions written as both number problems (e.g., 9+9 =, which is 

read as “nine plus nine equals”) and problems written in words (e.g. double what is ten?). To 

alleviate any prerequisite literacy requirement that could adversely affect students’ mathematical 
proficiency each item is read aloud to the class as well as displayed visually on a timed slideshow. 

As it is possible for students to strategise within the four seconds allocated for each item students 

are asked to annotate their answers with a “k” if they know the answer instantly or with an “s” if they 
strategise. (Tait-McCutcheon et al., 2011, p. 336) 

The first version was designed to meet the following criteria. First to assess facts 

derived from the Number Framework (MoE, 2007a) and related to The New Zealand 

Curriculum (MoE, 2007b). Secondly, to provide a visual and aural, readily administered 

and easily marked test, useable with a whole class that offered reliable, relevant data that 

could be interpreted and actioned by students, teachers, and parents. Thirdly, to position 

students as active constructors of meaning by focussing them on individual facts, rather 

than a collection of facts, addressing the amount of time issue for an individual fact, and 

determining if an answer resulted from knowledge, strategy, or a combination. Fourthly, to 

address commonly recognised problems that students have when learning a particular set 

of facts and to include facts commonly found to be problematic and be sufficient in 

number to identify whether or not a student knows a particular set of facts.  Fifthly, to 

provide results that identify students’ next learning steps, teachers next teaching steps, and 

a clean stage descriptor for reporting purposes. 
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IBFA Version One (V1) 
IBFA V1 was trialled at Ponga Primary School as part of the research described in 

Tait-McCutcheon et al. (2011). Given the sample size the tool was found to be fit for 

purpose, however, the design process identified issues that would need to be addressed in 

larger scale trialling. For example, the Number Framework (MoE, 2007a, pp. 21 & 22) 

identifies that at Stage 6 students should know their multiplication facts and some 

corresponding division facts but not know all of their division facts until Stage 7, so it was 

unclear which division facts should be located at which stage.  

The second trialling of V1 occurred at Nikau Intermediate and Secondary Schools. 

Teachers at both schools indicated the format was suitable for a range of ages and student 

abilities. However, the time set for the items (4 seconds) was an issue at the higher stages. 

While the time allocation was considered the maximum that should be allowed for 

knowledge recall, a review of the items indicated that concepts such as common factors 

needed to be found using a mix of knowledge recall and strategising. Such items were 

either simplified to retain the skill but better target knowledge recall and take less time, or 

were replaced with items from a different fact set. Also identified was a trend relating to 

start and change unknown formats (Sarama & Clements 2009). Students tended to find 

these harder than result unknown, but it was unclear whether this was a teaching issue or 

due to item difficulty. Clusters of items were explored to identify the appropriate location 

of particular sets of facts. For example, a cluster of items relating to the subtraction facts to 

10 was spread over Stages 4 and 5. Results suggested that these were better located at 

Stage 5. For the multiplication and division facts over Stages 6 and 7, the numbers in the 

Stage 6 items were simplified and result unknown format applied to determine if this gave 

better discrimination. 

Matters outside the initial scope of the research were also identified. For example, 

some students noted their correct answers as a total out of 60 rather than identifying what 

stage, which sets of facts they had mastered, and what their next learning steps were. Other 

classes had not used the ‘K’ or ‘S’ notations to indicate if they knew the answer or needed 

to work it out. The instructions for teachers were revised, as was the answer sheet, to 

ensure students and teachers better understood the purpose behind the test’s structure and 

to ensure data from different classes and schools were of a similar standard.  

Researchers and teachers made significant contributions to further developing the 

content of the IBFA V1 and the theories underpinning the use of it (Gravemeijer & van 

Eerde, 2009). It was important to have synchronicity between both groups as to what the 

data was telling us and what we were identifying as next teaching and learning steps. As 

Mason (2002) suggested, this “process of refinement” (p. 181) was also part of the research 

as teachers reported back what they noticed and provided both practical and scientific ways 

to enhance the next research phase and their teaching (Gravemeijer & van Eerde, 2009). As 

such, the creation of V2 started to move the IBFA forward from the Number Framework to 

include lessons from trialling. 

IBFA Version 2 (V2) 
Version 2 was trialled at Rimu School. Students marked their own papers with later re-

marking by the researchers. Twenty-six papers (32%) were found to have errors.  One 

particular problem with student marking occurred when students ‘lost track’ of where they 

were up to in the test and produced a set of answers that were misplaced by one or two. 
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Another was when students put an unusual format for an answer. Teachers can adapt for 

such issues but students struggled to do so. 

The changes introduced to Version 1 created cleaner results – in that there were fewer 

papers with odd men out (single items that many students answered incorrectly at a stage 

or single items correct at a stage). Fewer random results were found (individual correct 

items beyond the previous pattern of correct items). These processes suggested that the 

changes more correctly positioned sets of facts at a developmental stage and that the items 

were better targeting likely problems when learning a set of facts. Clearer trends were also 

evident. For example, at Stage 6, it was common to find, as Neill (2008) reflected, students 

who knew their multiplication and division facts but did not know their addition and 

subtraction facts to and from 20 – with particular classes tending to have this problem.  

To identify items that were easier or harder than the rest at a stage, papers with 1 to 3 

or 7 to 9 correct at a stage, and paired items (such as, “19 –  = 8” and “8 + what equals 

19?”) were also analysed. For example, the cluster of items on the multiplication and 

division facts over stages 6 and 7 still tended to be answered consistently – all correct or 

incorrect, so these were moved to Stage 6 for V3.  In V2, students again found start and 

change unknown formats slightly harder than result unknown, but not to the point where 

such items warranted location at a higher developmental stage. 

Finally, the sets of facts assessed in V2 were mapped back to items in the IBFA, the 

Number Framework, and other fact frameworks (see NZCER, 2015; Van de Walle et al., 

2013). This resulted in alterations to several items and the development of additional items 

at the higher stages. The sets of facts addressed in V3, and their related test question 

numbers can be found in Appendix A. 

Conclusion 

IBFA is a basic facts test designed to be used concurrently with other forms of 

assessment to support the ongoing learning of basic facts. Developmentally, the IBFA is 

progressing towards meeting its initial aims of providing teachers with a reliable 

assessment capable of providing information about students’ mastery of a broad range of 

basic fact sets. Using a PowerPoint that only allows 4 seconds per question has ensured 

that students are not able to strategise across a collection of items or take a long time over 

any one item. Having the teacher read out the question alongside the visual prompt has 

made the assessment accessible to a broad range of students. With both V1 and V2, 

teachers report they were able to quickly gather information from students and that the data 

collected was easy to mark, interpret, and use to support their teaching of basic facts. V2 

also allows cleaner stage decisions to be made as there are fewer odd men out – individual 

questions at a stage which are the only item that a number of students get right or wrong. 

Our next phase of development is to trial Version 3 (V3) across a wide range of ages, 

including students in rural and low decile schools. One purpose is to evaluate the changes 

made to V2, in particular whether improved instructions and information about using the 

‘K’ and ‘S’ codes along with better placed items show a stronger transition from 

knowledge recall to strategising. A second purpose is to move the research forward to 

include a teaching intervention based on Tait-McCutcheon et al. (2011), for which a 

supporting resource booklet has been written (Drake, 2014). We welcome teachers and 

researchers who are interested in trialling the IBFA or developing a basic facts programme 

based on these materials to contact either author. 
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Appendix A IBFA Fact Sets 

 

Curriculum 

Level 

Numeracy  

Stage 

Fact sets assessed (Item numbers in brackets) 

One Three:  

Counting 

Addition & subtraction facts to five (1 - 4) Zero facts (5, 6) 

Doubles to 10 (7, 8, 10) 

Plus one facts (Number sequence) (9) 

Four:  

Advanced 
Counting 

Addition and subtraction facts to 10 (1, 2) 

Doubles to, and halves from 20 (3 - 5) 

Ten and facts (teen facts) (6, 7) 

Multiples of 10 that add to 100 (8 - 10) 

Two Five:  

Early Additive 

Addition facts to 20 (1, 2) Subtraction facts from 10 (3, 4) 

Multiplication facts for the 0, 1, 2, 5, and 10 times tables (5 - 10) 

Multiples of 100 that add to 1000 (11) 

Three 

 

Six:  

Advanced 

Additive 

Addition and subtraction facts to 20 (1 – 5) 

Multiplication facts to 100 and corresponding division facts (6 – 

12) 

Square numbers (13) 

Compatible numbers to 100 (14) 

Four Seven:  

Advanced 
Multiplicative 

Multiplication & division facts beyond 10 × 10, facts with tens, 
hundreds and thousands (1 – 3) 

Division with remainder (4) 

Fraction  decimal  percentage conversions for 1/2 - 1/5, 1/10 (5 

– 8) 

Square roots of numbers to 100 (9) 

Quantities of an amount (10,  11) 

Factors and multiples (12) Factors (including primes) to 100 (13) 

Compatible numbers to 1 (14) 

Five Eight:  

Advanced 

Proportional 

Integer facts for +/-/×/÷ (1 – 4) 

Fraction   decimal   percentage conversions (5, 6) 

Simple powers of numbers to 10 (7, 8) 

Common multiples & lowest common multiples to 10 (9 & 14) 

Divisibility rules for 2, 3, 4, 5, 6, 8, 9, and 10 times tables (10, 11) 

Common factors and highest common factor to 100 (12, 13) 
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How teachers position themselves and their students can influence the development of 
afforded or constrained local moral orders in ability-based teacher-led mathematics lessons. 
Local moral orders are the negotiated discursive practices and interactions of participants in 
the group.  In this article, the developing local moral orders of 12 teachers and their highest 
and lowest mathematics groups are examined with particular attention paid to teacher 
positioning and the patterns of differentiated positioning between the groups.  

Two teachers at the same primary school in New Zealand were teaching their lowest 
ability-based group of year five students how to apply a compensation strategy to solve 
multiplication problems. For example: 6 x 9 as (6 x 10) – 6 and 6 x 11 as (6 x 10) + 6. Two 
students in the first class were arguing about the amount to compensate. One student 
claimed:  

It’s the number at the front.  

and another claimed:  
No, it’s the number that stays the same.  

Other students were following the argument and written recordings and asking questions. 
At no point did any group member look to the teacher to settle the disagreement. The 
teacher directed the disagreeing students to use their talk, text, and actions to explain and 
justify their claims. They were reminded they needed to ensure they were being understood 
by their group. Others in the group were required to demonstrate their understanding by 
applying both strategies to solve a different problem and determine which claim was 
correct. Through the discussion the misconstrued ‘front number’ strategy was sorted out 
and the group moved to solving more complex problems using the now named ‘same 
number’ compensation strategy. In this example students were expected to explain and 
justify their thinking, ask and answer questions, settle their own disagreements, 
understand, and be understood, apply new learning, and remedy their own and others’ 
misconceptions. Disagreeing was a legitimate part of mathematical discussions and the 
teacher was not the fountain of all knowledge.  

Students in the second group were also arguing. In this group the argument was about 
having to record the equation using a specific strategy when the answer was already 
known. One student asked:  

Why do I need to write (6 x 10) + 6 = 66 when I just know that 6 x 11 is 66? 

The teacher reiterated their expectation:  
I want you to use the compensation strategy to solve 6 x 9 and 6 x 11. 
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The first student quietly said: 
 60 – 6 is 54 and 6 x 11 is 66.  

Overhearing this, a second student told the first their strategy was wrong:  
No that’s not right, 6 x 11 = 66 isn’t compensation, you have to use the compensation strategy, aye 
Miss, you have to use compensation aye? 

The teacher provided the required confirmation:  
Yes I want you to use the compensation strategy.  

Even more quietly the first student complained:  
That’s just dumb, I know 6 x 11 is 66 why do I have to write it down that way? I know 6 x 11 = 66.  

A third student tried to explain:  
You are right but being right isn’t enough you had to use the right strategy too.  

In this second example the expectations appeared to be that specific strategies must be 
applied, different thinking was not required, and existing knowledge was not valued.  

These two examples illustrate how teacher positioning can influence the development 
of diverse, and potentially detrimental or beneficial, local moral orders. Local moral orders 
are a construct of positioning theory and are the agreed to patterns of interaction created 
and developed between participants, in this case teachers and students (Davies & Harré, 
1990; Harré & van Langenhove, 1991). They develop from the ways participants view 
themselves and others, the way they act and interact, how they may feel obliged to act and 
interact, what can be said or done, who can action the saying or doing, when it can be said 
or done, and what the reactions to the words and actions can be (Harré & van Langenhove, 
1999). There can be more than one developing local moral order within an interaction but 
all are contextualised to these participants, at this time, telling particular stories, from 
particular points of view (Harré, 2012). 

Local moral orders are similar to Yackel and Cobb’s (1996) social and socio-
mathematical norms. How things are done become taken-as-shared by the group and what 
is taken-as-shared has a sense of oughtness (Linehan & McCarthy, 2000). However, there 
are two key differences. Moral, in the context of norms, refers to moral accountability or 
honourable behaviour such as in an expected code of conduct.  Local moral orders in 
positioning theory have a moral quality because they are associated with the rights and 
duties of participants (Harré, 2012). The second difference pertains to how participants are 
located in the interaction. Local moral orders locate participants in positions whereas 
norms locate participants in roles. Positions were posited as a more dynamic and fluid 
notion than role which was perceived to be more static and symbolic (van Langenhove & 
Harré, 1999).  

This article draws on the findings from a larger study (Tait-McCutcheon, 2014) where 
the key research question addressed was: How do teachers in New Zealand primary 
schools position themselves and students in their lowest and highest mathematics strategy 
groups so that mathematical know-how could be shared?  

Mathematical know-how was defined according to Pólya (1965) as independence, 
judgement, and creativity. The focus of this article is the developing local moral orders that 
afforded or constrained the sharing of teacher and student mathematical know-how. The 
local moral orders were identified and explained by examining three discursive practices of 
positioning theory: positions, storylines, and social acts (Harré & van Langenhove, 1999). 
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Positions, Storylines and Social Acts 
Positioning theory, proposed that when people participate in genuine, sequential, 

naturally occurring talk, text, and actions with others they do so from a position (Davies & 
Harré, 1990; Harré and van Langenhove, 1991). From a position, participants give and 
attempt to give, meaning to their own and others’ talk, text, and actions by establishing, 
and attempting to establish their own and others’ rights and duties (Harré & Moghaddam, 
2003). The rights and duties any person has within a position are influenced by past, 
present, and future interactions of the group and influence the developing local moral 
orders of that group (Harré & van Langenhove, 1999). For example, teachers and students 
have individual and collective rights and duties, but their rights and duties are “interlaced 
with the expectations and history of the community” (Linehan & McCarthy, 2000, p. 442). 
Qualitatively different or fixed rights and duties can result in some students having 
substantially different opportunities to participate (Anderson, 2009; Barnes, 2003; 
Yamakawa, Forman, & Ansell, 2005).  

Storylines make participants past or projected future words and actions meaningful to 
themselves and others “by telling a kind of story about them” (Slocum-Bradley, 2010, p. 
93). The stories participants tell about themselves and others, and how those stories are 
accepted or rebutted help to define the local moral orders. There are numerous 
contextualised commentaries, interpretations, and relationships in play as the storyline 
advances and the exact same words and actions can convey a different storyline to 
different participants (van Langenhove & Harré, 1999). Storylines are neither complete nor 
correct because perspectives within any storyline may differ, participants may choose to be 
complicit or resistant, and the presence or absence of certain positions may alter the 
storyline. However, storylines do tend to follow already established patterns of 
development within a cluster of narrative principles and practices (Harré & Moghaddam, 
2003). As such, the creation and survival of any storyline is contingent on it being jointly 
constructed and sustained.  Social acts are the talk, text, and actions of participants that 
become significant to the interaction when they are appropriated by others and given 
increased, reduced, new, or different meaning (Davies & Harré, 1990). The social force 
participants have, and their social acts that are appropriated affect the existing and 
developing local moral order (van Langenhove & Harré, 1999). The relationship between 
positions, storylines, and social acts and local moral orders is mutually determining. The 
positions, storylines, and social acts of the group create the local moral orders and the local 
moral orders shape the positions, storylines, and social acts. Therefore, within any local 
moral order participants, conversations, expectations, and behaviours are susceptible to 
change (Harré, 2012).  

Method 
This study was underpinned by a social constructivist theoretical perspective whereby 

knowledge was considered from the personal view of an individual and the collective view 
of a group (Bobis, Mulligan, & Lowrie, 2004). A qualitative research paradigm was used 
to examine teachers’ acts of positioning, to reason about those positionings, and to 
interpret relationships and consequences between positioning and each groups developing 
local moral order. The bounded and socially situated nature of this research within the 
highly subjective social phenomenon of teaching and learning meant a qualitative case 
study was an appropriate methodological choice. Case study research is exploratory and 
resonates with the reader’s own experiences and existing understandings, provides insights 
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into how things become the way they are, and generates discoveries of new learning. The 
end product of a qualitative case study is a “rich, thick description of the phenomenon 
under study” (Merriam, 2009, p. 43).  

Two schools, Pacific and Tasman, were purposefully recruited to participate in the 
larger study because of their commonalities (professional development, lesson 
organisation, and ability grouping) and differences (static/changing staff, decile rating, and 
ethnic diversity). Twelve teachers of students in years zero to six (aged 5-11) participated. 
Years of teaching experience ranged from one to 24 and nine of the 12 teachers had 
participated in the New Zealand Numeracy Development Project (NDP), (Ministry of 
Education, 2007) professional development in the past three years either as pre-service or 
in-service teachers.   

Three data sources were used extensively in this research: video and audio recordings, 
transcriptions, and observations.  Each teacher was video and audio recorded for three 
consecutive lessons teaching their lowest and highest mathematics group, resulting in 72 
lessons observed and transcribed. Written observations that included field and personal 
notes where undertaken for the duration of each lesson and theoretical notes were added 
after the observations. Qualitative data analysis required a fluid, evolving, dynamic 
approach that included contrasting, comparing, replicating, cataloguing, and classifying 
from concrete data toward more conceptual levels (Denzin & Lincoln, 2011). A constant 
comparative method (Corbin & Strauss, 2008) was chosen as the most appropriate method 
for data analysis. The analytic approach taken was look, think, look again, think again, 
through-out the following five phases of analysis: 

1. Identify examples of teacher positioning and code as talk, text, or action. Note 
relationships between codes and group as themes. Develop tentative concepts from 
themes. Build categories through which theory was being created. 

2. Identify mathematical contexts in which the teacher positionings occurred. 
3. Plot teachers’ positioning acts according to codes and contexts. 
4. Identify potential negative instances and conflicts within the data. 
5. Establish themes to describe the positioning pattern of each teacher with their 

lowest and highest strategy group. 

The trustworthiness of this research was tested and affirmed by considering the reliability, 
credibility, transferability, dependability, and confirmability of the qualitative research 
methods (Lincoln & Guba, 1985). Triangulation of participant sources, data sources, and 
data analysis confirmed emerging findings and the reliability of conclusions (Merriam, 
2009).  Credibility was enhanced through the processes of member checking and peer 
debriefing (Cohen, Manion, & Morrison, 2007).  The thick descriptions used to tell the 
story of teacher positioning provided transferability for the reader and “accurate 
explanations and interpretation of the events” to a different setting (Cohen et al., 2007, p. 
405). Dependability and confirmability were achieved through the rigour of the data 
collection, data analysis, and theory generation processes, documenting procedures for 
checking and rechecking the data, including negative instances, and conducting a data 
audit trail.  

Findings and Discussion 
This study identified three key findings where the developing local moral orders 

afforded the sharing of mathematical know-how from teachers and students and three key 
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findings where the sharing of mathematical know-how was afforded for teachers but 
constrained for students.  These findings are discussed in relation to the literature.  

The local moral orders that afforded the sharing of mathematical know-how for both 
teachers and students emphasised the visibility, fluidity, and contestability of the 
mathematics; the importance of teachers and students contributions to the teaching and 
learning; and the expectation teachers and students would take a mathematical stand by 
agreeing with or challenging the shared know-how. Teachers and students ensured and 
enabled the visibility, fluidity, and contestability of the mathematics through their 
suggestions, observations, explanations, questions, and reflections. Teachers further 
ensured visibility by providing time and space within the lessons for suggestions, 
observations, explanations, questions, and reflections to be shared and responded to. 
Teachers and students were able to maintain the discussions around, and the complexity of, 
the task and the mathematical interest and depth of teachers and students understanding 
simultaneously developed (Chapin, O’Connor, & Anderson, 2009).   

Teachers and students had important know-how to share, observations to make, and 
questions to ask that benefitted and progressed the teaching and learning (Hunter, 2007). 
Both were expected to take a mathematical stand and have a mathematical opinion that 
could be understood by others.  They were expected to analyse their thinking, know when 
they were correct or mistaken, understand why, and know how they could prove they were 
correct, or fix their error (Chapin & O’Connor, 2007). They also had a duty to know when 
another group member was correct or incorrect and again know why. Correct and incorrect 
answers, misconceptions, disagreements, and questions from teachers and students 
provided resources for targeted teaching and learning (Anthony & Walshaw, 2009). When 
teachers purposefully listened to students’ mathematics they gained knowledge about what 
students knew and how they were constructing new knowledge. This better positioned 
teachers to “generate interpretations of what they noticed and to generate conjectures about 
student thinking that would support the development of their ability to teach for 
understanding” (Choppin, 2011, p. 195). Teachers positioned themselves as active 
listeners, observers, and responders who had something mathematically important to learn 
from students.  They then formatively applied what they had learned to question students 
in ways that shaped and further developed the mathematical talk, text, and actions.  

Teacher and student know-how were predominant social acts because both had a voice 
within the mathematical discussions and both were responsible for the groups progress. 
Know-how acknowledged as valuable raised the individual and collective status of group 
members and the intellectual value of their reasoning (Hunter, 2007). The more the group 
experienced agency within their own and others learning, the more they learned they had 
control over their own and others successes and failures. Teachers and students had 
personal latitude within the teaching and learning because both had authority and were 
considered competent contributors to the mathematics (Wagner & Herbel-Eisenmann, 
2013). The local moral order of the teachers whose positioning afforded the sharing of 
mathematical know-how and their students was collectively and collaboratively evolving. 

The local moral orders that afforded the sharing of teacher know-how but constrained 
the sharing of student know-how emphasised the predominant positioning of the teacher; 
the teacher as gatekeeper; and the hurried pace of the lessons. The mathematics within 
predominantly belonged to the teacher and as such, the teacher had a considerably higher 
profile than students. Teachers were more significant within the group because they 
positioned themselves to do most of the mathematical talk and tasks within the lesson, 
often before the students had the same opportunity. They asked and answered questions, 
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modelled and explained correct and incorrect answers, summarised learning for students, 
and dismissed opportunities to explore incorrect answers or different or advanced 
explanations. Instead of modelling, reasoning, and reflecting, these teachers tended to 
make authoritative statements and decisions and give directions that were quick, correct, 
and one-dimensional. Whilst students were receiving clear messages about “what they 
need to know and learn” (Ewing, 2011, p. 68), they were positioned as passive recipients 
of knowledge who had a duty to listen to the teacher and repeat answers and explanation. 
The request for repetition did not seem to be to be a means for ensuring students were 
paying attention to what was being said but rather to ensure they had heard correctly 
(Chapin, et al., 2009). There was limited time or space for students to make decisions or 
express their own thoughts. The fewer opportunities students had to share their 
mathematical know-how the fewer opportunities they had to experience reasoning and act 
purposefully and reflectively with others (Choppin, 2011).  

When the sharing of mathematical know-how was constrained for students the teacher 
was positioned as the gatekeeper of the mathematics (Wagner & Herbel-Eisenmann, 2013). 
Teachers led, students followed, and there was little demarcation between these positions. 
Teacher knowledge and authority limited positions made available to students and 
teacher's personal mathematical beliefs and values were dominant within the discussions 
and developing mathematics (Davies & Hunt, 1994). The know-how shared, by whom, and 
when was determined by teachers. They gave themselves the right to provide correct 
answers and explanations, target specific strategy use, and ask closed and known answer 
questions. Teacher know-how was shared as self-enclosed messages to be understood. 
Steering students toward particular solutions and strategies and smoothing that path for 
them did not enable know-how to be experienced or grappled with (Chapin & O’Connor, 
2007). Students were positioned by teachers as passive onlookers whose duty it was to 
behave appropriately, watch, listen, and mimic. These duties appeared to take precedence 
over mathematical thinking. The know-how of the teacher became the predominant social 
act because theirs was the voice most heard. Other significant social acts were the words 
and actions of students who endorsed the teacher positioning, provided correct answers, 
and applied designated strategies.  

Conclusions and Implications 
This article contributes new knowledge to understanding the teaching and learning of 

mathematics by employing the lens of local moral orders and the discursive practices of 
positions, storylines, and social acts for analysis. The mathematical opportunities of the 24 
groups of students in this study were qualitatively different because of the developing local 
moral orders in which their learning occurred.  The positions of teachers and students, the 
storylines being told, and the social-acts being valued reiterated and reinforced that 
qualitative difference. When teachers or students limited themselves or were limited by 
others to constrained positions, their rights and duties within that position become 
restricted (Davis & Hunt, 1994; Yamakawa et al., 2005). The longer the teacher or student 
is constrained by the positioning, the less likely the positioning could be altered or 
disrupted (Anderson, 2009; Barnes, 2003). The danger for some teachers and students is 
that they may become entrenched in an exponential pattern of constrained teaching and 
learning.  

One such pattern was identified across the afforded and constrained local moral orders. 
This pattern was that more teachers afforded the sharing of mathematical know-how with 
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their highest group than their lowest. Ten of the twelve teachers created local moral orders 
with their highest group that promoted and expected active participation, authentic 
involvement, and reflection from themselves and their students. Six of the 12 teachers 
created similar local moral orders with their lowest group. Therefore eight groups of 
students did not have the same opportunities to engage with their own and peers’ know-
how. They did participate in their teacher’s know-how but access was narrow and 
restrictive. Students in these eight groups were marginalised from mathematical 
engagement because of their corresponding imitative, procedural, and simplified duties. 
Interactions occurred mainly between the teacher and an individual student and the goal 
appeared to be to follow specific strategies and determine correct answers. By positioning 
themselves as the dominant participant in the mathematical discussions, these teachers 
were limiting their opportunities for their students’ to connect in mathematically 
meaningful ways and for them to connect in mathematically meaningful ways with their 
students (Boaler, 2014). Teachers and students opportunities for successful mathematics 
teaching and learning were marginalised and unlikely to alter levels of achievement.  

It is important to note that situating the study within the NDP mathematics programme 
and numeracy strand may have predetermined the mathematical pedagogies teachers 
selected and simultaneously predetermined the positionings they would take and give.  The 
NDP could be considered a more structuralist approach to teaching and learning 
mathematics and as such teachers could have promoted the “direct instruction of explicit 
mathematical representations and procedures” (Murphy, 2013, p. 108). When teachers’ 
positionings constrained the sharing of mathematical know-how the goal appeared to be to 
push students toward the recommended strategy and correct answer. An adherence to the 
NDP teaching materials may have substantiated or exacerbated that goal. However, the 
evidence remains that for eight groups of students the developing local moral orders in 
which their mathematical learning occurred constrained their opportunities to share their 
mathematical know-how. These students mathematical know-how was not positioned as a 
valuable teaching and learning tool. It would be of value to these findings and to the 
international mathematics community to extend this research to include mathematics 
programmes less structured than the NDP. Increased understanding of the affording local 
moral orders in particular could assist all teachers to further define and explore effective 
teaching positions. 
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Reasoning is considered to be an important proficiency in national mathematics curricula 

both in Australia (ACARA, 2014) and Malaysia (MOE, 2013). However, the nature of 
reasoning that supports learning and problem solving in mathematics is an area that 

requires further study (Schoenfeld, 2013). In this study we explored the link between 

Scientific Reasoning Skills (SRS) and mathematics problem solving performance among a 

cohort of Malaysian students. As expected, there was a positive relationship but the level of 

correlation between these two variables was moderate. Although the High-Achievement 

group performed significantly better than their peers in the Low-Achievement group in 

their solution outcomes, overall, all students exhibited low-levels of SRS. These findings 

suggest that while SRS could play a role in problem solving, components of SRS need 

further analysis in order to better explain how reasoning in science could facilitate problem 

solving processes. 

Introduction 

With increasing attention to logical arguments and justifications in mathematics, the 

study of reasoning that underpins these processes constitutes an important area of research 

(Schoenfeld, 2013; Santos-Trigo & Moreno-Armella, 2013). In this study, we focussed on 

reasoning that is associated with the development of arguments and justifications in the 

context of problem solving. Data on reasoning and how that reasoning is used by students 

during the course of their solution search was expected to deepen current understandings 

about the construction of arguments and generation of justifications by learners. In this 

study, we generate data relevant to this issue by analysing scientific reasoning processes 

that students could activate during their mathematical problem-solving attempts.  

Literature review 

Reasoning in Mathematics 
Current research emphasises the importance of students engaging in reasoning in all 

strands of school mathematics (National Council of Teachers of Mathematics, 2009; Bieda 

et al., 2013; Santos-Trigo & Moreno-Armella, 2013; Stylianides et al., 2008). Ball and 

Bass (2003, p. 42) argued that ‘mathematical reasoning is inseparable from knowing 

mathematics with understanding.’ Several scholars have elaborated on the connection 

between learning mathematics with understanding and reasoning. Lakatos (1976) noted 

that complete mathematical understanding includes the engaging processes of thinking, in 

essence doing what makers and users of mathematics do: framing and solving problems, 

patterns recognition, making conjectures, examining constraints, making inferences from 

data, abstracting, inventing, explaining, justifying, challenging, and so on. This observation 

about understanding and reasoning was recently reaffirmed by Schoenfeld (2013) when he 

commented that one variable seemed to have strongest impact on students learning - the 

amount of time students spent in explaining and justifying their ideas. While definitions 

used in the context reasoning differ, they deal in one way or another with a broad range of 
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thinking skills involving arguments that drive the evolution of solutions to mathematical 

problems. In this sense, there are aspects of mathematical problem solving that could draw 

on scientific reasoning (Hand, Prain & Yore, 2001). 

Scientific Reasoning Skills (SRS) 
The range of SRS that students bring to learning and problem solving can be expected 

to assist them in making progress in multiple ways. SRS ‘encompasses the reasoning and 

problem-solving skills involved in generating, testing and revising hypotheses or theories, 

and in the case of fully developed skills, reflecting on the process of knowledge acquisition 

and knowledge change that result from such inquiry activities’ (Morris, Croker, Masnick & 

Zimmerman, 2012, p. 65). Scientific reasoning differs from other skills in that it requires 

additional cognitive resources as well as an integration of cultural tools. Further, scientific 

reasoning emerges from the interaction between internal factors (e.g., cognitive and 

metacognitive development) and cultural and contextual factors. According to Lawson 

(2004), scientific reasoning pattern is defined as a mental strategy, plan, or rule used to 

process information and derive conclusions that go beyond direct experience. In a similar 

vein, Hand, Prain and Yore (2001) argued that scientific reasoning involves the ability to 

construct powerful arguments for learners’ actions. Thus, SRS is related to cognitive 

abilities such as critical thinking and reasoning that assist students in producing knowledge 

during problem solving through evidence–based reasoning. Given the connectedness 

between knowledge generation via arguments and reasoning that gird these arguments, 

students with higher levels SRS could be expected to be superior problem solvers. 

Conceptual framework 

Lawson’s (2000) Classroom Test of Scientific Reasoning provided the framework to 

guide the analysis and interpretation of data in the present study.  

Lawson’s Classroom Test of Scientific Reasoning  
In this study, we focus on a set of domain-general reasoning skills that are commonly 

needed for students to make progress with mathematical problems which includes 

exploring a problem, formulating arguments, manipulating and isolating variables, and 

observing and evaluating the production of new information. Lawson’s Classroom Test of 

Scientific Reasoning (LCTSR) provides a theoretical lens for assessing a range of SRSs. 

The test was designed to examine a set of general reasoning ability dimensions which are 

crucial for the solution of problems in STEM including conservation of matter and volume, 

proportional reasoning, control of variables, probability reasoning, correlation reasoning, 

and hypothetical-deductive reasoning. The validity of the LCTSR had been established by 

several studies (e.g. Lawson, Bank & Lovgin, 2007). 

LCTSR allows for the observation of three levels of reasoning: concrete, transitional 
and formal operational reasoning.  The concrete operational reasoning refers to thinking 

pattern that enable one to understand concepts and statements that make a direct reference 

to familiar actions and observable objects, and can be explained in terms of simple 

associations (for example,  all squares are rectangles but not all rectangles are squares). 

Students, at this level of reasoning, are also able to follow step-by-step instructions 

provided each step is completely specified (for example, solving two linear equations). 

Students are also able to relate his/her viewpoint to that of another in familiar situations 

(for example, students respond to difficult mathematical problems by applying a related 
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correct rule). At this stage, students are unconscious of his/her own reasoning patterns, 

inconsistencies among various statements he/she makes, or contradictions with other 

known facts. 

In contrast to concrete reasoning, formal reasoning patterns enable students to 

construct possible explanations as a starting point for reasoning about a causal situation. 

They can reason in a deductive manner to test their hypotheses. In other words, they can 

postulate causal factors, deduce the consequences of these possibilities and then 

empirically verify which of those consequences, in fact, occurs. Lawson (1978) categorised 

students at this stage as ‘reflective thinkers’. For example, in solving mathematical 

problem, students’ reasoning can be initiated with development of representations, use of 

symbols and planning a course of action.  

The transitional operational stage is where students remain confined to concrete 

thinking or are only capable of partial formal reasoning. For example, proportional 

reasoning is the ability to compare ratios or develop arguments about the equality between 

two ratios. At concrete operational stage, students are not aware of ratio dependence and 

seek solutions by guessing. At the transitional stage, students are aware of objective 

dependence and seek solutions by estimation and later calculation, but assume that the 

change in one quantity produces the same change in the other quantity. In the formal stage, 

proportionality is discovered and applied to obtain correct solutions. Clearly, in all three 

levels of reasoning, students generate qualitatively different types of information that are 

driven by arguments and justifications. 

Purpose of the Study 

The review of literature indicates that reasoning skills are transferable across science 

and mathematics (Hand, Prain & Yore, 2001), and that we could learn a great deal about 

the role of reasoning in mathematical problem solving by examining potential links 

between the two (Lehrer & Schauble, 2000). The purpose of the study was to identify the 

levels of SRS attained by a cohort of upper Malaysian secondary school students (16-17-

year-olds) and examine the impact of SRS on their mathematical problem-solving 

performance. We sought data relevant to the following three research questions:   

1.  What are the levels of SRS among upper secondary school students? 

2. Is there a relationship between SRS and mathematics problem-solving 

performance? 

3. Does achievement level of students affect their SRS and mathematics problem-

solving performance? 

Methodology 

Design 
This study employed a blend of descriptive and correlational research design as our 

interest was to generate information about the relationship between one independent 

(Achievement level) and two dependant variables (SRS and Mathematics Problem 

Solving). 
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Participants 
A total of 351 students from 14 Malaysian secondary schools participated in the 

present study. Participants in this study were upper secondary school students or Year 11 

students (16-17-year-olds). Participants were assigned to High or Low achievement groups 

on the basis of their performance in a centralised Malaysian examination, Lower 

Secondary Evaluation Examination (LSEE). The High-achievement group (Grades A or B 

in LSEE) comprised Science stream students (n = 98) and the Low–achievement group 

(Grades C or D in LSEE) were Non-Science stream students (n = 253). This is based on the 

Malaysian Education Evaluation System in placing students into Science and Non-Science 

streams. Under this system, students needed to score high marks in mathematics in order to 

go into the Science Stream in comparison to their peers in the Non-Science stream. 

Tasks 
This section provides details of two tasks that were used in this study. As discussed 

earlier, there were two tests used in order to generate scores for two dependent variables: 

Test 1 - Scientific Reasoning Test (SRT); Test 2 - Mathematics Problem-solving Test 

(MPST).  

Task 1 - Scientific Reasoning Test (SRT) 
The SRT was used to measure the students’ level of SRS. It has been adapted from 

LCTSR (Lawson, 2000). We wanted to determine the internal consistency of the items 

which involved the generation of inter-item correlation matrix and computing of Kuder-

Richardson 20 internal-consistency reliability coefficient. The final test had a KR-20 

coefficient of 0.856. The test consisted of 12 paired items and was designed in a ‘two-

stage’ multiple-choice format to illustrate problem scenarios. With each scenario, the first 

question focuses on the scenario content, while the second question asks for reason as to 

why the first answer is correct. Each answer for the first question has a corresponding 

reason in the second question.  

For example, in one of the tasks, students’ reasoning about conservation of volume was 

evaluated. Firstly, students have to think based on their experience or previous knowledge 

about where the water will rise to when the glass marble is put into cylinder. Then, 

students have to justify as to why the water rose at that level. This involves students 

applying the conservation reasoning to perceptible objects and properties. Making 

prediction and giving explicit explanation are important to successful completion of this 

item. Prediction, explanation and the generation of relevant new information are important 

processes of mathematical problem solving. Thus, we argue that these reasoning skills 

would contribute to the solution outcome of mathematical problems. 

Scoring Rubric for SRT  
The range of scores of SRS level is 0-12 which decomposes into three levels as 

suggested by Lawson:  0-4 (Concrete); 5-8 (Transitional); 9-12 (Formal). 

Task 2 - Mathematics Problem Solving Test (MPST)  
The MPST was designed to measure students' mathematics problem-solving 

performance by drawing on SRSs. The test was prepared by a panel of experienced 

mathematics educators, experienced teachers and mathematics curriculum experts. We 
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were concerned to ensure that the solution of the problems necessitated the activation of 

one or more levels reasoning that was postulated in the framework of SRS. The items for 

the test were selected from a pool of resources such as textbooks, reference books and 

examination papers. The test consisted of 40 items that covered all core mathematical 

strands in the Malaysian Mathematics Syllabus (Year 8 – Year 11). The reliability of the 

test was established by following a process that was similar to SRT. The reliability index 

for MPST was 0.895.  

For example, Item 18 required students to work out the perimeter of an irregular shape 

that was located within a rectangle. The solution required students to generate arguments 

about different ways to determine the perimeter and test their hypothesis. Students were 

categorised as having concrete reasoning level if they needed reference to familiar actions, 

objects, and descriptive properties. At this level, their reasoning was initiated with 

observations and step-by-step moves. For Item 18, students may only show a superficial 

understanding of concepts of perimeter, area of a rectangle and a circle without any way 

linking these to solving the problem. Students were categorised as having formal reasoning 

level if they can be initiated with possibilities, used symbols to express ideas, planned a 

lengthy procedure given the overall goal while being critical of his/her own reasoning 

patterns. In this case, students may systematically plan to find perimeter of the irregular 

shaded region. This will involve finding the curve length of a semicircle and a quadrant 

using the formulae for the area and using the given information of the radius length. 

Students were categorised as having a transitional reasoning level if they remained 

confined to concrete thinking or are only capable of partial formal reasoning such as they 

only understood and applied concepts of perimeter and area of a rectangle and area of a 

circle in a new context. Students responses for MPST were scored as 1- correct response; 

0- incorrect response. 

Procedures 
There were three phases in the study. The first phase was concerned with the 

development and fine-tuning of MPST. The details are explained in the MPST task section. 

During the second phase, we pilot tested both the tests to allow for familiarisation of the 

data collection processes, to validate the instruments and to establish their reliability. The 

third phase involved the administration of the two tests. Both tests were administered 

during regular mathematics classes. Researchers and classroom teachers assisted with the 

administration of the tests. Students were invited to complete the SRT in the first week of 

their regular mathematics lesson. They were allowed a maximum of 40 minutes for SRT. 

The MPST, a one-hour paper and pencil test, was administered in the second week, again, 

during their regular mathematics lesson. 

Results and Analysis 

Three research questions were of interest to the present study. Data relevant to these 

research questions are presented below.  

Research Question 1: What are the levels of SRS among Upper Secondary School 
Students? 

Table 1 shows the overall level of SRS exhibited by the participating Year 11 students. 

The findings showed that 330 (94%) of the students achieved Level 1 (concrete) of SRS, 

20 (5.7%) Level 2 (transitional) and 1 (0.3%) Level 3 (formal). The overall mean level of 
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the SRS was 1.76. This indicates that majority of the participating students were 

functioning at the concrete level of SRS.  

Table 1 

Level of SRS  

SRS Level N Percentage(%) SRS Mean 

 Score 

Standard 

Deviation 

Concrete  330 94.0 1.50 1.18 

Transitional    20    5.70 5.65 0.81 

Formal     1    0.30 9.00 - 

Total 351 100.00 1.76 1.55 

Research Question 2: Is there a Relationship between the SRS and Mathematics 
Problem Solving Performance? 

Overall, the correlation between the SRS and mathematics problem solving 

performance was significant indicating a positive relationship between the two variables [(r 

= 0.593), p<0.05]. The coefficient of correlation (r = 0.593) indicating that there was a 

moderate positive relationship between the SRS and mathematics problem solving 

performance .This suggests that if a student had a high score in SRS, he/she are expected to 

achieve a high score in MPST. 

Research Question 3: Does Achievement Level of Students Effect their SRS and 
Mathematics Problem-Solving Performance? 

A t-test analysis was conducted to compare the mean scores of the overall level of SRS 

for the two Achievement levels (High/Low). Analysis as presented in Table 2 showed there 

were differences in mean overall SRS between High and Low-Achievement groups [t 

(349) = 9.260, p < 0.05].  The mean SRS level for High-Achievement group (mean = 2.99) 

was better than the corresponding score for peers in the Low-Achievement group (mean = 

1.28). However, SRS score for both groups of students was 1.76 (Table 1) suggesting the 

students had acquired concrete reasoning level.  

The total scores for MPST were converted to percentages. Mean percentages for the 

High-Achievement group and the Low Achievement group were 81.02 and 46.86 

respectively (Table 2). The results also showed there were differences in mean MPST 

percentages between the High and Low-Achievement groups [t(349) = 16.789, p < 0.05]. 

The mean MPST percentage score for the High-Achievement group was higher than the 

Low-Achievement group. Taken together, students in the High-Achievement group 

produced higher scores for SRS and MPST than their peers in the Low-Achievement 

group.  
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Table 2 

SRS score and MT score Vs Achievement Group 

 

Dependent Variable 

 Achievement Group  

High  

(n= 98) 

Low 
(n=253) 

t-value p-value 

SRT score Mean  2.99   1.28  9.260 ** 

 SD  1.66   1.21  

MPST score  Mean 81.02 46.86 16.789 ** 

 SD 13.42 18.32   

**p<0.01 

Discussion 

The study was designed to generate data relevant to issues about relation between the 

level of SRSs and mathematics problem solving among a cohort of Malaysian students. 

The first research question addressed the level of SRS among upper secondary school 

students. We found participants to have acquired moderate levels of SRS. Almost all the 

students (94.0%) were in the concrete reasoning level and others were in the transitional 

(5.7%) and formal (0.3%) reasoning levels. The second research question addressed the 

relationship between SRS and mathematics problem solving. The results indicate that there 

was a moderate positive correlation between the SRS and mathematics problem solving 

ability as measured by the MPST. Data analysis relevant to Research Question 3 showed 

that students in the High-Achievement group performed significantly better than their 

Low-Achievement peers in both the MPST and SRS. Given the positive correlation 

between SRS and MPST, it was expected that the higher MPST scores of particularly the 

High-Achievement group can be attributed to their superior SRS. However, the SRS scores 

for all the students including the High-Achievement group was relatively low suggesting 

they were operating at concrete level.  

Interestingly, the higher SRS scores for the High-Achievement group (in comparison to 

the Low-Achieving Group) is still low in terms of the overall SRS level that they had 

achieved. The mean SRS score for this group was 2.99 which falls well into the concrete 

reasoning level. However, as shown in Table 2, despite relatively low SRT scores for the 

High-Achievement group, the score on MPST for this group was significantly higher 

(mean = 81.02) in comparison to the Low-Achievement group.  

We offer two possible explanations for the above pattern of results. Firstly, it might be 

that students in High-Achievement group were using reasoning and information generating 

strategies that do not involve the use of SRSs, a claim that needs further investigation. A 

second possibility is that concrete level SRS may be sufficient for the solution of the type 

problems that were provided in our MPST. If the latter is indeed the case, the suggestion is 

that we may have to develop more complex and sensitive problems in order to constrain 

students to activate transitional and formal levels of scientific reasoning during their 

solution attempts. In our next phase of this study, we are planning to pursue this 

hypothesis. 

The scores for SRS and problem-solving for students in the Low-Achievement group 

were low in comparison to their high-achieving peers. In the absence of further data about 

how SRSs could foster problem solving in mathematics, it is too early to argue that low-

achieving students could benefit from instructions to improve their SRSs. We also suggest 
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that the scoring of SRS and MPST needs fine-tuning in order to make the comparison more 

sensitive to the skills underpinning the two variables. 

In our analysis of level of SRS and mathematical problem solving, we did not consider 

the cultural context of the participating students. The students in this study had three types 

of linguistic backgrounds - Malay, Mandarin and Tamil. It would be interesting to explore 

the link between students’ linguistic background, scientific reasoning skills and 

mathematical problem solving outcomes. In the present study, we drew on Lawson’s work 

concerning the three levels of scientific reasoning skills on the assumption that these levels 

would be sufficient in order to capture the multitude of reasoning that could be activated 

during novel mathematical problem solving. As mentioned above, although all students 

were operating at Level 1 of SRS, their performance in MPST, particularly for the High-

Achievement group, was high. It would seem that students were indeed engaging in 

substantial reasoning when they completed the MPST tasks.  
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In the current reform of mathematics classrooms teachers are charged with the role of 
facilitating collaborative groups during problem-solving activity. The challenge is for 
teachers to engage students in making mathematical meaning during collaborative group 
discussions. In this paper we draw on the concept of adaptive expertise to report on 
teachers’ actions to engage students in co-constructing collective knowledge. We address 
how teachers attended to students’ cultural values and socio-mathematical norms to 
promote and cultivate adaptive expertise. 

Introduction 
The current educational climate emphasises children in the 21st century becoming 

literate and numerate (Ministry of Education, 2010). Despite this aspiration, within New 
Zealand the National Standards data highlights the significant underachievement of many 
Pasifika students (Ministry of Education, 2012). Many researchers (e.g., Berryman, 
Bishop, Cavanagh, & Teddy, 2009; Clark, 2001; Spiller, 2012) note that Pasifika students 
along with indigenous Maori students are marginalised in the schooling system due to 
inequitable practices. This includes deficit theorising by teachers, identity issues, lack of 
effective pedagogical actions, and cultural misunderstandings. In order to alleviate these 
practices and increase the achievement of Pasifika learners, New Zealand’s national 
Pasifika education strategy – the Pasifika Education Plan (PEP) 2013 – 2017 emphasises 
the need to increase achievement by responding to the identities, languages, and cultures of 
different Pasifika groups (Ministry of Education, 2013). 

The PEP policy is prominent at a government level; however, there are limited 
guidelines for schools and teachers on how to implement the goals of the strategy. 
Furthermore, few studies specifically focus on culturally responsive practices for Pasifika 
learners in mathematics. Research studies (e.g., Averill & Clark, 2012; Hunter & Anthony, 
2011) which do address this area indicate that cultural values can work against Pasifika 
students as they are not accustomed to questioning or arguing during mathematics - 
practices integral to success in mathematics. Despite these challenges, a current initiative 
recognised by New Zealand’s Ministry of Education as having a significant positive impact 
on student learning is the Pasifika Success Project in Mathematics. This initiative draws on 
the PEP’s strategy and aims to develop teachers’ pedagogical actions and culturally 
responsive practices while supporting them to construct an inquiry-based mathematics 
classroom. The purpose of this paper is to outline how two teachers from the Pasifika 
Success Project drew on the cultural backgrounds of their students to enhance their 
mathematical practices. The focus of the paper is on the teachers’ actions that led to their 
students developing adaptive skills during collaborative problem-solving activity. 

Background Research 
Creating high quality learning environments enables students to engage in 

mathematical learning. Guiding students to develop adaptive expertise in such 
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environments is essential to give students the opportunity to construct mathematical 
knowledge. The construct of adaptive expertise was introduced by Hatano (1982) where he 
initially related the notion to adaptive adults in the workplace. However, more recent 
research involves student learning in mathematics education. Hatano (2003) argues that a 
pressing issue in mathematics education is how students can learn so they develop adaptive 
expertise. He describes adaptive expertise as the ability to flexibly and creatively apply 
meaningfully learned procedures where learners explore a range of possibilities and try to 
make sense of their actions. Hatano (2003) compares this term to routine expertise, which 
he defines as being able to carry-out mathematics exercises quickly and accurately with 
limited understanding. He argues that if an educational environment is oriented toward 
solving a set of problems, students will become experts defined in relation to accuracy and 
speed (routine experts). In contrast, when learning environments meet varied demands, 
students are able to develop adaptive and flexible skills therefore developing adaptive 
expertise. 

Similarities can be drawn from Hatano’s (2003) routine and adaptive expertise 
constructs to Boaler’s (2006) notion of multi-dimensional and uni-dimensional classrooms. 
Boaler’s (2006) four-year study of an equitable approach to mathematics teaching and 
learning illustrated how the multi-dimensionality of classrooms contributed to high student 
achievement. Boaler (2006) describes a uni-dimensional classroom as a classroom where 
only one dimension of mathematical work is valued and to be a successful mathematician 
students have to execute procedures correctly. Boaler (2006) advocates for heterogeneous 
groupings in multi-dimensional classrooms where many dimensions of mathematical work 
are valued such as asking good questions, mathematically explaining ideas, and justifying 
solution strategies. Hatano (2003) shares a similar view. He argues that through 
questioning, conceptual knowledge that is related to a procedure can be developed. This 
can occur through discourse and students asking why each step is needed during its 
application. Hatano (2003) notes that this process is similar to Schoen’s (1983) notion of 
reflection in action. The similarity being that both researchers argue that knowledge is 
constructed through the process of solving problems. 

Developing an understanding of mathematical concepts through exploration is 
supported by research on developing adaptive expertise in mathematics. For example, 
Markovits and Sowder (1994) designed a three-month unit that focused on providing 
opportunities for students to explore the relationships between numbers and a range of 
operations. Rather than introducing new procedures, this was aimed at encouraging the 
development of a deeper conceptual understanding of the content they had already 
acquired. Following the intervention, students from the experimental group were compared 
to students taught with a traditional curriculum. The results indicated that the students in 
the experimental group had greater number-sense. These researchers concluded that the 
exploration of the relationships between numbers and differing operations aided the 
students in solving novel problems. Similarly, Mercier and Higgins (2013) associate the 
development of adaptive expertise with the opportunity for students to be innovative and 
exploratory with mathematical concepts. This includes exposure to multiple solution 
strategies. By allowing students to explore and reflect upon the different solution 
strategies, these researchers contend that each student will choose a strategy that is 
“personal and insightful” supporting them to become more flexible and adaptive. 

Participation in collaborative discussions can be a powerful way for students to 
develop adaptive expertise within mathematics. Staples and Colonis (2007) differentiate 
between two types of discussions: sharing and collaborative discussions. In sharing 
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discussions, they note that students are urged to understand others’ ideas however they 
maintain a connection to their own ideas. In contrast, these researchers define collaborative 
discussions as extending beyond understanding others’ ideas to responding to, extending, 
or connecting to the ideas to form a new perspective. Similarly, Chapin and O’Connor 
(2007) advocate the use of talk moves by teachers to engage students in academically 
productive talk. These talk moves include revoicing, repeating, reasoning, adding on, and 
teacher wait time. Use of these can promote collaborative and equitable discourse hereby 
contributing to the development of adaptive expertise. 

The development of productive discourse during collaborative discussion requires a 
suitable classroom environment. To achieve this, Yackel and Cobb (1996) propose the use 
of socio-mathematical norms: social norms that are unique to mathematics. Such norms 
describe appropriate mathematical discourse and engage students in mathematical practices 
such as mathematical explanations and argumentation. In Yackel and Cobb’s (1996) study, 
they explored the development of norms in inquiry-based mathematics classrooms. A key 
finding of this study was that when teachers set up socio-mathematical norms, students 
developed flexibility and sophistication in their use of mathematical constructs, key aspects 
of adaptive expertise. 

Also of importance to this study is the notion of culturally responsive practice. 
Drawing on students’ cultural backgrounds facilitates student engagement in learning 
mathematics. Hawk, Cowley, Hill, and Sutherland (2005) urge educators to attend to the 
cultural well being of Pasifika students by building on their cultural capital. An example of 
the importance of this is found in the study by Averill and Clark (2012). This study 
focused on high school students’ perceptions towards the cultural value of respect. These 
researchers found that students believed teachers were respectful if they held high 
expectations and believed in their students’ abilities. This included giving students time to 
think and problem-solve during mathematics rather than explaining a solution directly to 
students. Similarly, Hunter and Anthony (2011) found in their study that the case teacher 
drew on his students’ concepts of respect and reciprocity to encourage students to actively 
listen, question, and support each other during the learning of mathematics. This led to 
positive outcomes for the Pasifika students as they were positioned to engage in inquiry 
discourse and develop collective mathematical practices.  

The theoretical framework of this study draws on a socio-cultural perspective. This 
perspective views students’ mathematical activity as a social process that develops as 
students participate in mathematical practices (Yackel & Cobb, 1996). Hatano and Oura 
(2003) observed in their studies that gaining adaptive expertise occurred in socio-cultural 
contexts. These contexts are related to student interests, values, and identity where learning 
is socially significant, such as solving real-world problems. Extending this socio-cultural 
perspective is Lave’s (1996) emphasis on the community as opposed to the individual. 
Lave (1996) states that mathematics should not be viewed as an abstract task or individual 
practice but an activity that is deeply bound in social activities within a community. 
Learning can therefore be viewed as occurring through participation in practices and the 
gradual attainment of expertise which contributes to the development of children’s 
mathematical identities. 

Methodology 
This paper reports on a case study of two classrooms drawn from the wider Pasifika 

Success Project.  The case study design was used to gain an in-depth understanding of 
factors that contributed to Pasifika learners developing adaptive expertise in inquiry-based 
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mathematics classrooms. The research took place in November towards the end of the 
school year, which coincided with the near completion of the PLD project for teachers. 
Participants were students from two New Zealand urban primary schools, aged ten to 
thirteen years old, of Pacific Nations ethnicity. These students came from low socio-
economic home environments and many spoke English as their second language. 

Data collection involved semi-structured focus group interviews and video-recorded 
footage of mathematics lessons. Field notes were used to support the classroom 
observations. The interview and video-recordings were wholly transcribed and, through an 
iterative process using a grounded approach, patterns and themes were identified. Five key 
themes related to cultural values emerged from the analysis of the data: respect, 
reciprocity, service, inclusion, and leadership. 

Results and Discussion 
In this section the five key themes that were identified from the data analysis will be 

discussed in reference to the teachers’ actions that drew on their students’ cultural 
backgrounds. These actions that presented students with the opportunity to develop 
adaptive expertise involved developing collaboration within groups; promoting 
collaborative discourse; and fostering inclusion and adaptive skills through using 
mathematical practices. 

Developing Collaboration within Groups 
Both teachers deliberately set up their classroom learning environments with a focus on 

an exploratory approach to mathematics learning: students were encouraged to explore and 
be innovative with mathematics concepts. To support this, students were presented with 
cognitively demanding group-worthy problems and the expectation was that they would 
collaboratively explore the problem and engage in sense making. These actions drew on 
the cultural value of respect: teachers showing respect for their students’ abilities to 
construct knowledge while problem solving (Averill & Clark, 2012). Within their planning 
the teachers identified key mathematical ideas to which student learning was connected to 
during the conclusion of the lesson. The structure of this learning environment ensured 
opportunities for students to think creatively and collaboratively generate multiple solution 
strategies to mathematical tasks. 

Purposeful grouping of students was used to set up a learning environment that 
promoted mathematical practices and drew on cultural values. The social and grouping 
arrangements of the students consisted of a heterogeneous make-up (varying attainment 
levels) with groupings of three or four students. The teachers purposefully assigned 
students their groups based on social and mathematical skills and changed these groups on 
a daily basis. This required students to develop their ability to work with different students. 
When questioned about this grouping arrangement, students showed a consensus in favour 
of this approach and responded with the following comments: 

Laisa: We work with different people all the time, doing different roles. We now like 
working with anyone in our class. 

Mere: People can have different skills and think differently from you. That’s a good thing. 
You can learn new things from them. 

Laisa: In same ability groups you don’t learn much because you are all the same. 
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As evidenced in the comments from the students, they valued the opportunity to work in 
heterogeneous groupings with different members of the classroom community. 

In order to promote equitable participation the teachers refrained from assigning 
students to roles within the group. Instead students were given the flexibility to take turns 
at different roles at their own discretion. This also countered academic and status 
differences within the groups (Boaler, 2006). However, working in this way necessitated 
that students adapted to carrying out a multitude of roles within a group. This was 
recognised by the students: 

Tania: We have learnt more skills by doing different roles. 

Laisa: Everyone has something to contribute to the group - strategies, questions, explaining 
differently. 

Mere: We don’t have one leader - leaders always change. We see ourselves as learning from 
each other. 

The classroom environments drew on the cultural backgrounds of the students. Within 
the comments from the students links were made to the cultural values of inclusion, 
leadership, and reciprocity. For example, inclusion is depicted by the need for equitable 
participation as noted by the students. They emphasised that all group members have skills 
to contribute to group work and that students carry out different roles. Mere made 
reference to leadership as a shared role where students take turns leading their group; this 
may be enacted by constructing and explaining part of a solution to group members. 
Reciprocity was illustrated by the students’ view of themselves as learning from one 
another and Laisa noting that every group member has important mathematical skills to 
contribute during group work.  

Promoting Collaborative Discussions  
The development of collaborative discussions was a key element of these classrooms. 

The case teachers used specific talk moves to promote collaborative discourse among 
group members. During the small group phase of the lesson, the teachers monitored the 
group activity and the students’ participatory actions. When the teachers noticed limited 
use of mathematical practices, they responded by asking certain students to explain their 
reasoning and for other group members to ask questions, repeat an explanation in their own 
words, agree or disagree with a reason, or add on to the group’s idea. 

The collaborative grouping structures described in the earlier section and development 
of specific norms enabled students to develop their own discourse to support one another 
during collaboration. For example, in one lesson the different group members engaged in 
collaborative discourse to contribute towards the development of the group’s solution 
strategy. 

Sefu: So it’s twelve point six five kilometres plus five point seven eight kilometres equals … 
what’s a strategy we can use? We can do different strategies. 

Lenni: What about partition a number? 

David: Twelve point six o plus zero point zero five. 

Lenni:  Then that one is five point seven o plus 

Sefu:  Zero point zero eight. 

Lenni: So what do we do now? Add the tenths then hundredths numbers together. 

David: 60 plus 70? 
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Lenni: 130. But remember it will actually be one point three zero not one hundred and thirty 
because there’s a decimal point in the middle.  

In this discussion the students collaboratively developed a solution strategy along with 
constructing place value knowledge as Lenni reasons with his group members about the 
correct terminology associated with the concept. 

Students also identified the importance of collaboration while engaging in discourse to 
develop solution strategies during the focus group interviews: 

Laisa:  When people feed off each other’s ideas it becomes deeper thinking. We find that we 
come up with new things that we didn’t think about. 

Tina: It’s important to be ready for mind change - when you are used to doing one strategy 
and you see another person using a new strategy you can connect to that and learn it. 

These responses draw on the value of co-constructing solution strategies together by 
building on and extending one another’s ideas (Staples & Colonis, 2007). This involves 
making sense of different ideas and synthesising the ideas to develop new knowledge. 

Furthermore, value was also placed on inclusion of others during collaborative activity 
in mathematics lessons: 

Sally: It’s about sharing your knowledge with your group members. 

Kali: If someone hasn’t got it we spend time practising and going over a problem, helping 
each other and our solutions before presenting. 

Fia:  We don’t just think about ourselves - we help others to get on-track. 

Sally:  So no one is left out. So we know that everyone is learning. 

Tini:  We feel more successful if our whole group gets it. 

However the students also recognised that they needed to use specific strategies to 
ensure that they supported each other within their group discourse. Interestingly, these 
paralleled some of the talk moves outlined by Chapin & O’Connor (2007) that were used 
by their teachers:  

Kali:   We say can you add on? Can you paraphrase, to see if the audience is still following 
us? 

Tini:  Do you agree? Do you disagree? Can you explain and justify your strategy? Does 
anyone have another strategy?  

It is evident that Kali and Tini developed adaptive expertise from participating in 
collaborative activity. These students adopted the talk moves used by their teacher and 
adapted these to support each other during collaborative discussions. The talk moves 
supported students in exploring various concepts in mathematics and encouraged them to 
make sense of their actions: this is viewed by Hatano (2003) as adaptive expertise. 

Again links can be made to Pasifika values when examining both the students’ 
comments and interaction from the classroom. In particular, reference was made to the 
value of service in relation to the importance of serving group members so everyone in the 
group experiences success (Boaler, 2006). Additionally other comments referred to by 
these students strongly value inclusion to ensure no one is left out and all group members 
learn. 

Fostering Inclusion and Adaptive Skills through using Mathematical Practices 
In both classrooms, the teachers led the development of socio-mathematical norms 

during mathematics. These included providing mathematical explanations, using different 
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representations, and justifying solution strategies using mathematical reasoning (Yackel & 
Cobb, 1996). Through emphasising the social and socio-mathematical elements of the 
classrooms, learning environments which valued many dimensions of mathematical work 
were developed (Boaler, 2006). This was evident when students were asked to describe 
how they worked during mathematics. 

Laisa: We ask a lot of questions - about what we don’t understand about the problem. We 
paraphrase - people have to explain in their own words. 

Tania:   We stop and check on each other to see if we understand or agree. Do they agree with 
the answer or the strategy we used? 

Mere: They have to justify their answer and why they disagree. They have to try and 
convince us. 

Tina: We make sure everyone’s on-board. We paraphrase and add on. If we have different 
answers we justify until we come to an agreement. We have to make sure everyone has 
got it. 

Laisa: We use pen and paper and write or draw whatever we like to help each other. 

Mere: If you are asking questions you are getting a better understanding of what you’re 
doing. Also, if you paraphrase you are getting a better understanding of what the 
problem is about so you’re building your knowledge and get deeper thinking. 

Again, within the descriptions from the students, the links to Pasifika values such as 
service and inclusion are evident. The students emphasise the importance of ensuring all 
group members understand by enacting many important dimensions of mathematical work, 
including questioning, using different representations and justification (Boaler, 2000). 
Engaging in these practices while solving problems enables students to construct their own 
knowledge and develop adaptive expertise (Hatano, 2003).  

Conclusion and Implications 
The findings of this study indicate that students are able to develop adaptive and 

flexible skills when teachers set up appropriate learning environments that promote 
adaptive expertise. Key to this is the use of an exploratory approach to problem solving 
that gives students the opportunities to create multiple strategies and engage in 
mathematical practices (Mercier & Higgins, 2013). Pasifika students were given the 
opportunity to think creatively and construct their own knowledge that exemplifies the 
value of respect. Similar to what Averill and Clark (2012) described, the teachers showed 
respect for their students’ abilities.   

Heterogeneous grouping was also used to promote adaptive expertise. The regular 
mixing of groups contributed to the students’ developing adaptive skills to be able to work 
with different students and carry out different group roles. Also linked to this were 
connections to cultural values such as reciprocity, inclusion, and leadership. This is similar 
to Boaler’s (2006) findings that highlighted the value of reciprocal learning when students 
were placed in heterogeneous grouping. 

By carefully structuring collaborative discourse, teachers were able to promote the 
values of reciprocity and service. Collaborative discussions enabled students to build on to 
one another’s ideas when co-constructing a solution strategy (Colonis & Staples, 2007). 
Students demonstrated service by supporting each other to understand group solutions 
while engaging in mathematical practices. During small group discussions, students also 
displayed adaptive expertise by generating their own talk moves. Placing an emphasis on 
socio-mathematical norms encouraged students to use and value different dimensions of 
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mathematical work; this included mathematical explanations and justification (Yackel & 
Cobb, 1996). Lastly, the findings reflect Hatano’s (2003) perspective of knowledge 
construction, when students are given the opportunity to solve problems in a learning 
environment with varied demands, students are able to construct knowledge and develop 
adaptive expertise. 

 This study presents a culturally responsive approach to the teaching of mathematics 
that produces positive outcomes for Pasifika learners. In this study, students were 
positioned as adaptive co-constructors of knowledge. If educators are able to view students 
as knowledge creators who develop adaptive skills during mathematics learning, this may 
counter deficit beliefs towards students’ abilities. A key finding is that when learning 
environments and teachers’ pedagogical actions draw on students’ cultural backgrounds, 
learners can develop adaptive skills that support them in using mathematical practices. 
This study adds to the existing research base on culturally responsive teaching for Pasifika 
learners by analysing Pasifika values and how they can be related to mathematics learning 
in specifically designed classrooms. 
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Responses of 223 students in grades 6 to 11 to questions related to beliefs about getting out 
of bed on the left side are analysed from two perspectives. On one hand the items explore 
subjective beliefs about chance. On the other hand the different wording and context of the 
items provide opportunity to show different levels of understanding of students’ 
explanations. Rasch analysis is used to place the items on a scale with other statistical 
literacy items in order to suggest potential levels of difficulty. 

Background 
Over the years there appears to have been a rise and fall in interest related to students’ 

subjective beliefs about probability. In 1972 Kahneman and Tversky (1972) introduced the 
representativeness heuristic to explain people’s subjective solutions to probability 
problems based on an event’s similarity to its parent population or the way in which it was 
produced. This was followed by Tversky and Kahneman’s (1973) availability heuristic 
related to subjective decisions on probability based on remembered incidents or scenarios. 
Fischbein (1975) suggested that preconceived ideas and superstitions could influence 
children’s probabilistic decisions before the age when they reached the stage of formal 
operations. Fischbein and Gazit (1984) followed this work in a study of teaching intended 
to change such beliefs. 

Subjective factors specifically affecting students’ explanations of outcomes from trials 
in contexts where equally likely random outcomes should be expected, such as coins, dice, 
and urns, were studied by J. Truran (1985) and K. Truran (1995). The beliefs they 
uncovered included the use of mental powers, the use of physical manipulation, the need to 
change outcomes on multiple trials, the intervention of outside forces (such as God), the 
need to achieve a specific outcome for a game, the attribution of luck (or lack of luck), the 
kind of material out of which a device is constructed, and the greater difficulty of getting 
outcomes associated with higher numbers. 

In a 1999 review of cultural influences on subjective beliefs about probability, Amir 
and Williams concluded, “it is widely believed and accepted that the children bring 
informal knowledge acquired in daily life from their culture which might interfere with 
their learning of probability” (p. 85). Their study in England sought to characterise these 
influences. On one hand the cultural influences included superstitiousness, religiousness, 
personal experience with games, and interpretation of language used to describe 
probabilistic occurrences. These influences were similar to those described by Truran 
(1995). On the other hand they also identified biases identified earlier as 
representativeness, equiprobability, and availability, as well as the outcome approach of 
Konold (1989). 

Recently Sharman (2014) again considered the influence of culture on probabilistic 
thinking, using examples from research carried out in Fiji. From a very different cultural 
setting than Amir and Williams (1999), she reported similar attributions to their research, 
calling for more research from this perspective. 
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The current study 
The current study arose following the previous use of a survey item some years earlier 

(Watson, Collis, & Moritz, 1995). The item, called James here was adapted from an item 
used by Fischbein and Gazit (1984): “Joseph endeavours to enter the classroom, each day, 
by putting the right foot first. He claims that this increases his chances of getting good 
marks” (p. 5). Fischbein and Gazit did not ask for explanations, only an opinion of “Yes” 
or “No”, where “No” was correct. There was no reward for suggesting “Yes” that the 
belief might help Joseph and the overall results were inconsistent across grades and 
teaching conditions (p. 14-15). Joseph became James, and his action to increase his 
chances of getting good marks was to get out of bed on the left side. 

The original James item was used in surveys with 1014 students in Years 3, 6, and 9 
(Watson et al., 1995) and assessed using the SOLO model (Biggs & Collis, 1982). Overall, 
58% of students (rising from 43% in Year 3 to 68% in Year 9) dismissed the claim, 
whereas between 5% of Year 3 and 30% of Year 9 could offer more sophisticated 
reasoning about James’ beliefs. Later the item was included with two other belief items in 
a longitudinal study (Watson, Caney, & Kelly, 2004) that looked at change over two and 
four years and compared beliefs about chance with chance measurement questions. For the 
James item the change over four years for 148 students starting in Year 3 was from 63% to 
73% for dismissing the claim and from 4% to 16% for providing more sophisticated 
reasoning. For 117 students initially in Year 6 the change to Year 10 was an increase from 
64% to 68% for dismissing the claim and from 14% to 23% for giving more sophisticated 
reasoning. The positive change in performance for the combined belief item scores was 
significant in each 2-year period. 

The James item might not have been used again except for a media item that addressed 
the specific issue of getting out of bed on the left side. The article from Reuters news 
agency is reproduced in Figure 1 (Majendie, 2008). Because of the existence of expert 
opinion, it was decided to include the supporting evidence and see how it influenced 
students’ opinions about James’ belief. The amended items are in Figure 2, with items 
1 (JMES), 2 (FENG), and 3 (PSYC) included in one survey of statistical literacy and item 
4 (BED) included in a parallel survey. Hence in one survey, students could make three 
responses in relation to getting out of bed on the left side, whereas in the other only one 
item was used combining the opinions of the experts. 

 

Figure 1. Getting out of bed on the left side is the right side (Majendie, 2008). 
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Figure 2. The four probabilistic reasoning items used. 

The introduction of the authentic media extracts places the items in Figure 2 in a 
cultural context not considered in previous research. The purpose of this analysis, hence, is 
to explore what difference the form of question makes in eliciting student responses to the 
belief about getting out of bed in a particular fashion and its effect on life situations, 
especially James’ chances of getting good marks. Do students respond differently to the 
different stimuli and how does the sophistication compare with other statistical literacy 
questions? 

Method 

Sample 
All participants were students who were part of the StatSmart project and who had 

already completed at least three StatSmart assessments (see Callingham & Watson, 2007 
for details of the research design). These students were all in classes with teachers who 
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were part of the project at a point during the study when they did not have to undertake an 
assessment but where their peers were undertaking one of the StatSmart tests. Teachers 
requested another test to occupy the small numbers of students in their classes who fell into 
this category, and this situation provided the opportunity to trial new items, including the 
four of interest: BED (Test Form X), JMES, FENG, and PSYC (Test Form Y). Of the 248 
students (M, n=132, 53.2%; F, n=116, 46.8%) from three different states (South Australia, 
Tasmania, and Victoria) who undertook the two test forms, 229 provided valid answers to 
one or more of the four target items. The distribution of valid responses to these items 
across grades is shown in Table 1, broken down by test form.  

Table 1 
Number of students in each grade for each survey 

Grade 6 7 8 9 10 11 Total 
Form X   5 27 11 31 25   4 103 
Form Y   8 23 23 24 48  126 
Total 13 49 33 54 70   4 229 

Instruments 
The two test forms consisted of 23 (Test X) and 25 (Test Y) items of which 20 were 

common to both forms. The common items were taken from an item bank of statistical 
questions that had been used in a number of past studies to measure statistical literacy (e.g., 
Callingham & Watson, 2005), including some also included in the StatSmart tests. Because 
the two test forms were linked by common items they could be placed together on the same 
measurement scale using Rasch analysis, and ultimately linked to the larger StatSmart data 
set. Both tests and the items within them, through a consideration of fit to the Rasch model, 
met the standards required to allow valid inferences to be made from the data (Bond & 
Fox, 2007).  

Analysis 
All items were coded using rubrics developed on the basis of the complexity of 

response. The specific rubric used for all four target items is shown in Table 2. 
Table 2 
Rubrics used to code Getting-out-of-Bed items 

Code Description 
0 No response  
1 Agreement with James or Feng shui expert or Psychologist 
2 Rejection of claim; simple disagreement with no justification 
3 Presentation of one argument, either based on a lack of evidence, physical 

conditions, or based on a psychological belief that may assist performance 
4 Combination of more than one argument, based on lack of evidence, physical 

conditions, and/or based on a psychological belief that may assist performance 

Coded responses were analysed using Winsteps 3.80.1 Rasch measurement software 
(Linacre, 2013). In addition, examples of the text responses were collected as exemplars of 
different levels of response. A map of all the items, showing the relative difficulty of the 

622



Watson and Callingham  

 

items with their different coding levels, was produced by the software. This was examined 
to determine how the items behaved relative to each other, as well as in relation to other 
items. In addition, the map was compared qualitatively with Callingham and Watson’s 
(2005) Statistical Literacy Hierarchy, using items from the earlier study to suggest possible 
levels on the hierarchy for the new items. 

Results 
Figure 3 shows the item map produced by the software showing all of the items in both 

X and Y surveys. The items of interest are shaded. The number attached refers to the code 
as shown in Table 2. Each # represents 3 students and the scale is shown in mean logits 
(mean of the log of the odds of response), the units of Rasch measurement. Items shown at 
the top of the scale are the hardest.  
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Figure 3. Item map of all items in X and Y surveys including coding levels. 
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All of the target items showed good spread along the scale, with the highest code for 
each item being among the hardest items in the surveys. Agreement and simple rejection of 
JMES appeared easy for students, but all codes 1 and 2 appeared on the bottom one-third 
of the scale. Examples of code 1 responses—agreement with the claims—included the 
following: 

JMES:  It is his lucky side. 

FENG: I think that Jan Cisek thinks getting out of bed on the left side is lucky. 

PSYC: Because your brain will work better. 

BED: That it better to get out left side of bed. 

Of interest is that for the PSYC item, using the psychologist’s claim, students seemed 
somewhat more likely to use answers based on the workings of the brain, whereas with 
other items they tended to attribute responses to luck. Code 2 responses—simple 
rejection—included: 

JMES: I think it makes no sense. 

FENG: It’s a superstition. 

PSYC: I don’t really get this claim, I really don’t see how getting out of bed on the left side 
helps this. 

BED: I think that these claims explain what experts think, however, I would not agree with 
them. 

Students could recognise that the claims were made by experts and did not necessarily 
agree with the claims, but were unable to articulate a rationale for their disagreement. 

There was a jump in difficulty from code 2 to code 3, shown by the relatively large 
gaps on the map. It seemed that for students to articulate their rejection of the claim 
required a greater level of understanding of the context and validity of the claims. Code 3 
responses included: 

JMES: It can help because it put [sic] him in a good mood. 

FENG: Feng shui relies on supernatural that is unmeasurable elements so it would be unwise 
to think anything about it other that it is improbable. 

PSYC: No proof. Unless there has been a scientific study, there is no way of knowing. 

BED: It doesn’t matter really. How can getting up a different way effect [sic] your thinking? 
If you believe it, it might happen. 

FENG was more likely to be rejected on the grounds of supernatural or spiritual 
beliefs, whereas the effects of a belief about getting out of bed on a particular side were 
often cited as possibly being positive for the person concerned for the other items. Physical 
conditions, such as the bed being against the wall on the left side were also used as 
justification for rejecting the claim.  

Code 4 responses were very difficult for students to achieve, particularly for JMES and 
FENG. Examples of code 4 responses included: 

JMES: I think that this claim is irrational as it does nothing to change his chance of getting 
good marks, it’s a superstition. But, if he believes it works, this could influence his 

624



Watson and Callingham  

 

marks either in a good way, because he is positive about it, or in a bad way, because he 
believes that it is all he has to do to achieve good marks. 

FENG: Left is where the heart is, so spiritually people might think strongly about this, but 
there is no physical evidence. 

PSYC: This is just a claim. There is no particular evidence of it and for some people their beds 
may be against the left side of the wall so how do they get off the bed on the left. Does 
that mean they think less? Again, I think there is no science or proof, only 
superstitious beliefs. 

BED: I think that while they’re interesting, there is no proof given in the article to actually 
say that the left side is better. These are only opinions, yet the title seems to state that it 
is better to get out of bed on the left side. Besides, what if the left side of your bed was 
up against a wall?! 

Students responding at this level were able to conjecture about different conditions or ways 
in which the person concerned might be affected by their superstition or belief. They 
sought evidence or scientific proof. The relative difficulty of making a code 4 response to 
JMES and FENG may be because students could not see any possible merit in the 
justifications provided for the claim, and hence were unable to discern any plausible 
arguments that could be used. The PSYC and BED items, on the other hand, tended to 
attract responses that alluded to scientific or experimental evidence.  

The informal comparison of the item map with the Statistical Literacy Hierarchy 
suggests that all code 4 responses were at the highest level of the hierarchy — Critical 
Mathematical. The descriptor for this level states that respondents demonstrate a “Critical, 
questioning engagement with context, using proportional reasoning particularly in media 
or chance contexts, showing appreciation of the need for uncertainty in making predictions, 
and interpreting subtle aspects of language” (Callingham & Watson, 2005, p. 3). At the 
other end of the scale, most code 1 responses appeared to be at the Informal level where 
responses show “Only colloquial or informal engagement with context often reflecting 
intuitive non-statistical beliefs, single elements of complex terminology and settings, and 
basic one-step straightforward table, graph, and chance calculations.” The descriptors for 
these levels seem to be appropriate to the nature of the responses to the four items provided 
by participants in this study. Further work is needed to place the intermediate codes 
accurately in levels of the hierarchy.  

Discussion 
In this study four items addressing students’ subjective beliefs about probability were 

used with other items that targeted more traditional statistical content, including central 
tendency, graph reading, and numerical probability. All items worked together to provide a 
single measurement scale, and the four focus items showed a progression in difficulty that 
was well spread out along this scale.  

It could be considered that these items were not mathematical in their nature. No 
quantification of probability was given and they required no calculation. Responding to 
these items, however, did demand statistical reasoning especially at the high levels of 
response. The language demands of statistics can make it challenging for teachers, but the 
need to be able to tell the story (Pfannkuch, Regan, Wild, & Horton, 2010) is exemplified 
by the demands of context such as shown in the items used in this study.  

The nature of the subjective beliefs about probability demonstrated by students in this 
study was similar to those shown in earlier research (e.g., Amir & Williams, 1999; 
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Fischbein, 1975; J. Truran, 1985; K. Truran, 1995; Tversky & Kahneman, 1973). The 
beliefs shown by students in this study included the supernatural, the importance of 
physical conditions, psychological beliefs, and trust in the scientific method. Students drew 
on their sometimes limited understanding of context to reason about the situations 
presented, such as knowledge about the right and left brain.  

Being able to present a coherent, critical argument about a situation, referring to the 
evidence provided, is an important component of statistical reasoning. The students 
reported here had already been part of a large-scale study, StatSmart, for at least a year.  
The relative difficulty that they demonstrated in making high-level responses indicates that 
more work is needed to help students develop the language of statistics. Providing 
opportunities for students to reason about probabilistic contexts beyond the classroom 
activities of tossing coins and dice is an important step to developing the critical statistical 
reasoning skills needed in the complex society in which they live.  
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The phenomenon of the ‘middle-years dip’ in mathematics engagement and achievement 

has been a cause of concern for over a decade. This paper presents an example of one 

upper-primary classroom identified as having higher than average levels of student 

engagement, with the purpose of documenting specific teaching strategies that align with 

known key elements of motivation and engagement. Drawing on evidence from teacher 
interviews, observation notes and lesson video with recorded dialogue, we argue that 

particular types of one-to-one interactions between teacher and student can have a powerful 

influence on student engagement. 

Introduction 

In Australia, the under-participation of middle-years (late primary - early secondary) 

students in mathematics has been widely reported (Sullivan & McDonough, 2007). For 

example, national reporting of numeracy benchmarks (MCEETYA, 2005) highlight the 

drop in numeracy results experienced by New South Wales students during the vital 

transition period of primary to secondary school (years 5/6 to 7/8). This decline has 

resulted in fewer students continuing with further mathematics study in senior school and 

beyond, causing a shortage of suitable employees for mathematics-related occupations 

(DEEWR, 2008). The dual issues of under-participation and under-achievement in 

mathematics are often described in terms of declining motivation and engagement, and a 

substantial body of research has found that motivation and engagement are positively 

associated with student academic achievement (Martin, 2007; Stipek, Salmon, Givvin, 

Kazemi, Saxe, & MacGyvers, 1998). However, this relationship is not necessarily causal, 

at least in the short-term. High levels of motivation and engagement do not ensure high 

levels of achievement and vice versa. There are many mathematically capable students 

who opt out of mathematics study as soon as it becomes an option. Yet there has been 

much difficulty in clearly identifying the actual causes of declining motivation and 

disengagement during this crucial time for students. A number of factors are at play, 

including social influences, curriculum, pedagogy and personal changes in students 

relating to early adolescence. In recent years researchers have achieved two significant 

advances towards a solution to the problem: a) coherent models that account for the 

multifaceted nature of engagement, drawing together the various definitions and theories; 

and b) reliable instruments for measuring the facets of engagement exhibited by individual 

students and monitoring changes over time (Martin, 2007, 2010).  

Educators and researchers have long believed that the teacher is the key to determining 

the quality of learning in a classroom, but when looking for reasons behind the decline of 
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engagement and performance in middle-years mathematics, educators have tended to be 

distracted by other factors such as the physical and social development of adolescents and 

societal influences. However, recent research utilising a multi-faceted model of 

engagement and an associated measurement instrument has identified the fact that it is not 

necessarily transition and personal development that causes engagement declines; rather, 

student, home, classroom, and school factors explain the bulk of such variance  – and that 

amongst these factors, it is the variation in individual students that is the strongest (Martin, 

Anderson, Bobis, Way, & Vellar, 2012). This means that, potentially, the teacher can 

overcome the broader influences of developmental change, school and home by focusing 

on specific characteristics of individual students (Martin, Way, Bobis, & Anderson, 2015). 

The ‘middle-years dip’ in mathematics is not inevitable. The research reported in this paper 

extends this important finding by identifying specific strategies that one teacher uses to 

promote higher levels of student engagement in mathematics learning via her interactions 

with individual students. 

Motivation and Engagement 

‘Engagement’ is now generally accepted to be a multi-faceted construct that can be 

broadly described as three (interrelated) categories of engagement – behavioural, 

emotional and cognitive (Fredricks, Blumenfeld, & Paris, 2004). In general, ‘motivation’ 

can be described as a set of interrelated beliefs and emotions that influence and direct 

behaviour (Wentzel, 1999). However there have been numerous theories developed to 

explain the processes at work in both engagement and motivation - including attribution, 

expectancy-value, goal theory, self-determination, self-efficacy, and self-worth motivation 

theory. Such fragmentation has highlighted the need for a model that encompasses the 

strengths of the various theories and enables practitioners, such as teachers, to employ a 

framework that is easily translated into teaching strategies and communicated to students. 

The research reported here makes use of such a model, depicted diagrammatically as the 

student Motivation and Engagement Wheel (Figure 1); and represented in the associated 

Motivation and Engagement Scale, in the form of a validated questionnaire (Martin, 2007). 

The student Motivation and Engagement Wheel (Hereafter referred to as ‘M&E 

Wheel’) identifies the thoughts, emotions and behaviours that enhance or impede 

motivation and engagement (Martin, 2007, 2010). The Adaptive Cognition section reflects 

the thoughts that boost motivation. These thoughts consist of self-belief (the student’s 

belief and confidence in their ability to understand their schoolwork); mastery orientation 

(a learning focus, whereby the student is interested in developing new skills and 

understanding); and valuing school (the student’s belief that the learning is useful and 

relevant). The Adaptive Behaviours section identifies behaviours that enhance motivation 

and is comprised of persistence (how the student perseveres with schoolwork); planning 

(the student’s planning and monitoring of their progress); and task management (the 

student’s study organisation, including time management). Adoption of these thoughts and 

behaviours results in increased motivation and engagement (Martin, 2007, 2010). 

Thoughts and behaviours that reduce motivation and engagement are reflected in the 

Impeding/Maladaptive Cognitions and Maladaptive Behaviour dimensions (Martin, 2007, 

2010). Negative thoughts include anxiety (feeling nervous about school work); failure 
avoidance (the student feels that if they do not complete their schoolwork they will be seen 

as a failure); and uncertain control (students feel unsure of how to do well and believe that 

their success is out of their control). Behaviours that hinder motivation and engagement 

are: self-handicapping (adoption of strategies that reduce chances of success, such as 
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procrastination); and disengagement (giving up, withdrawing or accepting failure). For a 

fuller description of the M&E Wheel in relation to mathematics see Bobis, Anderson, 

Martin and Way (2011). 

 
Figure 1. Motivation and Engagement Wheel (reproduced with permission from Lifelong Achievement 

Group (www.lifelongachievement.com) and Martin, 2010, p. 9.  

Teacher-Student Interactions 

As previously mentioned, the relationship that exists between student engagement and 

student achievement is not necessarily causal. This signifies that there may be highly 

motivated students demonstrating low levels of achievement and, conversely, students with 

low (or falling) levels of motivation achieving relatively highly. This situation suggests 

that, although teacher practices that enhance student engagement and those that improve 

student learning-outcomes may overlap, these practices are not necessarily 

indistinguishable. There is a growing body of research that asserts that positive 

interpersonal relationships between the teacher and student support both engagement and 

academic performance (E.g., Attard, 2013; Clarke et.al, 2002). The complementary nature 

of the pedagogy to support engagement and pedagogy to support learning is not surprising 

considering one of the three inter-related types of engagement is ‘cognitive’ engagement, 

that focuses on learning. For example, Hackenberg (2010) proposes that to build teacher-

student relationships aimed at mathematical learning, teachers must assess and monitor the 

student’s mathematical thinking, attempt to view the mathematics from the student’s 

perspective and interpret the student’s feelings about the mathematics. She also highlights 

the reciprocal nature of these relations, in that the teacher needs to receive some positive 

responses or feedback from the students in order to build the relationship. If these 

relationships are built successfully, the student is likely to learn the mathematical content 

and, in turn, develop increased self-belief in their mathematical ability (Hackenberg, 

2010). Increased self-belief and a focus on learning the mathematics content (mastery 

orientation) are positively associated with motivation and engagement (Martin, 2010). 

In particular, one-to-one interactions between teacher and student may have significant 

value in building supportive relationships (Frymier & Houser, 2000), and promoting 

mathematics learning (Cheeseman, 2009). However, the specific nature of such individual 
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interactions in mathematics classrooms remains under-researched, and little attention 

appears to be given to the specifics of these pedagogical relationships in teacher education 

and professional development (Sullivan, Mousley, & Zevenbergen, 2006). 

Theoretical Perspective of the Study 

The relevance of studying teacher-student interactions is supported by theories of 

social constructivism, which focus on the learner’s construction of knowledge in a social 

context, including support from the teacher (Cobb, 1994). More specifically, the theory of 

symbolic interactionism has been used in mathematics education to explain how meaning 

is made through social interactions (Yackel & Cobb, 1996). Symbolic interactionism 

asserts that mathematical meaning is negotiated, and the theory can be used to explain how 

the teacher and students co-construct the social norms of the classroom related specifically 

to mathematics. These norms maintain established patterns of classroom interaction, 

regulate mathematical argumentation and influence learning opportunities for both the 

students and teacher (Yackel & Cobb, 1996). It follows that an appropriate approach to 

investigating teacher-student interactions is to closely observe particular established 

classrooms, with the understanding that each may be a unique situation. 

Methods 

This study’s focus is expressed by the following research question: What interactions 

with students does one teacher use in a mathematics lesson, and how do these interactions 

relate to aspects of motivation and engagement? 

Participants 
This study was nested within a large mixed-methods project designed to research the 

phenomenon of the ‘middle-years dip’ in mathematics engagement and achievement. 

Longitudinal data from the Motivation and Engagement Scale questionnaire (Martin, 2007) 

identified six primary and secondary classrooms (from 200) in which student motivation 

and engagement was found at higher than expected levels, to become case studies. The set 

of six cases is currently undergoing systematic cross-case analysis, but data from one of 

the primary classrooms was analysed immediately via an Honours research project and is 

the subject of this report. 

The Year 6 class was in a co-educational Catholic primary school in a large 

metropolitan area, with students from a wide range of cultural and socioeconomic 

backgrounds. The teacher, ‘Kate’, was female, aged 41-50, with over 21 years teaching 

experience and over seven years experience teaching upper primary. Kate collaborated 

with another Year 6 teacher in a team-teaching approach with 57 students. The two 

teachers planned the mathematics program together, with a unique structure that consisted 

of three groupings of students per lesson: workshop group (students having the most 

difficulty), core group (students needing consolidation and practice) and enrichment group 

(high achieving students needing further challenge). These groups were fluid, in that 

students chose which group to attend each lesson, based on their self-assessed ability after 

completing the whole-class, introductory task. In the observed lesson on fractions, Kate 

worked exclusively with the workshop group – the under-achieving students, who she 

referred to as “the little ones”. It is this subgroup of students and this phase of the whole 

lesson that defined the boundaries of this particular case study (Yin, 2009). 
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Data Collection and Analysis 
Kate’s work with her group was video-audio recorded and field-notes were taken by 

the researcher. Semi-structured interviews were conducted with the teacher before and 

after the lesson to discuss student engagement, learning and pedagogy, with some specific 

questions about teacher-student interactions. For example, “Have you planned one-to-one 

interactions? If so, what kind of interactions? With whom?” and, “When you were walking 

around talking to the individual students, what kind of strategies did you use?” 
Data analysis took place in three phases. The first phase used inductive (open-ended) 

analysis to identify and document all instances of interactions between Kate and her 

students through repeated viewings of the videoed lessons. These instances were then 

grouped into themes, then tentatively categorised according to commonalities. The second 

phase also used an inductive approach to identify themes in the interview transcripts and 

field notes. These themes were then applied in refining the researcher’s interpretation of 

the themes and categories of teacher practice derived from lesson-video. The final phase 

involved looking for alignment between the identified teacher strategies and the elements 

of the M&E Wheel (Figure 1)  

Findings 

Kate declared that her major aim when working with the ‘underachievers’ group was to 

promote active participation and student understanding, saying, “the whole reason is 

getting them to understand why, rather than being told ‘this is why’”. To achieve this she 

deliberately interacted with individual students throughout the majority of the lesson, 

because “I know that I get better results with the one-on-one”. Most of these interactions 

took place privately rather than in front of the group. Kate explained, 

For the little ones who couldn’t answer, they wouldn’t answer so why would you if you have got the 

other children there? ...You won’t play tennis against someone who is McEnroe if you can’t hit the 

ball. Why would you do that with maths?   

Analysis of the interviews and the lesson video, interviews and field notes revealed 

three major categories of practice: pedagogical practices, practices contributing to a quality 

learning environment, and nonverbal practices - with strong alignment between the three 

data sources. Although there are some interrelationships between these categories, Kate’s 

own explanations of what she was doing and why, provided further differentiation. Direct 

quotations from the teacher (Kate), from interview transcriptions and lesson dialogue, are 

included in the following descriptions of the categories. The lesson was dominated by 

Category 1 practices and therefore these are more fully explained in this short paper than 

the other two categories.  

Category 1: Pedagogical Practices  
Pedagogical practices refer to the teacher’s practices that were chiefly concerned with 

the mathematical content and the students’ learning of this content. Most of the one-to-one 

interactions that took place during the lesson involved these types of practices. Within this 

category, the following themes were identified: 

Promote mastery orientation. Kate explained that maintaining an emphasis on student 

understanding requires the teacher to be flexible and adapt lessons to appropriately match 

the students’ abilities. The emphasis on student understanding promotes mastery orientation 

(Adaptive Cognition quadrant of the M&E Wheel – Figure 1), which is associated with 
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intrinsic motivation and is therefore a critical element of student engagement. There is also a 

link between mastery orientation and self-belief, suggesting that student success, achieved by 

mastering the content, increases their self-belief (Martin, 2007). 

Encourage student self-regulation - Kate said that she assists students to “claim 

ownership of their learning” by allowing them to choose the ‘ability’ group they work with 

each lesson, and by encouraging students to reflect on their learning through questions 

such as “What did you learn?”, and by pressing students to identify their preferred learning 

style. Kate gave the example of “We discuss in class...what kind of a learner are you? Do 

you need pictures? ...Are you good at listening to people?” Self-regulatory behaviours 

(planning, task management and persistence) comprise the adaptive behaviours of the M&E 

Wheel. They correlate to a mastery orientation and have been found to be conducive to both 

motivation and achievement (Martin, 2007). 

Assess student understanding. To keep track of student understanding, Kate discussed 

the importance of monitoring, questioning and one-to-one conversations, stating in the pre-

observation interview “It’s a good way to pinpoint children where they are” and that she 

asks students having difficulties, “What can’t you do?” since “If you don’t ask them, you 

don’t know”. This was reflected throughout the lesson where Kate spent much of her time 

moving between students to monitor their progress and frequently assessed their 

understanding through comments such as “Ok. Show me what you’ve done”, “How’d you 

go?” and “So did you do the figuring out...in your head? Or did you work it out on paper?” 

Monitoring student understanding in a manner that does not diminish a student’s self-

regulation corresponds with behaviours of planning, task management and persistence (M&E 

Wheel) that are positively associated with motivation and engagement. 

Support students experiencing difficulty through prompting. Assessing student 

understanding throughout the lesson allowed Kate to support individual students 

experiencing difficulties with the task by providing prompts. Some of these prompts 

encouraged students to reflect on their thinking and included questions such as “Has that 

shown me that it’s 4 lots of 3?” and “Is there a better way of showing...? Another way of 

showing?” Others provided clues about how to solve the answer, such as “But how many 

pieces do I need to cut it into?”. Such prompts are intended to re-engage students in the task 

and allow them to experience a sense of accomplishment. Kate explained this was important 

“…  otherwise they just find avoidance techniques. They go looking for other things to do. 

They are not feeling it’s something they are comfortable with or capable of doing.” Martin 

(2007) affirms that success-oriented students exhibit high self-belief and control, both of which 

are positively associated with motivation and engagement. Such students are also less likely to 

participate out of fear of failure – an impeding cognition (M&E Wheel).  

Extend students when ready. This was evident in Kate’s responses to students who 

correctly completed the task, such as “Can you draw it another way?”, “Try another 

number where the top number is bigger than the bottom one” and “Can you do...this one’s 

a double digit number, 14 over 12.” Maintaining an appropriate level of challenge supports 

mastery orientation and therefore is positively associated with engagement. 

Encourage student reasoning. Another feature of Kate’s interactions with individual 

students was her press for students to justify their mathematical thinking through 

reasoning. “I want them to look at what they do and prove it, like tell me why...Getting 

them to see and compare and to make a judgment about why and give a reason”. During 

the lesson, this was demonstrated through questions such as “Why is that one different?” 
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and “How did you know to split that into four bits?” Through challenging students to 

develop meaningful understandings, reasoning can be linked to mastery orientation and, thus, 

may contribute to student motivation and engagement. 

Category 2: Practices Contributing to a Quality Learning Environment  
This category is comprised of the teacher practices that contributed to setting the social 

and emotional tone of the classroom. These practices helped to create a learning 

environment where students felt safe and supported and contributed to building positive 

teacher-student relationships. Kate explained, “It gives the children who are part of that 

group the sense that someone is listening to me, someone is addressing me”. Three themes 

emerged from the data: a) Building positive teacher-student relationships – Kate showed 

that she cared about the students’ feelings, respected and valued them, by being attentive, 

polite and asking how they felt; b) Providing encouragement - illustrated through a variety 

of verbal and non-verbal communications, nodding and smiling and the frequent use of 

positive reinforcement; c) Managing the learning environment – through brief individual 

verbal interactions, repositioning students in the classroom, saying student names, raised 

eyebrows or a light touch on the student’s hand or shoulder. 

Category 3: Nonverbal Practices  
Throughout the lesson, Kate exhibited a range of nonverbal practices when interacting 

one-to-one with students. These practices concerned her use of gaze, facial expression, 

gesture, proximity and touch. These included maintained eye contact in conversation, 

smiling, attentive listening, and pointing. Kate spent much of the lesson moving between 

students to monitor their work, standing close or even kneeling so that the interaction took 

place at eye level.  

Discussion and Conclusion 

In Kate’s class, with its emphasis on interactions as the basis for building 

understanding in mathematics, we see an example of symbolic interactionism in action. 

With this group of ‘underachievers’, Kate had established socio-mathematical norms with 

a pattern of one-to-one interactions, which has a strong influence on the learning 

opportunities for both the students and teacher (Yackel & Cobb, 1996). As the 

observations were confined to this particular group of students it would be interesting to 

see whether the same interaction patterns were present when she taught the other two 

‘more advanced’ groups of students.  

The findings of this study resonate well with other research that has shown that 

effective teacher interactions focus largely on mathematical thinking (Cheeseman, 2009), 

and that monitoring student progress and providing prompts or extension is effective for 

supporting student motivation and engagement (Clarke et.al., 2002; Hackenberg, 2010; 

Sullivan et al., 2006). There was clear evidence that Kate deliberately attended to all three 

types of engagement, that is, behavioural, emotional, cognitive (Fredricks et.al, 2004), but 

placed particular emphasis on cognitive engagement. Many of Kate’s practices aligned 

well to facets of the M&E Wheel (Martin, 2010). As such, it is possible that the high levels 

of motivation and engagement previously identified in this class were a result of the 

teacher’s practices that encouraged students to adopt thoughts and behaviours known to 

increase student motivation and engagement.  
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This paper presents results from a survey of 80 parents and 120 secondary school students 

in Australia. Many parents report that their children put in all their effort into mathematics 
education but they believe that their children can do better if they try harder. This paradox 

is more evident among parents from Asian-Australian backgrounds compared to parents 

from other backgrounds who also report having high expectations in mathematics 

education, which is not the common perception in Australian media and society. 

Introduction 

Evidence around the high achievement of Asian students is available from comparisons 

of international studies such as the Trends in International Mathematics and Science Study 

(TIMSS) and the Programme for International Student Assessment (PISA). These studies 

indicate that students in many Asian countries perform better in mathematics than students 

in most European countries (Leung, 2012; Thomson et al., 2012). This same difference 

appears to occur between Asian-Australian students and European-Australian background 

students and there is therefore interest in factors contributing to those differences. 

One relevant factor is arguably the involvement of parents in their children’s education. 

Such involvement has captivated the attention of the world for some time. Chinese parents, 

for example, are often reported to spend time each day in monitoring the academic 

activities of their children (Chua, 2011). The term “Tiger mom” is sometimes used to 

describe an authoritarian parenting style in which parents give their children few choices, 

and seldom ask children for opinions (Baumrind, 1967; Maccoby & Martin, 1983). It is not 

only Chinese mothers who act as “Tiger moms”. Chua (2011), for example, argued that 

non-Chinese parents from Korea, India and Pakistan have similar mindsets. The well-

prepared offspring of these “Tiger moms” seem to be outperforming non-Asian 

counterparts at schools where both Asian and non-Asian ethnic background students study 

together (Chua, 2011).   

In order to explore further the influences of parents on their children’s education, and 

especially to explore differences between particular groups, the paper presents findings 

from a recent survey that seeks to identify the influences of parental involvement in the 

mathematics education of secondary students.   

The Research Framework and Associated Literature 

The research is informed by the theory of relative functionalism (Sue & Okazaki, 

1990), which has been used to describe achievements of Asian-American students. 

Functionalism emphasises the adaptiveness of the mental or behavioural processes. In fact, 

migrants experience difficulties in upward mobility and issues with status in society if they 

belong to minority ethnic groups in their new country. It is likely that the recency of 

migration is a salient factor in influencing attitudes of migrant parents. Such parents are 

likely to be more involved in their children’s education than other parents. The theory of 

relative functionalism explores the extent to which migrants adopt the cultural traits or 
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social patterns of another country. Sue and Okazaki (1990) argued that education is 

increasingly functional as a means for mobility when other avenues such as sports, politics, 

entertainment, and so forth, are blocked. They also argued that the academic achievement 

of children of Asian-American migrants cannot be solely attributed to Asian cultural values 

but also to their migrant status. Similarly, in another study in an Australian context with 

primary school students, Dandy and Nettelbeck (2002) explained this theory as 

“immigrants attempt to exploit opportunities not available in their homelands, with the 

ultimate goal of upward social mobility by way of education” (p. 621). In explaining the 

outperformance of Asian students in countries such as Australia and America, Dandy and 

Nettelbeck (2002) and Sue and Okazaki (1990) considered those Asian background 

students as immigrants.  

Of course it is not just migrants who take an interest in their children’s education. 

Various studies have suggested that there is a significant relationship between parental 

involvement and the academic achievement of their children (e.g., Dandy & Nettelbeck, 

2002; Fan, 2001; Hong & Ho, 2005) although it seems that the construct of parental 

involvement is multidimensional and complex. As Hornby and Lafaele (2011) described, 

the way that parents view their role in their children’s education and the belief that parents 

have in their ability to help their children succeed at school were critical aspects in the 

study of parental involvement and their attitudes in children’s mathematics education. 

However, Hoover-Dempsey and Sandler (1997) described a lack of confidence of parents 

in thinking that they may not have academic competence to help their children. Further, 

Hoover-Dempsey and Sandler argued that it is also critical what views parents hold about 

children’s intelligence as well as how they learn and develop their abilities.   

Importantly, as Leung (2012) highlighted, there are many variables within a country or 

culture that impact student achievement. Many of these variables are interrelated so it is 

difficult to isolate the effect of individual factors. Considering just one of these Ma (1999) 

argued that attitudes are important in mathematics participation, suggesting that efforts 

around improving cognitive skills alone may not necessarily lead to increased mathematics 

participation. The implication is that if parents spend more time on improving their 

children’s attitudes towards mathematics, then this is likely to have an impact on their 

achievement.  

Various studies have identified a focus on parental encouragement by ethnically Asian 

parents. In a study on parental roles and culture, Cai, Moyer, and Wang (1997) argued that 

Asian parents consistently motivate their children to achieve academic success and this 

encouragement may significantly contribute to the success of Asian students. Interestingly, 

in a comparison study of students in China and Australia, Cao, Bishop, and Forgasz (2007) 

found that the students in China had stronger perceived parental encouragement and higher 

perceived parental expectations than ethnically Chinese students in Australia. The authors 

also found that parents of Chinese speaking students and other non-European students in 

Australia have similar levels of parental encouragement but significantly higher levels of 

parental encouragement than English speaking students in Australia. This connects to their 

migrant status. 

Some studies have found cultural differences in parental expectations for their children. 

In a survey of 239 Chinese, Vietnamese, and Anglo-Celtic Australian parents of primary 

school children aged 6 to 14 years in South Australia, Dandy and Nettelbeck (2002) found 

most parents had high expectations of their children’s academic performance. They also 

found that Anglo-Celtic Australian parents seem to put less emphasis on academic 

achievement while having more flexible expectations when compared to Chinese- or 
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Vietnamese-Australian parents. However, Dandy and Nettelbeck (2002) stated that it is 

impossible to conclude that these factors are solely responsible for ethnic group differences 

in academic achievement. In a study of direct and indirect longitudinal effects of parental 

involvement on student achievement using a nationally representative sample of 24,599 

eighth graders from 1,052 schools in USA, Hong and Ho (2005) randomly selected a 

sample of 1,500 students from Asian-American, African-American, Hispanic, and White 

groups with a total of 6,000 students for their analyses. They concluded that across all 

ethnic groups the higher the hopes and expectations of parents with respect to the 

educational attainment of their child, the higher the expectations of the child and greater 

their academic achievement. In another study based on cross-cultural comparison with 158 

parents of students from two Chinese primary schools and one Anglo-Celtic primary 

school in Hong Kong, Phillipson and Phillipson (2007) argued that parents of different 

cultures have different intervention strategies and values in bringing up and educating their 

children. 

The current study applies these perspectives in the Australian context with secondary 

school students using the following research questions:   

How do the expectations for their children in mathematics education vary between Asian-Australian 

and European-Australian background parents? Does either group have higher expectations than the 

other? What are the children’s perceptions of the expectations of their parents? 

Research Method 

The data presented here are part of a larger study, which was planned primarily around 

surveys on parental involvement in mathematics education of their children, using two 

questionnaires one each for parents and children. In addition to parental expectations for 

their children, this study focussed on children’s perspective about the expectations of their 

parents. Therefore, two separate instruments on mathematics education were developed 

with similar but different questions for parents and students. The instructions provided on 

the instruments informed participants that the responses should be in relation to 

mathematics education. Surveys were followed by semi-structured interviews for a parent 

and a child from purposively selected families, although these data are not presented here.  

As this study involved participants from Asian and European backgrounds, it was 

required to invite multicultural schools to participate in the surveys. With the permission of 

the Department of Early Childhood and Education (DEECD), four multicultural schools 

with Asian and European background students in metropolitan Melbourne were invited to 

participate. Two of those schools are select-entry schools and the other two are public 

schools. Only three principals from the four schools agreed to participate in the study. 

Hence, the information about the student questionnaire was provided to secondary school 

students in one select-entry school and two public schools in the city of Melbourne. Next, 

the information about the parental questionnaire was given to families of those children 

who were interested in participating without being selective of their ethnic background or 

culture. The questionnaires were available online, and students and parents were able to 

respond whenever they wanted. For those who wanted to fill in the questionnaire on paper, 

a copy was provided. 

A total of 200 volunteer participants from European-Australian and Asian-Australian 

backgrounds including 80 parents (28 European-Australian and 52 Asian-Australian 

parents) and 120 children (33 European-Australian and 87 Asian-Australian children) 

responded to the survey. The ethnic background of each participant was recorded. In 

addition to Australians of Anglo-Celtic heritage, the European group included participants 
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living in Australia who were originally from other European countries including Russia, 

Italy, Greece, and Turkey. The Asian group consisted of ethnically Sri Lankan, Indian, 

Chinese, Vietnamese, Malaysian, Singaporean, and Bangladesh participants who also live 

in Australia. A four-point Likert scale was used to record the responses in the 

questionnaires of this study (1 = Strongly agree, 2 = Agree, 3 = Disagree and 4 = Strongly 

disagree). No neutral option was provided thereby forcing specific choices.  

Firstly, a table of summarised data was used in data analysis. Secondly, the Mann-

Whitney U-Test, which is the non-parametric version of the independent samples t-Test 

was performed on the ranked data. The Mann-Whitney U-test compares medians of the 

groups involved. While parametric tests often include assumptions about the shape of the 

population distribution (e.g., normally distributed), non-parametric techniques do not have 

such stringent requirements. As the data collected were measured only at the ordinal level 

(ranked), a non-parametric technique is suitable for data analysis (Pallant, 2013). This 

study satisfies other requirements for non-parametric tests, which require random samples 

and independent observations where each person can be counted only once. The dependent 

variable of the data gathered in response to the following four statements of interest in the 

study is ordinal and were coded using a discrete number from 1 to 4. Finally, cross-

tabulation was used to explore the data and identify relationships further. 

Results 

While observing the responses to questionnaires on mathematics education, the 

following items from the parents’ questionnaire were of particular interest because 

responses to those items apparently led to a contradiction. Hence, the responses were 

analysed to provide particular insights into differences between European-Australian and 

Asian-Australian background participants. 

My child puts all his/her effort into school related tasks. (statement 1) 

My child can get better marks if he/she tries harder.  (statement 2) 

The following items relevant to the above statements were selected from the students’ 

questionnaire. 

My parents believe that I put all my effort into school related tasks. (statement 3) 

My parents believe that I can get better marks if I try harder.  (statement 4) 

Table 1 presents responses of the various groups. According to the results, the various 

patterns of responses between the two groups appear similar. The majority of parents and 

students agree with the four statements in Table 1. If a parent agrees that his/her child puts 

all his/her effort into school related tasks, one may question why a parent thinks his/her 

child can get better marks if the child tries harder. In this paradox, students demonstrate the 

same attitude about their parents’ thoughts highlighting the importance of elucidating 

parental expectations further in order to identify any similarities and differences between 

cultures. 
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Table 1  

Summary of responses of parents and students  
Statement Cultural 

bbackground
1 

Strongly 

agree 

Agree Disagree Strongly 

disagree 

Total 

agree 

Total 

disagree 

1. My child puts all 

his/her effort into 

school related tasks. 

E-A 9 

(32.1%) 

13 

(46.5%) 

6 

(21.4%) 

0 (0%) 78.6% 21.4% 

A-A 13 

(25.0%) 

30 

(57.7%) 

9 

(17.3%) 

0 (0%) 82.7% 17.3% 

       

2. My child can get 

better marks if he/she 

tries harder. 

E-A 8  

(28.6%) 

16 

(57.2%) 

2  

(7.1%) 

2 (7.1%) 85.8% 14.2% 

A-A 32 

(61.6%) 

18 

(34.6%) 

2  

(3.8%) 

0 (0%) 96.2% 3.8% 

       

3. My parents believe 

that I put all my effort 

into school related 

tasks. 

E-A 9  

(27.3%) 

18 

(54.5%) 

5 

(15.2%) 

1 (3.0%) 81.8% 18.2% 

A-A 27 

(31.0%) 

43 

(49.5%) 

16 

(18.4%) 

1 (1.1%) 80.5% 19.5% 

       

4. My parents believe I 

can get better marks if 

I try harder. 

E-A 15 

(45.5%) 

11 

(33.3%) 

6 

(18.2%) 

1 (3.0%) 78.8% 21.2% 

A-A 64 

(73.6%) 

22 

(25.3%) 

1 (1.1%) 0 (0%) 98.9% 1.1% 

       
1E-A (European-Australian), A-A (Asian-Australian) 

Although both European-Australian and Asian-Australian parents (85.8% and 96.2% 

respectively) think that their children can get better marks if they try harder, only 28.6% of 

European-Australian parents strongly agree with statement 2 while 61.5% Asian-

Australian parents strongly agree with the statement. This difference between the two 

groups is further explored below.  

Similarly, student responses for statement 4 align with the differences in parental 

expectations for statement 2 as discussed above. Students from both European-Australian 

and Asian-Australian backgrounds (78.8% and 98.9% respectively) report that their parents 

believe that they can get better marks if they try harder. Moreover, from the two groups 

45.5% of European-Australian students strongly agree with statement 4 while 73.6% of 

Asian-Australian students strongly agree with the statement. Both these percentages of the 

two groups are the highest out of the four options of statement 4. However, it is worth 

exploring further the parental influence on Asian-Australian students because almost all of 

them (86 out of 87) agree with statement 4. 

Comparing parents’ and students’ responses, 28.6% European-Australian parents 

strongly agree with statement 2 whereas 45.5% of their children strongly with statement 4. 

Also, 61.6% Asian-Australian parents strongly agree with statement 2 whereas 73.6% of 

their children strongly agree with statement 4. Even though strongly agreeing to these 

statements is a pressure on children, percentages of children’s responses are higher than the 

parents’ responses of similar items. Irrespective of culture, this shows beliefs of some 

children, which may improve their academic achievement.  

Second level analysis using the Mann-Whitney U-Test confirmed that most of the 

European-Australian and Asian-Australian parents consider that their children put all their 
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effort into school-related tasks (statement 1). This is implied by the median value of 2 (= 

Agree) for both cultural groups. Most of the parents from both European-Australian and 

Asian-Australian backgrounds think that their children can get better marks if they try 

harder (statement 2). However, according to the results, European-Australian parents agree 

with statement 2 with a median score of 2 (= Agree) while Asian-Australian parents 

strongly agree with statement 2 with a median score of 1 (= Strongly agree). Although 

parents from both cultural groups have high expectations for their children, according to 

median values it is evident that Asian-Australian parents have higher expectations than 

European-Australian parents.  

Students responded in a similar manner. From the responses of children from both 

cultural backgrounds, the above findings about parental expectations are supported by 

statement 3 with a median score of 2 (= Agree). This implies that most of the offspring 

from both European-Australian and Asian-Australian backgrounds think that their parents 

believe that they put all their effort into school related tasks. The above findings are further 

supported by the same median values of 2 (= Agree) and 1 (= Strongly agree) for 

European-Australian and Asian-Australian students respectively for statement 4 as shown 

in the results. This suggests that the parents from both cultural backgrounds not only have 

high expectations for their children but also they have successfully conveyed the message 

to their children.  

The results of the Mann-Whitney U test provide probability values (p-values) for the 

four statements. There is no statistically significant difference between the groups as the p-

value for statement 1 is 0.819. Although parents from both cultural backgrounds 

demonstrate a similar view to statement 1, there is a statistically significant difference 

between the two groups for statement 2 as shown by p = 0.005. Similarly, with the 

responses of children there is no statistically significant difference between the groups as 

the p-value for statement 3 is 0.820. However, the difference between groups for statement 

4 is statistically significant with p = 0.001. This means, even though the majority of parents 

agree with statement 2 and the majority of students agree with statement 4, the responses 

which are skewed towards “strongly agree” and “agree” have a significant difference 

between the two cultural groups.  

Thirdly, cross-tabulation is used to further analyse these skewed data to investigate 

cultural differences (see Table 2). 

Table 2  

Cross-tabulation of responses of parents and children for the four statements 
           Statement 1         Statement 3 

  European-

Australian 

Asian-Australian   European-

Australian 

Asian-Australian 

  SA A D SD2 SA A D SD   SA A D SD SA A D SD 

S
ta

te
m

en
t 

2
 

         

S
ta

te
m

en
t 

4
 

         

SA 2 3 3 0 7 17 8 0 SA 1 10 3 1 22 29 12 1 

A 4 9 3 0 5 12 1 0 A 4 5 2 0 4 14 4 0 

D 2 0 0 0 1 1 0 0 D 3 3 0 0 1 0 0 0 

SD 1 1 0 0 0 0 0 0 SD 1 0 0 0 0 0 0 0 

                  

2 Note: SA= Strongly agree, A= Agree, D= Disagree, SD= Strongly disagree 

640



Weerasinghe and Panizzon 
 

  

Cross-tabulation results demonstrate a variety of parental expectations and parenting 

styles. The majority of parents (i.e., 18/28 European-Australians and 41/52 Asian-

Australians – shown bold in Table 2) either agree or strongly agree with both statements 1 

and 2. This implies high expectations of parents that encourage high achievement of 

children in both cultural backgrounds. Considering the above fractions as percentages of 

64.3% and 78.8% respectively, it is observed that parental expectations are relatively 

higher among Asian-Australians than European-Australians. Further, strongly agreeing 

with both statements 1 and 2 may create extreme pressure on children. Sometimes parents’ 

beliefs and attitudes about their children’s education act as barriers and prevent effective 

parental involvement. Literally, it does not make sense that students can put more effort 

into their work if they are already putting all their effort into their school work. However, 

this seems to be a technique used by parents to motivate their children. Some parents (6/28 

European-Australians and 9/52 Asian-Australians) disagree with statement 1 but agreed or 

strongly agreed with statement 2. This seems to be because these parents are not satisfied 

with their children’s effort and they expect more from them. Few parents (4/28 European-

Australians and 2/52 Asian-Australians) agreed or strongly agreed with statement 1 and 

disagreed or strongly disagree with statement 2. These parents seem supportive of their 

children’s effort. In this case the ratio is higher for European-Australian parents showing 

some flexibility in their expectations. 

Offspring responses are similar to the results of parents. The figures show that the 

majority of children in both groups (i.e., 20/33 European-Australians and 69/87 Asian-

Australians – shown bold in Table 2) have pressure from their parents and this pressure is 

higher among Asian-Australian children than European-Australian children. Further, there 

is extreme pressure felt by some children with 1/33 European-Australian and 22/87 Asian-

Australian children strongly agreeing with both statements 3 and 4. 

According to these results, even though acknowledging that their children do their best, 

Asian-Australian parents appear to be less satisfied with the effort of their children and 

have significantly higher expectations than European-Australian parents. However, it is 

impossible to underestimate the academic interaction of European-Australian parents with 

their children because results show that both Asian-Australian and European-Australian 

groups have high expectations in education of their children.  

Conclusions 

Although Chinese mothers are well known for putting pressure on their children’s 

education it was found that parents from other Asian backgrounds also put pressure on 

their children. The expectations are higher among Asian-Australian parents and the results 

support the theory of relative functionalism about immigrant Asians (Sue & Okazaki, 

1990). Therefore, in addition to Asian cultural values, beliefs, and practices, high 

expectations of Asian background parents may be explained by their migrant status too. 

Further, it is important to recognise that European-Australian parents too have high 

expectations for their children in mathematics education, even though it is not as 

significant as that of Asian-Australian parents. Overall, it appears that irrespective of 

culture, many parents have high expectations for their children. Interestingly, parent and 

student data provide similar results regarding parental expectations. Moreover, results 

found from students’ data imply that the students are well aware of the expectations of 

their parents. 

Opposed to the general perception, European-Australian parents also believe that their 

children can do better in mathematics if they try harder. One might argue that there has 
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been an influence on European-Australian parents by the recently migrated Asian 

population. However, there is no substantive data to support this view from this study. 

Parental high expectations may have positive consequences for children resulting in 

improved performances in mathematics because parents’ attitudes are naturally 

communicated to their children. Therefore, all parents should monitor their children’s 

study habits regularly to improve their skills, attitudes, and confidence in mathematics 

learning. They should also motivate, encourage, and support their children to work 

diligently in order to enhance academic achievement.    

While the results from the sample of participants used in this study provide some 

interesting insights, it must be acknowledged that the sample does not represent the 

country as a whole as the participants belong to three public schools in metropolitan 

Victoria. If there were a larger number of participants the responses could be analysed 

according to year levels, which might provide more interesting results. 

References 

Baumrind, D. (1967). Child care practices anteceding three patterns of preschool behaviour. Genetic 
Psychology Monographs, 75(1), 43-88. 

Cai, J., Moyer, J. C., & Wang, N. (1997). Parental roles in students' learning of mathematics: An exploratory 
study. Chicago: American Educational Research Association. 

Cao, Z., Bishop, A., & Forgasz, H. (2007). Perceived parental influence on mathematics learning: A 
comparison among students in China and Australia. Educational Studies in Mathematics, 64(1), 85-106. 

Chua, A. (2011). Battle hymn of the tiger mother. Great Britain: Bloomsbury publishing. 

Dandy, J., & Nettelbeck, T. (2002). A cross-cultural study of parents’ academic standards and educational 

aspirations for their children. Educational Psychology: An International Journal of Experimental and 
Educational Psychology, 22(5), 621-627.  

Fan, X. (2001). Parental involvement and students' academic achievement: A growth modelling analysis. The 
Journal of Experimental Education, 70(1), 27-61. 

Hong, S., & Ho, H. (2005). Direct and indirect longitudinal effects of parental involvement on student 

achievement: Second-order latent growth modelling across ethnic groups. Journal of Educational 
Psychology, 97(1), 32-42. doi: 10.1037/0032-0663.97.1.32. 

Hoover-Dempsey, K. V., & Sandler, H. M. (1997). Why do parents become involved in their children's 
education? Review of Educational Research, 67(1), 3-42. doi: 10.3102/00346543067001003. 

Hornby, G., & Lafaele, R. (2011). Barriers to parental involvement in education: an explanatory model. 

Educational Review, 63(1), 37-52. doi: 10.1080/00131911.2010.488049. 

Leung, F.K.S. (2012). What can and should we learn from international studies of mathematics achievement? 

In Dindyal, J., Cheng, L. P., & Ng, S. F. (Eds.), 35th Annual Conference of the Mathematics Education 
Research Group of Australasia, 34-60. Adelaide: Mathematics Education Research Group of 

Australasia. 

Ma, X. (1999). Dropping out of advanced mathematics: The effects of parental involvement. Teachers 
College Record, 101(1), 60-81. 

Maccoby, E. E., & Martin, J. A. (1983). Socialization in the context of the family: parent-child interaction. In 

P. H. Mussen (Ed.), Handbook of child psychology (Vol. 4, pp. 1-101). New York: Wiley. 

Pallant, J. (2013). SPSS survival manual (5th ed.). Australia: Allen & Unwin. 
Phillipson, S., & Phillipson, S.N. (2007). Academic expectations, belief of ability, and involvement by 

parents as predictors of child achievement: A cross‐cultural comparison. International Journal of 
Experimental and Educational Psychology, 27(3), 329-348. doi: 10.1080/01443410601104130. 

Sue, S., & Okazaki, S. (1990). Asian-American educational experience. American Psychologist, 45(8), 913-

920. 

Sullivan, P.  (2011). Teaching Mathematics: Using research-informed strategies. Australian Education 
Review; no.59, ACER.  

Thomson, S., Hillman, K., Werner, N., Schmidt, M., Buckley, S. & Munene, A. (2012). Highlights from 
TIMSS & PIRLS 2011 from Australia’s perspective. Melbourne, Australia: ACER.  

642



Wilson 
 

“I was in year 5 and I failed maths”: Identifying the Range and 

Causes of Maths Anxiety in first year Pre-service Teachers. 

Sue Wilson 
Australian Catholic University 

Sue.wilson@acu.edu.au 

Mathematics anxiety affects primary pre-service teachers’ engagement with and future 

teaching of mathematics. The study aimed to assess the level and range of mathematics 
anxiety in first year pre-service teachers entering their teacher education course, and to 

investigate the sources of this anxiety as perceived and identified by them. Data collection 

methods included the RMARS survey, and Critical Incident Technique. The results indicate 

that the most common negative impacts on pre-service teacher mathematical self-concept 

involved experiences with teachers. However, their current mathematics anxiety is most 

commonly aroused under testing or evaluation situations.  

Introduction and Context 

Anxiety towards mathematics has been identified as an issue nationally and 

internationally (OECD, 2015). Students compete globally in a world that is strongly based 

on using mathematics confidently. Successfully engaging with mathematics has social, 

economic and political implications. Mathematical know-how is widely regarded as 

essential not only to the life chances of individuals, but also to the health of communities 

and the economic well-being of nations (Walls, 2009). 

This paper is part of a study that investigates primary (elementary) pre-service 

teachers’ (PSTs’) mathematics anxiety (maths anxiety), how it impacts upon their 

engagement with their teacher education course, and how it might be addressed. This is 

important, with increased scrutiny of teacher education courses, for example, the 

Australian Institute for Teaching and School Leadership (AITSL) stated that universities 

need to establish strategies to ensure PSTs have the required standard of numeracy to 

engage effectively in mathematics units in a rigorous program, (AITSL, 2011). 

This paper examines the level and range of first year primary PSTs’ maths anxiety at 

the beginning of their course. The research questions addressed by this study are: 

1. With what range and extent of maths anxiety do first year PST present? 

2. Is there any indication in the critical incident written responses as to what has 

stimulated this anxiety? 

Theoretical Framework 

The interpretive tradition is characterised by prioritising lived experiences, with a focus 

on meaning of interactions and events. The study aimed to access the narrative or storied 

nature of PSTs’ experiences. The self-analysis of an emotionally-charged experience is an 

opportunity to analyse past actions and emotions; and the process of writing can be used to 

reflect on responses and decisions. The ‘transactional model of emotion’ (Lazarus, 1991) 

links motivational, social and cognitive dimensions. According to Lazarus, a lived 

experience consists of contextual and personal factors, which determine whether the event 

will be appraised: firstly as harmful or threatening (negative emotion), or challenging or 

beneficial (positive emotion); and secondly, for likely future outcomes, and their potential 
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coping strategies. The appraisal can be analysed using binary or thematic analysis of 

written responses.  

Literature Review 

Two bodies of research informed this study. The first concerns maths anxiety in PSTs, 

and the second the use of reflective strategies, especially critical incident technique (CIT) 

in teacher education. Researchers of primary PSTs report high levels of mathematics 

anxiety, low confidence levels to teach elementary mathematics, and low mathematics 

teacher efficacy (Swars, Daane, & Giesen, 2006); and that high levels of teacher 

mathematics anxiety impact on student achievement (Beilock, Gunderson, Ramirez, & 

Levine, 2009) and can be perpetuated in classrooms (see Wilson, 2012). This transfer of 

mathematics anxiety from teacher to student has long-term educational implications.  

The first year of study at university is particularly important (Krause, 2005), Recent 

research (e.g. Martin, 2012) reported success with strategies to increase engagement and 

reduce of anxiety in a first year education unit that linked practical activities with theory, 

and more studies of first year pre-service teachers are needed. 

Surveys investigate the sources of maths anxiety. They measuring the existing level of 

maths anxiety by asking participants to rate the level of anxiety induced by different 

situations. Studies on gender differences in maths anxiety vary, with a number of studies 

reporting that females have higher levels than males. Age is another factor where 

contradictory findings are reported in the literature (see discussion in Wilson 2012). 

Mathematics anxiety and its impact on students have been identified for many years. 

“Impoverished school mathematics experiences have left many pre-service teachers with 

strong negative affective responses about mathematics” (Namukasa, Gadanidis, & Cordy, 

2009, p. 46 - 47). Previous researchers have investigated causes of maths anxiety, using a 

range of methods. Reflective thinking is important for professional practice to identify the 

assumptions that underlie thoughts and actions.  

During mathematics methods courses, it is important to give preservice teachers tools to deal with 

their recollections and experiences: If students reflect on occasions in their mathematical 

autobiography and discover that the interpretations of events can be changed, it can free them to 

search for new perspectives on their mathematical past and future (Kaasila, Hannul, & Laine, 2012, 
p. 991). 

A number of researchers have used PSTs’ mathematics autobiographies (Ellsworth & 

Buss, 2000; Sliva & Roddick, 2001; Lutovac & Kaasila, 2009). They identified the 

powerful effects of teachers. Teachers who are hostile, hold gender biases, or embarrass 

students in front of peers play a powerful role in maths anxiety (Vukovic, Keiffer, Bailey, 

& Harari, 2013). The perceptual changes that occur as a result of mathematics classroom 

experiences are persistent and enduring. 

People who claim that they were born without mathematical ability will often admit that they were 

good at the subject until a certain grade, as though the gene for mathematics carried a definite 

expiry date. Most people will also recall an unusual coincidence: that the year their ability 

disappeared, they had a particularly bad teacher (Mighton, 2004, p. 20). 

Critical incidents have been used to foster reflection in teaching. Lerman (1994) 

developed “the idea of reflective mathematics teaching, offering the ‘critical incident’ as a 

device to stimulate reflection on teaching” (p. 52).  The critical incident technique (CIT) 

focuses on real-life incidents. The advantages of using critical incidents come from their 

focus on observable behaviours (Pedersen, 1995) and participants’ lived experience.  
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 “When analysing a critical incident, reflective individuals ask: Why did I view the original situation 

in that way? What assumptions about it did I make? How else could I have interpreted it? What 

other action(s) might I have taken that could have been more helpful? What will I do if I am faced 

again with a similar situation?” (Serratt, 2010, p. 379)  

These incidents are descriptions of vivid events that people remember as being 

meaningful in their experience, and often can be identified, upon looking back, as a crisis 

or tipping point (Wilson, 2014). This study used CIT to investigate how PST feel about 

themselves as learners and future teachers of mathematics, by asking them to recall a 

critical incident which impacted on the way they feel. The critical incident may not have 

happened as they remembered. The aim of this writing is not to determine whether that 

event actually happened as remembered, but to help PST reflect on their perception of that 

event and its impact on their construction of what it means to learn mathematics and on 

themselves as a learner of mathematics.  

Like all data, critical incidents are created. Incidents happen, but critical incidents are produced by 

the way we look at a situation: a critical incident is an interpretation of the significance of an event. 

To take something as a critical incident is a value judgement we make, and the basis of that 

judgement is the significance we attach to the meaning of the incident (Tripp, 1993, p 8). 

A benefit of CIT compared to mathematics autobiographies, is that instead of 

researchers selecting which parts to analyse for themes, in CIT the participant chose the 

experience and identifies the impact. Participants were not guided towards the selection of 

a negative experience, so their choice provides data on the proportions of PSTs’ positive 

and negative responses.  

Methodology 

The study used two methods. A survey of level of anxiety responses to various 

situations was used to determine the range and type of maths anxiety. Ethics approval, 

based on accepted informed consent procedures, was received from the university’s ethics 

committee, and agreement to use the RMARS survey was received from the author.  

Given the complex nature of the phenomenon, and the aim of the study to access the 

narrative or storied nature of experience, a qualitative approach was appropriate to 

investigate the causes of this anxiety. This study is based in the interpretive paradigm. 

People create and associate their own meanings of their interactions with the world. PSTs’ 

current experiences are filtered through their perceptions, reinforcing their attitudes.  

The research study population consisted of two cohorts of students undertaking their 

first year mathematics unit on a major metropolitan campus and a smaller regional campus 

of an Australian university, in two successive years - a total of approximately 450 level 1 

students from the Bachelor of Education (Primary) course. The data were collected in the 

participants’ setting.  

Methods 
The RMARS (Alexander & Martray, 1989) was chosen for the survey because of its 

length, fit with the research question, appropriateness for group and strong psychometric 

information. It has been widely used in academic research, rigorously tested, and found to 

be psychometrically sound (Baloglu & Kocak, 2006; Dunkle, 2010). The RMARS is a 25-

item, five-point (1 = not at all, to 5 = very much) Likert-type instrument. Thus, potential 

Total Anxiety scores range from “not at all” = 25, to “very much” = 125.  
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The RMARS assumes the multidimensionality of the construct, (Alexander & Martray, 

1989, Baloglu, 2002), and has three subscales, for mathematics test anxiety (MTA, items 

1-15), numerical task anxiety (NTA, items 16-20), and mathematics course anxiety (MCA, 

items 21-25). Possible scores for MTA could range from 5-45, and for NTA and MCA 

could range from 5-25.  

The RMARS was used with minor modifications for the Australian context. A set of 

demographic questions was also used in the study. These asked for information such as 

age, gender, mathematics courses studied in high school, and the number of years/months 

since their last mathematics course. Data were coded onto an excel spreadsheet and 

analysed with the Statistical Package for Social Sciences (SPSS) 20.0. Means and standard 

deviations for the total scale scores on the RMARS were computed. Gender and age 

differences were examined for the total scale scores on the RMARS as well as the three 

subscales.  

A critical incident approach was selected as the underpinning qualitative method as the 

study aims to access the narrative or storied nature of experience. In tutorials, PSTs were 

asked to write a written description of a critical incident (positive or negative) from their 

own school mathematics education that impacted on their image of themselves as learners 

of mathematics. PSTs were identified only by a code used to match CIT reflections with 

other data. Reflections were sealed in envelopes immediately and sent to the researcher. 

The data were not merged, as the use of the survey was pragmatic to answer the research 

question concerning the levels of anxiety. The qualitative data was used to explore the 

meaning individual PSTs ascribe to the problem of maths anxiety. Some initial results from 

the preliminary binary analysis (Lazarus, 1991) are presented. The binary analysis will be 

completed and followed by a more extensive thematic analysis. 

Results and Discussion 

Surveys from 219 PSTs were collected at the beginning of Semester 1, 2012. Sample 1 

(57 PSTs: 45 female, 12 male) came from a city in a regional area and Sample 2 (162 

PSTs: 140 female, 21 male, 1 not specified) was from a campus in a major metropolitan 

city. Response rates were 98% (Sample 1) and 70% (Sample 2).  Surveys from 208 PSTs 

from the same two campuses were collected at the beginning of Semester 1, 2013. Means 

and standard deviations for the total scale scores on the RMARS were computed, and are 

shown in Tables 1 and 2. 

Table 1 

Total Anxiety Scores as measured by the RMARS, Semester 1, 2012 

PST samples n range mean S. D. 

Total PST 219 31-116 63.32 16.74 

Campus 1   57 31-104 66.02 19.19 

Campus 2 162 34-116 62.78 17.86 

Females 185 31-116 64.01 18.44 

Males   33 35-108 62.24 17.90 

Less than 25 years 192 31-116 62.44 17.73 

25 years and over   26 35-112 73.58 19.75 

The PSTs exhibited a broad range of anxiety levels, ranging from almost no maths anxiety 

to very high levels of anxiety. An independent-samples t-test was conducted to compare 
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campus differences in maths anxiety. In both years, there was a wide range within the 

cohorts ranging from very little maths anxiety to very high levels of anxiety, with half of 

the participants showing at least a fair amount, and 2% high to very high levels, of anxiety.  

Table 2 

Total Anxiety Scores as measured by the RMARS, Semester 1, 2013 

PST samples n range mean S. D. 

Total PST 208 30-116 64.74 18.39 

Campus 1   63 30-110 64.05 18.07 

Campus 2 145 31-116 65.03 18.58 

Females 177 30-116 65.97 18.52 

Males   31 33-89 57.71 16.19 

Less than 25 years 192 30-116 64.43 18.42 

25 years and over   16 32-103 68.44 18.75 

No significant differences in Total Anxiety were found between the cohorts from the 

two campuses in either year. They were statistically equivalent on the total RMARS 

scores, as well as the three subscales (MTA, NTA, and MCA) (shown in Table 3).  

Gender and age differences were examined for the total scale scores on the RMARS as 

well as the three subscales. In the first year, no significant differences were found between 

females and males on the total RMARS scores, or on the three subscales. However, in the 

2013 cohort, female students had significantly higher levels, consistent with previous 

findings of gender differences in the RMARS scores (Alexander & Martray, 1989; Brady 

& Bowd, 2005; Baloglu & Kocak, 2006). In addition they had a significantly higher MTA 

component of their maths anxiety. 

In the first year, significant differences were identified between age cohorts. The older 

group demonstrated higher levels of mathematics anxiety and larger standard deviations. 

Statistically significant differences were found between the scores of the younger and 

mature-age PSTs on the total RMARS scores, (t(217) = 2.97, p < 0.005); and on the three 

subscales (MTA, t(217) = 2.12, p < 0.05; NTA, t(217) = 3.47, p = 0.001; and MCA, t(217) 

= 3.09, p < 0.05), with mature-age PSTs receiving higher scores. This supported the 

findings of Baloglu and Kocak (2006) that older college students show higher levels of 

mathematics anxiety than younger ones. However, in 2013, there were no significant 

differences between age groups. This indicates that, although there were no significant 

differences between campuses, the level and distribution of maths anxiety in groups of 

incoming PSTs may vary from year to year. 

Table 3 shows the factor analysis for the three contributing factors (MTA, NTA and 

MCA) for each of the two years. The score for each of the factors depends on the number 

of questions that contribute to that factor. In order to compare the levels of the anxiety 

components, each is presented as a score out of 5. The analysis shows that for both years, 

the mathematics test anxiety factor is much higher than the other two factors. This 

indicates that the primary factor that arouses PSTs’ maths anxiety is testing or evaluation.  

In the RMARS survey, participants rated their emotional responses to certain 

mathematical experiences in their lives, whereas the CIT identified past incidents that 

impacted on their feelings about themselves. Thus, both research methods focus on aspects 

of emotional responses to lived experiences (Lazarus, 1991), although the CIT involved 

open-ended responses, and the survey involved reducing the emotions to five levels. 

647



Wilson 
 

 

Table 3 

Means and Standard Deviations* of the Sub-scales of the Revised Mathematics Rating 
Scale 

Factors Years 

2012 (n=219) 2013 (n=208) 

Mathematics Test 

Anxiety (MTA) /5 

  2.98  (0.82)  3.06  (0.83) 

Numerical Task 
Anxiety (NTA)/5 

  1.77   (0.81)  1.85   (0.84) 

Mathematics Course 

Anxiety (MCA)/5 

  1.80   (0. 81)  1.90   (0.85) 

* Standard deviations are reported within parentheses. 

Preliminary binary analysis (Lazarus, 1991) has been completed on critical incident 

reflections from the 2012 Campus 2 cohort of PSTs. The participants chose the salient 

experiences and identified their impact. The initial analysis divided incidents into positive 

and negative experiences, based on Lazurus’ (1991) characterisation of appraisal as 

harmful (negative emotion) or beneficial (positive emotion). Of the 236 descriptions of 

critical incidents, 102 (39%) were positive, 157 (61%) were negative and 2 (1%) described 

a neutral incident. These figures support findings by previous researchers (Namukasa et al., 

2009). 

The researcher then analysed the accounts for the most common factor. This was the 

teacher. Comments were coded as “teacher”, only if they included the word “teacher”. If a 

comment mentioned two teachers, in separate years, both were counted separately. Of the 

236 PSTs, 135 (57%) wrote about the teacher. Analysis of the 140 comments about the 

teacher, found 46 (33%) were positive and 94 (67%) were negative. To illustrate the 

preliminary findings, the following examples of positive experiences show the impact of 

teachers who provided safe and supportive learning environments: 

Year 8 – my teacher made me comfortable and helped me understand the task in a way that was not 

uncomfortable. 

Year 11 to 12. Previously I had never been very good at maths. My teacher found ways to connect 

maths in ways I could relate to, making it fun. This developed my maths skills and attitude towards 

maths. 

However, some PSTs retained intense memories of their experiences with disabling 

teachers, and these ranged from primary school to senior secondary. The following are 

examples of critical incidents that were coded as negative: 

 In year 3, I didn’t understand. The teacher gave up, gave me ‘colouring in’ while other students 
learned maths. 

Year 6 – I couldn’t understand the concept of long division so the teacher gave up on me and said 

don’t worry about it. Looking back it makes me feel like a failure. 

In primary school I had one teacher who would always put you on the spot in front of a class and he 

would read out everyone’s results in front of everyone too. This always made me anxious and from 

then on I aimed to avoid maths. 

In year 9, my teacher would make us answer questions on the board and if we got it wrong, he 

would say “Poor _____. What can we do with you?” 
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Year 11 … My teacher made it hard for me to learn and understand because he would give the class 

a time to finish answering a question and if I didn’t know an answer, he would look at me and say 

“You should know this”. 

These comments reflected findings from other researchers (Ellsworth & Buss, 2000; 

Sliva & Roddick, 2001; Wilson & Thornton, 2008; Lutovac & Kaasila, 2009) on the 

important impact of individual teachers.  

In addition, in some critical incident descriptions, PST identified that failure in tests 

had implications for their self-concept as learners of mathematics:   

I was in year 5 and I failed maths and since that day I hate maths. This experience makes me feel 

that I don’t know anything about maths.   

Combined with the survey findings of the significant contribution of MTA to high 

levels of maths anxiety, this has important implications for teacher education. The survey 

showed that maths anxiety may present differently in different situations, but evaluation 

and testing were identified as the most common source of maths anxiety.  The connections 

between experiences identified in critical incidents as causes of maths anxiety and current 

sources of maths anxiety will be explored by further analysis of the data. 

These results indicate that beginning teacher education students vary in affective 

responses towards learning mathematics. Teacher educators should be aware of the extent 

of range of anxiety that PST may present with at the beginning of their teacher education 

course, and hence that the needs of students coming to their teacher education mathematics 

units may vary considerably.  

Conclusions 

This paper demonstrates that PST come to their teacher education courses with a range 

of existing maths anxiety, identified through the RMARS survey. The initial findings of 

the binary analysis of the critical incidents indicate teachers and testing as important 

factors to be investigated. Further analysis is need to explore the connections between 

experiences identified by the initial analysis of the critical incidents as potential causes of 

maths anxiety, and current sources of maths anxiety identified by the survey. To achieve 

this, the qualitative data will be further analysed in terms of themes.   

Participation of PST in writing critical incidents and reflections, provides insights into 

their views of themselves as future teachers of mathematics, and potentially impacts on 

their future teaching of mathematics and hence the achievement of their future students. 

The larger study will also investigate the impact of using bibliotherapy to address maths 

anxiety on engagement of PSTs in their mathematics units. This research has the potential 

to make an important contribution to the strategies available in teacher education courses 

to address maths anxiety.  
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This article reports on initial findings, including the mathematics components, of a multi-
institutional Science, Technology, Engineering, and Mathematics (STEM) project, It’s part 
of my life: Engaging university and community to enhance science and mathematics 
education. This project is focussed on improving the scientific and mathematical thinking 
of pre-service teachers (PSTs) by aligning their pedagogy with the scientific and 
mathematical thinking that occurs in authentic, real-world contexts. This article discusses 
emotional literacy and emotional regulation as aspects of self-reflective professional 
development and how these measures are conceptually related to improving competence 
and confidence for pre-service STEM teachers. This report details how emotional feedback 
was used in trials of a pilot program to enable PSTs to analyse, understand, and make use 
of emotional information to improve their teaching confidence, particularly in mathematics. 

Introduction 
This paper reports on the initial stages of an Office of Learning and Teaching (OLT) 

funded Science, Technology, Engineering, and Mathematics (STEM) project, It’s part of 
my life: Engaging university and community to enhance science and mathematics 
education, that seeks to address a lack of confidence and competence in science and 
mathematics teaching in regional and rural Australian schools. The project addresses these 
issues through the development of interventions that focus on how mathematicians and 
scientists think and solve problems and how this may be linked to the ways that people 
solve problems in everyday life (Woolcott, 2015). In particular, this report focuses on the 
development and application of some of the affect measures used by the project to provide 
feedback in relation to pre-service teachers (PSTs) pedagogical self-reflections on their 
lesson preparation and lesson delivery in mathematics. Affect, as a measure of emotional 
experience and understanding, is viewed as fundamental to the professional development 
of confidence and competence in teacher training (Tobin & Ritchie, 2012), and the 
project’s use of affective feedback thus represents an important aspect of achieving the 
larger project goals of improving these aspects of pre-service training. With this in mind, a 
brief framework to contextualise and position the project is presented, followed by a 
description of the affect-related measures being reported along with some key results of 
their use in initial project trials. Improvements to the measures; in particular, how to use 
these to better connect emotional literacy to appropriate research goals, are then 
recommended as a focus for ongoing research. 

Background 

Context and Theoretical Framework 
There has been a steady reduction in the number of Australian students who are 

studying mathematics and science at both the secondary (high school) and tertiary levels of 
education (Lyons & Quinn, 2010). There is also a shortage of appropriately qualified 
mathematics and science teachers available to teach at the secondary school level, 
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particularly in rural schools (e.g., Ainley, Kos, & Nicholas, 2008). For example, Thomson 
(2009), in a report based on data from the 2007 Trends in International Mathematics and 
Science Study (TIMSS), identified that many Year 4 teachers reported having little specific 
training or specialised education upon which to base their teaching of the TIMSS 
assessment topics. Similarly, Australia’s Chief Scientist, Professor Ian Chubb and 
colleagues have repeatedly expressed concern in relation to the state of Australian STEM 
education (Chubb, Findlay, Du, Burmester, & Kusa, 2012). Importantly, an Australian 
Association of Mathematics Teachers’ (AAMT, (2014) report on quantitative skills has 
proposed that one key step in developing mathematics literacy in schools was by “helping 
schools to teach STEM as it is practiced, in ways that engage students, encourage curiosity 
and reflection, and link classroom topics to the ‘real world’ ”. 

This project seeks to address such issues by clarifying links between content 
knowledge and confidence as related to contextualised or situated learning in Australian 
classrooms. In initial trials of the project, this was enacted by having PSTs work in groups 
to develop pedagogical contexts and scenarios, guided by expert mathematicians, 
scientists, and pedagogy mentors, to construct and optimise inter-dependent and 
collaborative scenario-based lessons that utilised local community contexts to increase the 
meaning of the lessons (e.g., Woolcott, 2015). 

Sources of Feedback to Encourage Competence and Confidence 
In terms of tracking the influences associated with STEM teaching, various sources of 

feedback were provided to encourage PSTs to analyse and reflect on their learning and 
teaching in a way that connected what they were teaching, and what their school students 
were learning, to the contextualised content of the lessons. It is important to note that these 
sources of feedback were incorporated into a series of iterated enhancement and 
feedback/reflection modules during initial trials of the project (Woolcott, 2015). 
Enhancement modules involved interactions between the PSTs and world-class science 
and mathematics researchers, and between PSTs and experienced educators who specialise 
in the area of classroom pedagogy. The feedback modules involved collaborative groups of 
PSTs analysing their teaching and how they had made use of the expert advice, as well as 
including input and guidance from their pedagogical mentors. As the PSTs developed 
experience across the modules, they then began mentoring less-experienced colleagues, 
providing yet another source of feedback for the project. 

The Role of Affect in Teacher Confidence and Competence 
An important part of the reflective processes for the project involved affect feedback, 

including emotion ratings, video recordings, and voice parameter analysis (Yeigh & 
Woolcott, 2014). Research by Tobin and Ritchie (2012) suggests that emotional arousal 
(positive or negative) is related to teaching competence and confidence in PSTs, and 
because of this the particular focus of this paper concerns how the project utilised some of 
these sources of feedback, determined as key sources, to assess and analyse PST affect in 
relation to the scenario-based lessons they developed in conjunction with the expert 
mathematicians, scientists, and pedagogy mentors. Emotional arousal was operationally 
defined as affect for the project because affect represents the external expression of 
emotion as attached to ideas or mental representations. Measures used, therefore, were 
concerned with how the PSTs were analysing and interpreting their emotions in relation to 
their teaching, and what impact this was having on their confidence and sense of 

652



Woolcott and Yeigh 

 

competence about the teaching. In this respect, the project sought to measure the degree to 
which affect, and the corresponding ability to regulate emotions, moderated confidence in 
the PSTs, and how this may have influenced their competence.  

Affect as a Basis for Critical-moment Reflection 
Affect was measured from a variety of perspectives and using several different 

strategies, with an overall goal of measuring affect to have the PSTs learn how to identify 
and analyse their teaching-related affective states. This was done in order for the PSTs to 
assess their own emotions and motivations, and to ensure that the emotional and 
motivational climate of the classroom was optimally supportive for the learning of their 
students (Tobin & Ritchie, 2012). A discussion of the critical moments and the related 
emotion diaries follows. Other affect measures are reported elsewhere (e.g., Donnelly, 
Pfieffer, Woolcott, Yeigh, & Snow, 2014; Yeigh & Woolcott, 2014). 

Methodology 

Trial Structure 
The methodology of the initial trials was developed around collaborative team 

discussions in order to produce a plan for a teaching lesson. The lesson was followed by 
self-reflection and a collaborative feedback/reflection session. In line with theory on the 
value of iteration in learning processes for PSTs (e.g., Davis & Dargusch, 2015), this 
sequence was repeated as iterations of the sequence: Enhancement Module; Teaching 
Lesson; and Feedback/Reflection Module (see Figure 1).  

 

ENHANCEMENT - to facilitate 
interactions with research scientists and 
mathematicians and university educators 
to improve competence in pedagogy and 

subject knowledge. 

TEACHING LESSON - 
a topic nominated by 

the target school prior to 
Enhancement 

FEEDBACK/ REFLECTION 
- to utilise self-evaluation to 

examine links between 
competence and 

confidence. 

 

Group A (PSTs) 
3 iterations of enhancement/ feedback cycle 

Group B (PSTs) 
Waiting list (no enhacement or 

feedback/reflection) – each PST teaches one 
lesson 

Group A 
Control (no enhacement or feedback/reflection) 

– each PST teaches one lesson 

Group B 
3 iterations of enhancement/ feedback cycle 

Figure 1. The iterated sequence of Enhancement Module, Teaching Lesson and Feedback/Reflection 
Module. The lower diagram shows the grouping of PSTs within these initial trials. 

Each Module was here treated effectively as a discussion-based learning intervention 
for the PSTs. Each trial was preceded by a training session that explained the process to be 
undertaken and the rationale behind each Module. The initial mathematics trials were 

653



Woolcott and Yeigh 

based around this process, with groups of 3-6 volunteer PSTs in each trial, with teaching 
done in schools local to the university. 

Critical Moments 
All teaching lessons included full audio/visual (video) recordings, and PSTs then used 

these to analyse and reflect on their teaching. In particular, they identified six critical 
teaching moments for each lesson, where each moment represented an important (positive 
or negative) emotional feeling or experience associated with the pedagogical process of 
instruction, that they felt influenced their competence and/or confidence in relation to the 
lesson. Instructions for providing this aspect of the affect data were for PSTs to record the 
start and finish times for six segments of the video identified as representing a critical 
moment for each lesson, and seeking to identify two segments from the first third of the 
lesson, two segments from the middle third of the lesson, and two from the final third of 
the lesson.  

Critical moment data was also recorded in the same manner by observing PTSs, 
allowing comparisons to be made between experienced and observed affect for each 
teaching PST. These comparisons assisted in identifying affect-related issues for the PSTs, 
as well as highlighting affective trends in the overall iterations that took place during these 
trials.  

Emotion Diary 
PSTs were also asked to complete an emotion diary for the critical moment segments 

identified in relation to their teaching (see Figure 2). The emotion diaries used well-
established affect icons and their meanings to represent the various emotional states PSTs 
might experience during teaching (or observe in another PST’s teaching). To complete 
these diaries, PSTs were trained to recognise emotions in terms of observing changes in 
voice volume, pitch, tone, or other sound qualities when observing one another, and when 
analysing their own video recordings. They were also trained to notice how overall body 
language during teaching (e.g., facial expressions, breathing rate, sweating, vasodilation 
[blushing], posture, increased muscle tension, etc.) might indicate a particular feeling or 
bodily sensation.  

Using this training to direct their diary recordings, both teaching and observing PSTs 
were instructed to complete an emotion diary for each critical moment segment identified 
in the video recording by the teaching PST. The diary was completed by selecting 
appropriate affect icons to represent the teaching PST’s emotions during teaching, and then 
selecting from the scale a number that represented the intensity of the emotion next to the 
icon. As shown in Figure 2, the emotion diary also provided space to write open-ended 
comments about the selected emotions, and PSTs were encouraged to use this space to 
elaborate and explain their affective identifications in terms of what the teaching PST was 
doing at the time, what else might be going on in the classroom, and at whom the emotion 
seemed to be directed.  

654



Woolcott and Yeigh 

 

 
1 2 3 4 5 

Not at all A little Moderately Quite a bit Extremely 

Figure 2. The emotion diary used to identify affect during teaching sessions and in relation to reflective 
lesson analysis (used with permission Tobin & Ritchie, courtesy of Henderson) 

Results and Discussion 
Early findings from these initial trials, which included both science and mathematics 

teaching, support the use of affective data to examine the thinking and behaviours that led 
to emotional states in pre-service teachers (PSTs). It was also felt that a need existed to 
report on the current findings promptly, as the purpose of these analyses was to assist PSTs 
improve their ongoing competence and confidence in STEM-related teaching, including 
the teaching of mathematics. These outcomes appear to support the efficacy of having 
PSTs learn how to identify and analyse their teaching-related affective states in order to 
assess their own emotions and motivations, and to ensure that they understand the 
relationship between emotional literacy and effective pedagogy.  

Critical Moment Analysis and Emotion Diaries 
Critical moment analysis involved both the teaching and observing PSTs using the 

video recordings to analyse and reflect on the affective states of the teaching PTSs during 
lesson delivery. For each lesson, the teaching PST initially identified and analysed six 
critical moments from the video, representing important points at which some form of 
affect had influenced their pedagogy. The non-teaching PSTs then also analysed the video 
according to the identified time signature for each moment, and provided feedback on the 
affect they observed in relation to each identified moment. 
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Figure 3. Critical moment data by group type (see also Donnelly et al., 2014) 

Figure 3 shows a mean comparative overview of how these critical moments were 
analysed in terms of reported affect versus observed affect–for PSTs who had received 
enhancement for the lessons they delivered and for PSTs who had not received 
enhancement for the lessons they delivered. There were three significant differences in 
relation to these critical moment analyses, involving differences between reported and 
observed anxiety/worry (t[17]= 2.62, p<0.02), between reported and observed confidence 
(t[17]= -2.20, p<0.05), and between reported and observed embarrassment (t[17]= 2.21, 
p<0.05). It should also to be noted that on average the no enhancement group tended to 
experience and report higher levels of positive emotion, and lower levels of negative 
emotion, than did the enhancement group. 

With regard to the analysis of critical teaching moments, it is of interest that the no 
enhancement group tended to experience and report higher levels of positive emotion, and 
lower levels of negative emotion, than did the enhancement group. This was especially true 
for emotions relating to Excitement/Enthusiasm, Happiness, Enjoyment, Pride, and 
Interested, which all represent positive forms of affect. Note also, however, that the no 
enhancement group self-reported much greater Anxiety/Worry than the enhancement 
group, even though this was observed as lower than the enhancement group by others. 
Perhaps what was occurring here was that a greater sense of pressure took place for PSTs 
undergoing enhancement–a type of performance pressure–while a sense of missing out 
took place for PSTs when they were not receiving enhancement. In either case, the 
question again arises as to whether an intentional or unconscious emotion-regulation 
strategy may be occurring to control emotional display and, if so, how this might be 
operating.  

A project survey was undertaken along with the affect analysis (Whannell, Woolcott, 
& Whannell, 2015) and, although it covers far wider ground than just the affective 
domains of the project, several findings from the factor analysis performed on the survey 
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do appear relevant to the current paper, including the existence of a Teacher Reflection 
Scale (TRS) as a valid project construct (Cronbach’s alpha 0.854). There is, in fact, a 
significant positive relationship between the TRS and mathematical thinking, being able to 
support school students, and pedagogical confidence. In addition, it is of particular interest 
that the correlation between the TRS and the number of mathematical curriculum units 
completed at university is negative. This suggests that the amount of experience that the 
respondents had in terms of formalised mathematical learning was inversely associated 
with their reflections on teaching practice or on the respondents’ understanding of the 
impact of emotions on teaching. Considering that the identification of strategies to enhance 
PST confidence and competence through reflection is one of the primary aims of the 
project, these overall findings indicate that opportunity exists for the project to make a 
genuine contribution to the training of pre-service teachers of mathematics.  

One of the clearest outcomes from this early analysis of the project affect data is that 
some sort of emotion-regulation strategy seems to be occurring in relation to emotional 
display. In this respect ongoing research will need to investigate the degree to which PSTs 
are aware of such strategies, why certain emotions seem to be controlled in a more 
strategic manner than others, and how emotional regulation takes place. Perhaps the use of 
a dedicated debriefing session, aimed at exploring these specific aspects of the reflective 
process, could be used to further train PSTs in this direction. Additionally, incorporating 
specific reflective prompts into the critical moment analysis strategy could also be used to 
elicit this sort of information. In both cases, the aim of improving PST emotional 
awareness, in terms of connecting the experience of distinct emotions to individual 
behavioural responses, would be further clarified.  

Implications of Findings and Future Research Directions 
It’s part of my life is a multi-institution STEM project, designed to increase the 

competence and confidence of training mathematics and science teachers. This report has 
focused on initial analyses of how the project used affective measures as part of the 
iterative processes by which pre-service teachers (PSTs) explored and analysed the 
pedagogy connected to their teacher training. The findings in this paper reflect those found 
by Woolcott, Yeigh and colleagues (e.g., Donnelly et al., 2014; Yeigh & Woolcott, 2014) 
that the PSTs have exhibited a positive emotional bias overall, and also displayed greater 
changes in their negative versus positive emotions. These findings also suggest that when 
receiving enhancement for their lesson development (expert science or mathematics input, 
plus pedagogical guidance), the PSTs may feel pressure to perform, whereas when not 
receiving enhancement (developing their lesson in collaboration with other PSTs only) 
they may feel as though they are missing out on important information.  

The analysis completed so far, however, (e.g., Donnelly et al., 2014; Woolcott, 2015; 
Whannell et al., 2015; Yeigh & Woolcott, 2014) supports the project’s emphasis on 
reflective affect analysis to increase pedagogical confidence, and thus links this training 
strategy to the larger project goal of increasing competence through increasing pedagogical 
confidence. Importantly, differences between experienced (self-reported) affect and 
observed affect highlight the need to elaborate the reflective process in terms of 
consciously identifying the relationship between specific emotions and their behavioural 
correlates. Overall, these findings indicate that the project’s use of affect analysis is 
appropriate as a means of addressing the lack of confidence and competence in science and 
mathematics teachers in Australian schools. Indeed, in this most essential criterion the 
project seems to be hitting the targets it has set for itself quite well. The findings also 
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provide clear avenues for improvement with respect to some aspects of the reflective 
process, suggesting the need to forge clearer conscious correspondences between affect 
and behaviour on the part of training STEM teachers. In this respect the project will need 
to modify certain elements within the reflective process, and this is viewed as an important 
way forward for the ongoing project program. The effect of these modifications will be to 
better connect emotional literacy to the project research goals, in order to improve the 
overall project goal of developing quality teaching practices that are directed at the 
enhancement of science and mathematics teaching in Australia. 
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Learning mathematics is a complex and dynamic process. In this paper, the authors adopt a 
semiotic framework (Yeh & Nason, 2004) and highlight programming as one of the main 
aspects of the semiosis or meaning-making for the learning of mathematics. During a 10-
week teaching experiment, mathematical meaning-making was enriched when primary 
students wrote Logo programs to create 3D virtual worlds. The analysis of results found 
deep learning in mathematics, as well as in technology and engineering areas. This 
prompted a rethinking about the nature of learning mathematics and a need to employ and 
examine a more holistic learning approach for the learning in science, technology, 
engineering, and mathematics (STEM) areas. 

In the early 2000s when the personal computers were powerful enough to handle 
complex three-dimensional (3D) real time rendering, the author started developing an 
online 3D virtual reality-learning environment (VRLE) for learning mathematics.  The 
focus of this VRLE (Figure 1) is on mathematical meaning-making of 3D geometry. This 
3D VRLE was seen as an information and communication technology (ICT) tool, tutor, 
and/or tutee (Taylor, 1980) to facilitate the learning or knowledge construction of 
mathematics.  

 
Figure 1: The online 3D virtual reality learning environment (http://vrmath2.net) 

The design of the VRLE was informed by a semiotic framework (Yeh & Nason, 2004), 
which asserted the need of multiple semiotic resources for mathematical meaning-making.  
The implementation of the VRLE was elaborated elsewhere in Yeh (2007). The main 
components of the VRLE included an interactive 3D virtual space for visualising 3D 
objects, a customised Logo programming language for creating 3D virtual worlds, and an 
online forum for social discussion and presentation of the created 3D virtual worlds. 

Among the semiotic resources, the programming language plays an imperative role of 
linguistic formalisation in aiding learners’ mathematical expression.  It serves as the 
symbolic representation of a mathematical function as well as the glue that binds all the 
representational modes together (Hoyles, Noss, & Adamson, 2002).  Feurzeig, Papert and 
Lawler (2010) further confirmed the values of programming languages to the teaching and 
learning of mathematics. They argued that programming (in the example of Logo) not only 
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enables pupils to access an accurate understanding of some key mathematical concepts, but 
also develops problem-solving skills and facilitates the expansion of mathematical culture 
to topics in biological and physical sciences, linguistics, etc. 

In this paper, the authors report a review of a teaching experiment, in which the focus 
was originally on the learning of mathematics by primary students in the VRLE. In this 
review, we found that through programming, the primary students not only developed 
deeper understanding of mathematics, but also applied and practiced their problem solving 
skills in designing, creating, and engineering their 3D virtual worlds.  

Theoretical and Conceptual Frameworks 
The theoretical framework for this research is rooted in semiotics, from which all 

human cognition is viewed as meaning-making endeavour within systems of signs. Lemke 
(2001) proposed a mathematical account of semiotics and classified the mathematical signs 
or representations into three categories of semiotic resources, namely typological, 
topological, and social-actional resources. Typological resources are those signs that 
signify meaning by discrete means. Languages (including programming languages) and 
symbols are typical typological resources. Conversely, topological resources signify 
meaning by continuous means. They could be animations, change of colour spectrum or 
sound pitch, and continuous variation of viewpoints such as changing from the top view of 
a square to side view of a square to recognise the different shapes a square can transform 
into due to different 3D perspectives (Yeh & Hallam, 2011). The social-actional resources 
are non-exclusive to the above two. They are the means of meaning-making by cultural 
activities or gestures, or from discussion to negotiation of doing things together such as 
when building a house or designing a garden. Informed by this mathematical account of 
semiotics, the VRLE was designed and implemented. Initial research and evaluation (see 
Yeh, 2007, 2013; Yeh & Hallam, 2011) have reported deep learning of mathematics within 
rich typological (e.g., Logo programming), topological (e.g., interactive 3D virtual space), 
and social-actional (e.g., discussion forum and group project) resources. 

Upon the review of the teaching experiment in Yeh (2007), the authors further 
confirmed that the Logo programming language (a typological resource) of the VRLE 
played a central role to connect other semiotic resources for mathematical meaning-
making. Moreover, it was found that the social-actional resources (e.g., a building project 
in the teaching experiment) also contributed to the learning of, not only mathematics, but 
also other science, technology, engineering, and mathematics (STEM) areas including 
technology and engineering. A new conceptual framework is thus formed as shown in 
Figure 2 below. 

 
 
 
 
 
 
 
 
 
 

Figure 2: Semiotic framework for learning in STEM in VRLE 

Typological	  resources	  
• Programming	  	  
languages	  

• Types	  
• Symbols	  
• Numbers	  
• Languages	  
• Discrete	  signs	  

	  
	  

Topological	  resources	  
• 3D	  virtual	  space	  

• Visualisation	  
• Navigation	  
• Animation	  

• Sound	  pitch	  
• Colour	  spectrum	  
• Continuous	  signs	  

	  

Social-‐actional	  resources	  
Real	  world	  contexts	  of	  integrated	  
projects	  for	  Science,	  Technology,	  
Engineering	  and	  Mathematics	  
(STEM)	  

Virtual	  Reality	  Learning	  Environment	  
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This new conceptual framework (Figure 2) is an initial attempt to explain what we 
found about the learning occurred in the VRLE. The framework postulates that the social-
actional resources in the VRLE can provide the contexts of integrated projects in STEM 
areas. The rich semiotic resources in the VRLE thus enable learning beyond the field of 
mathematics, which in turn informs that the nature of learning (or meaning-making) about 
mathematics is not confined within mathematics itself, but in an interdisciplinary manner. 
This reasoning can also be applied to the learning in science, technology, and engineering, 
and even beyond STEM. In the next section, we will report on the reviewed teaching 
experiment to elaborate on this new conceptual framework. Due to the scope of this 
conference paper, the focus of this report is on how the programming connects all 
meaning-making resources to expand the learning from mathematics to STEM. 

The Teaching Experiment 
Three Year 5 students (Pseudo names: R2D2, Victor, Alekat20) participated in a 10-

week (2 sessions per week, 1 hour per session) teaching experiment involving learning 3D 
geometry in the VRLE. In the first 8 weeks, the three participants were made familiar with 
the VRLE and were able to write Logo programs including 3D movement commands and 
procedures in the carefully designed learning activities by this teacher-researcher. In the 
last 2 weeks, the three participants had to work together as a team, choose a design project, 
and create the 3D virtual world for the project. This paper reports only on the participants’ 
project in the last 2 weeks of the teaching experiment.  

Data collected included video and audio recordings, participants’ programming codes, 
2D drawings, 3D virtual artefacts, and the teacher-researcher’s field notes. For the purpose 
of this paper, we focus on the analysis of the programming process and report on the 
participants’ learning in the STEM areas.  

Results 
The three participants decided to create a Temple, and started a generic problem 

solving cycle of think, plan, do, and check.  They thought about what to have in the virtual 
Temple space, and then drew some initial plans (see Figure 3) in a collaborative and 
cooperative manner. The Temple was then divided into three parts and each participant 
designed and programed a part of the Temple.  

 
Figure 3: Three parts of the Temple plan 

R2D2 was responsible for the stage with stairs and a kiosk. He observed his drawing 
design and thought that it could be achieved by scaling shapes of a cone, cylinders, and 
boxes. In doing the stairs, he experimented (i.e., trial and improvement) with different 
scales and started building the stair cases one by one:  
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up 0.4 fd 0.25 scaled 5.5 box  

up 0.4 fd 0.25 scaled 5 box  

up 0.4 fd 0.25 scaled 4.5 box …  

Challenged by the teacher-researcher, he noticed a pattern firstly in the drawing of 
stairs then in the above commands as the scale of depth keeps decreasing by 0.5. After a 
few trials he came up with using a repeat to complete this stairs stage:  

repeat 4 [ up 0.4 fd 0.25 scaled 6-repcount*0.5 box ]  

The kiosk consisted a label, a cone roof, and four cylindrical posts, which were created 
in many cycles of think-plan-do-check, with calculations and trials of different sizes, 
locations, directions, and movements. R2D2 put every command in a procedure named 
body so the whole Temple stage could be created by just a simple command as body. In his 
spare time, he also wrote a fountain procedure with carefully chosen materials settings for 
running water (blue cylinders) and marble top (two overlapping spheres with different 
colours). He was very proud of his invention of the marble top because he found that 
although the two spheres were created at the same location, if they have different 
orientation then it will have the colour alternating effect. His creation of Temple part is 
shown in Figure 4 below.  

  
Figure 4: R2D2’s Temple stage and fountain 

Victor was responsible for the Temple ground. He had more detailed plan with pre-
calculated dimensions of the ground, centre court, and four bridges. Similar to R2D2, 
Victor decided to write a ground and a bridge procedure to create simple faces (planes) to 
achieve his design. He moved the turtle (i.e., the reference point in Turtle Geometry or 
Logo) in the 3D virtual space and recorded the track to create the 2D faces for the ground 
and bridges. After the construction of 2D faces, he wrote a tree procedure to create a 
simple 3D tree consisting of a cone and a cylinder. In order to generate different sizes of 
tree (a challenge by the teacher-researcher), the tree procedure was modified to take in an 
input. To create trees with random sizes (ranging from 1.1 to 2 times), Victor tried with 
brackets and eventually wrote: tree (((random 10)+1)/10)+1. The tree procedure was then 
repeated to create a tree fence surrounding the Temple ground (Figure 5).  

  

TO	  tree	  :s	  
scale	  0.2*:s	  2*:s	  0.2*:s	  
;	  some	  material	  settings	  here	  
up	  1*:s	  cylinder	  	  
scale	  1.5*:s	  2.2*:s	  1.5*:s	  
;	  some	  material	  settings	  here	  
up	  1.1*:s	  cone	  
dn	  2.1*:s	  
END	  

Figure 5: Victor’s Temple ground and trees 
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Alekat20 took the design of part 3 of the Temple. She drew a circular structure to be 
placed at the centre of the Temple. Because in previous activities she had learnt about a 
polygon formula: repeat :side [ fd 1 rt 360/:side ], she was able to apply the formula 
(challenged by the teacher-researcher) to create 18 cylinder posts but only 9 top slates 
(Figure 6) with many trials.  To place this structure at the right place is another challenge. 
In Logo, a 2D circle or polygons can be easily created using the above polygon formula, 
which forwards same distance and turns same angle for many times (i.e., repeat). However, 
to find out the centre of a polygon or a circle is difficult for primary students. Eventually, 
Alekat20 solved this by a few trials of different starting locations and relying on the 
feedback she got between her Logo program (typological) and the navigation in 3D virtual 
space (topological) to place her templebase structure at a centre-south location. 

 

TO	  templebase	  
home	  meter	  setscale	  0.2	  5	  0.2	  
up	  2.5	  south	  5	  west	  6.5	  
repeat	  18	  [cylinder	  fd	  2.2	  rt	  360/18]	  
setscale	  0.6	  0.6	  0.6	  dn	  2.2	  
repeat	  18	  [cylinder	  fd	  2.2	  rt	  360/18]	  
setscale	  1	  0.2	  2.5	  up	  4.7	  
repeat	  9	  [fd	  1.1	  box	  fd	  1.1	  rt	  360/18	  fd	  
2.2	  rt	  360/18]	  
END 

Figure 6: Alekat20’s Temple base on Temple ground 

After all participants had completed their design of their Temple part, the final effort 
was to put everything together. Because there were many procedures created, the teacher-
researcher suggested them to each create another procedure such as tp1 (Temple Part 1) 
and include all their procedures in it. The team then quickly sorted out the sequence and 
merged all procedures and thus a final virtual Temple was created with a main procedure 
named VAM (an acronym related to their first names) (Figure 7).  

  
Figure 7: VAM Temple’s procedural structure and virtual world 

Discussion 
From the results, we hope that we have shown deep mathematical learning among the 

three participants. Initially, the teaching experiment focused on the learning of geometry 
with 2D and 3D shapes, maps/plans, and location, direction, and movement. However, 
further analysis identified that learning in the areas of technology and engineering has also 
occurred. It can be sometimes difficult to separate the learning into individual disciplines. 
But here we will first try to discuss the learning we found according to disciplines, and 
then discuss the inter-relationships or integration of disciplines. 
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Learning in Mathematics 
The mathematical concepts developed and applied in this students’ final project not 

only included the intended 3D geometry, but also involved: 

• Number and operations: This was evident where the participants designed and 
calculated the dimensions of their Temple parts. Whole numbers and decimal 
numbers were used throughout their programming. Operations were applied 
brilliantly to create intended results. For example, in R2D2’s stairs stage, the use of 
6-repcount*0.5 showed a decreasing mechanism by starting with a larger number 
6.   

• Measurement: This was evident from the plans they drew and the scales they wrote 
in the Logo program to change the sizes of 3D objects. The decimal scales such as 
0.2 or 1.5 were not specifically discussed by the teacher-researcher with the 
participants. However, with the feedback from 3D virtual space and programming, 
the participants demonstrated good understanding and uses of decimal scales. It 
was usually a trial and improve process, in which they guessed a decimal scale in 
Logo, saw the 3D objects created, then made a sensible change of scales. 

• Patterns: The teacher-researcher had this planned and thus always challenged the 
participants to use the repeat command to simplify the programming codes. By 
observing the geometrical patterns and the number patterns, participants developed 
ideas from describing (e.g., getting smaller), generalising (e.g., decreasing by 0.5), 
and then formalising in Logo programs.  

• Algebra: The Logo programs created by the participants naturally contained many 
algebraic expressions. For example, the random sized tree (tree (((random 
10)+1)/10)+1) involved variable (as an input of a procedure), order of operations, 
and functional thinking. In fact, a procedure in Logo is a sub-routine or a function. 
All participants were able to create and name their sub-routines and execute 
function calls.  

• Chance: This was a contingency when the teacher-researcher challenged Victor to 
create different sizes of tree. The idea of random could be difficult to Victor. 
However, as demonstrated by his codes, he was able to utilise random 
command/function to generate a number range from 1.1 to 2. 

The processes of learning mathematics in the VRLE are subtle and dynamic. We can 
confirm that the mathematical concepts and skills developed and applied in the VRLE are 
the results of the meaning-making (semiosis) within the multiple semiotic resources 
afforded in the VRLE. Further, what is common in the above discussion about the 
mathematical learning, is that it started and involved the Logo programming language. It is 
of course the nature of this VRLE, for its inclusion and design of Logo programming 
language as a core component. However, this reminds and informs that language, 
particularly a programming language can serve as a formalising agent for mathematical 
abstraction and logical thinking and reasoning.   

Learning in Technology 
Technology as framed in the Australian Curriculum, includes Design and 

Technologies, and Digital Technologies (ACARA, 2015). In this Temple project, the 
learning in technology was evident in: 

• Design thinking and solutions (product): The whole process in this Temple project 
demonstrated a technological process as similar to the think-plan-do-check 
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problem-solving cycle. The final VAM Temple was created through many 
refinements (prototyping) in designs of shapes, colours, and materials. There was a 
final product (solution) as a virtual Temple, albeit virtual but a different kind of 
reality. The virtual Temple is very tangible and real in a sense that the participants 
can see it, navigate, and walk in it. 

• Computational and systematic thinking: As an ICT tool, the VRLE is a technology 
that engages the participants in designing and implementing digital solutions. The 
Logo programming language is a natural match for computational thinking, in 
which the participants practiced the problem solving, generated procedural and 
systematic codes to provide a solution (the virtual Temple), and evaluated the 
solution. The participants together managed the project and were able to create a 
systematic structure of the VAM Temple procedures (see Figure 7).  

Learning in Engineering 
The engineering design process is in a way similar to the generic problem solving cycle 

but can be broken down into more detailed cyclic steps: (1) identify the need or problem; 
(2) research the need or problem; (3) develop possible solution(s); (4) select the best 
possible solution(s); (5) construct a prototype; (6) test and evaluate the solution(s); (7) 
communicate the solution(s); and (8) redesign (Massachusetts Department of Education, 
2006). In this Temple project, there was not enough time to go through the full cycle a few 
times. However, it was clear that the participants had gone through selecting materials and 
tools (programming commands and/or graphic user interface) to prototyping, testing, 
communicating, and redesigning their artefacts (e.g., the 3D stage, trees, centre court 
structures, and the programming codes etc.). The aspect of procedural thinking in the 
programming is also a key component of engineering design process. It involves flow-
charting, data/variables, mathematical computations, and comparisons (e.g., greater and/or 
less than), logical operations (e.g., and, or) and controls (e.g., if, else). Some of them were 
not evident in this Temple project but they are certainly provided in the Logo 
programming language in this VRLE.  

Learning in Mathematics, Programming and STEM 
In the discussion above about the learning in individual disciplines, there are clearly 

some overlapping developments among disciplines. The meaning-making of mathematics 
is a dynamic and complex process among systems of signs in the VRLE. In this Temple 
project example, we found that the geometrical Logo programming language was the 
pivotal point linking all types of mathematical representations. When programming in the 
VRLE’s Logo and virtual space, learners will mathematically analyse the real world 
context; generalise according to patterns and relationships; logically sequence the steps and 
commands; semantically and syntactically write in the programming language; execute the 
codes to create the virtual world; navigate in the 3D virtual space to examine and see the 
continuous visual feedback; rethink, recalculate, and repeat the earlier steps; and 
sometimes restart, redefine, and redesign their solutions. 

From mathematics to programming, we also found that what were learnt was beyond 
merely mathematics as we originally focused. In building a virtual Temple, many of the 
technology and engineering concepts were learned and practiced by the participants. They 
collaboratively and cooperatively solved a problem (i.e., build a virtual Temple) by 
applying the design process (i.e., technology or engineering processes); selecting materials 
(i.e., material settings on virtual objects), programming with variable and procedures (e.g., 
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the tree procedure), operating and communicating with computers (e.g., use of ICT tools 
and forums), thinking procedurally (e.g., sequence procedural calls), and creating systems 
and controls (e.g., combine functional calls). We can say that these participants have 
engineered a virtual Temple with technologies and mathematics through programming in 
the VRLE. 

Conclusion 
In our new conceptual framework (Figure 1), the social-actional semiotic resources 

such as designing and building structures can and will most certainly involve projects from 
science, technology, engineering, and mathematics. This semiotic framework thus has 
implications for future teaching and learning, not just for mathematics, but STEM as an 
integrated whole for a more holistic meaning-making approach. We would like to conclude 
that learning mathematics now encompasses other disciplines, particularly with areas in 
STEM. The nature of learning mathematics may be still within mathematics itself, but in 
the current technological world, at least in this VRLE, knowledge and skills of 
mathematics, technology, and engineering developed simultaneously. We need to rethink 
and consider how mathematics can be taught and learnt in an integrated way and utilise 
what current technologies such as this VRLE can offer. We also need to examine closely 
how programming can and should be included in the curriculum.  
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Laying the Foundation for Proportional Reasoning 

Ann Downton 
Australian Catholic University 
<Ann.Downton@acu.edu.au> 

Multiplicative thinking is required when engaging in proportional reasoning tasks. While 
proportional reasoning does not always develop naturally in students, providing students 
from a young age with tasks that require students to think multiplicatively may lay the 
foundation for them to do so. This paper reports the findings of Grade 3 students’ 
performance on tasks relating to different multiplicative structures and the influence of 
each structure on students strategy choice.  

 

The Development and Evaluation of an Individualised Learning 
Tool for Mathematics students with Intellectual Disability: IMPELS 

Agbon Enoma 
Curtin University 

<a.enoma@postgrad.curtin.edu.au> 

John Malone  
Curtin University 

<J.Malone@curtin.edu.au> 

IMPELS is an Individualised Mathematics Planning and Evaluation of Learning Tool for 
Students with Intellectual Disability. IMPELS was evaluated against 3 number sense tools 
and subjected to standard validity and reliability assessments. Results obtained indicated 
that IMPELS correlated strongly with the tools, ranging from 0.70 to 0.91 and 0.45 to 0.70 
for Pearson and Spearman’s Rho correlation coefficients respectively. Cronbach’s alpha 
and Spilt-Half Reliability (KR-20) was 0.96. IMPELS is useful for the collection of 
baseline data to inform the development of individual education plans (IEPs) and for 
monitoring the progress of learning of individual students.  
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Capturing Mathematical Learning in an Inquiry Context: There are 
Some Things Not Easily Measured 

Kym Fry 
University of Queensland 

<k.fry1@uq.edu.au > 

This paper presents the theoretical findings from a PhD study into assessing mathematical 
learning in an inquiry context. The pedagogy of inquiry will continue to struggle to prove 
its worth, while student improvement in mathematics continues to be measured in terms of 
data gained through assessment designed for more traditional pedagogies. Findings from 
this study revealed high levels of student thinking about mathematics in inquiry when 
teachers artfully engineered feedback gained through formative assessment into teaching 
and learning experiences. Learning mathematics in inquiry reflected a complex and highly 
interactive journey, not easily measured using traditional school assessment practices.  

 

Teacher Professional Growth through using a Critical Mass 
Mentoring System: Effective Whole School Teacher Professional 

Development. 

Judy Hartnett  
Mathematics Education Consultant 

<judyhartnett@bigpond.com> 

Jim Midgley 
Principal: St Eugene’s Catholic College 

<jmidgely@bne.catholic.edu.au> 

Professional development for teachers utilises a significant portion of school budgets. Too 
often the impact on the performance of teachers, individually or collectively or on the 
learning outcomes of students is limited. One school principal devised a mentoring system 
that has been shown to bring about profound and sustainable cultural change, where all 
staff willingly take responsibility for their own professional learning and play a crucial role 
in the professional development of their peers.  
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Anatomy of a Mathscast 

Carola Hobohm 
University of the Sunshine Coast 

<chobohm@usc.edu.au> 

Linda Galligan  
University of Southern Queensland 

<Linda.Galligan@usq.edu.au> 

This paper reports on continued research of student produced mathscasts to support 
learning. Teachers and pre-service teachers, enrolled in a university course, were asked to 
create and peer-critique mathscasts to explain concepts in middle school. This paper 
discusses results of students’ use of a mathscast rubric that was developed by the authors to 
assist in the creation and evaluation of mathscasts. Surveys, practice mathscasts with 
informal feedback, and students’ final mathscasts are analysed. The paper concludes with 
an outline of future directions. 

 

An Exploration of Strategies That Teachers Use When Teaching 
Beginning Algebra 

Christina Lee  
Edith Cowan University 
christina.lee@ecu.edu.au  

Christine Ormond 
Edith Cowan University 
c.ormond@ecu.edu.au 

Algebra is essential in higher mathematics and initiation into the language and conventions 
of algebra, and the development of algebraic thinking, are crucial in the earlier years of 
schooling. It is the teachers’ beliefs about the nature of mathematics and teaching and 
learning which underpins their approach to teaching algebra. In this paper, we explore the 
strategies used by four teachers to teach beginning algebra. 
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Factors Influencing Social Process of Statistics Learning within an 
IT Environment 

Ken W. Li 
Hong Kong Institute of Vocational Education 

(Tsing Yi) 
<kenli@vtc.edu.hk> 

Merrilyn Goos  
The University of Queensland 

<m.goos@uq.edu.au> 

Information Technology (IT) plays an educational role of organising the learning 
environment to promote social interaction among students as well as between students and 
a teacher but little has been known about what underlying factors influence such social 
interaction within the context of statistics learning. A questionnaire-based survey was 
therefore conducted to gather data relevant to this issue. The data were then summarised by 
using Factor Analysis into factors: co-learning, teacher’s scaffolding assistance, positive 
working relationship linking with social interaction. 

 

Identifying categories of Pre-service Teachers’ Mathematical 
Content Knowledge 

Sharyn Livy 
Monash University 

<sharyn.livy@monash.edu> 

An important issue related to the current discussion about teachers’ knowledge and 
qualifications is to improve and enhance their preparation of numeracy skills. Further 
studies, including longitudinal studies designed to identify mathematical content 
knowledge (MCK) pre-service teachers’ gain during teacher education are important for 
course design and developing effective primary numeracy teachers. This paper reports on 
one pre-service teacher’s development of MCK but was informed by an historical 
overview of theoretical frameworks and the findings of a four-year longitudinal study of 17 
pre-service teachers’ MCK. The results identified how and when different categories of 
MCK were developed and can be used to improve future course design. 
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Using Drawings and Discussion to Prompt Young Learners to 
Reflect Upon and Describe Their Mathematical Understandings 

Andrea McDonough 
Australian Catholic University 

<andrea.mcdonough@acu.edu.au> 

Jill Cheeseman 
Monash University 

<jill.cheeseman@monash.edu> 

With an interest in children’s learning of mathematics and ways to gain insights into this 
learning, we explore the possible value of an open-ended self-assessment task, Impress Me, 
and follow-up interview. Ten children in their first or second year of school recorded their 
understandings using drawing and/or writing during the period in which they were taught 
lessons on mass measurement and then met individually with an interviewer/researcher to 
discuss their portrayal and their learning. The Impress Me recording was found to be a 
useful initial prompt to stimulate discussion and other effective interview prompts are 
identified in this paper. 

 

Language and Mathematics: Exploring a New Model to Teach in 
Bi/Multilingual Mathematics Classroom 

Charly Muke 
St Theresa’s Abergowrie College, Townsville 

<charly_muke@yahoo.com.au> 

The Australian curriculum now recognises the importance of language in mathematics 
learning. However, little recognition is given to the fact that most urban schools have many 
students who are from families who speak a non-English first language (L1). Participants 
in this session will be introduced to a language-use model for teaching mathematics. This 
model can be used in planning mathematics lessons that will highlight important aspects of 
language, particularly for English as a later language ELL students’ learning. Examples 
will come from research carried out in Papua New Guinea with multilingual teachers. 
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Exploring the Influence of Early Numeracy Understanding Prior to 
School on Mathematics Achievement at the End of Grade 2 

Andrea Peter-Koop 
Bielefeld University 

<andrea.peter-koop@uni-bielefeld.de> 

Sebastian Kollhoff 
Bielefeld University 

<sebastian.kollhoff@uni-bielefeld.de> 

This paper reports first results of a 3-year longitudinal study that seeks to explore the 
impact of early number skills and knowledge as demonstrated prior to school on 
achievement in school mathematics at the end of junior primary school. The study 
investigates the development of early numeracy understanding of 334 children from one 
year prior to school entry until the end of grade 2. The study identifies second graders that 
are vulnerable in their mathematics learning and compares their performance with their 
achievements over the past three years.   

 

An Irish Response to an International Concern:   
Challenges to Mathematics Teaching 

Lisa O’Keeffe 
University of South Australia 
<lisa.okeeffe@unisa.edu.au> 

Olivia Fitzmaurice 
University of Limerick 

<olivia.fitzmaurice@ul.ie> 
Patrick Johnson 

University of Limerick 
<patrick.johnson@ul.ie> 

The issue of quality teachers has been well debated internationally. Both Ireland and 
England have previously flagged their concern about the lack of qualified teachers in 
secondary mathematics and overreliance on traditional teaching methods. The UK 
response to improving teaching standards has included changes to the structure of teacher 
training and skills testing and currently in Australia the topical education issue is the 
introduction of similar skills test for all trainee teachers. Despite facing similar issues, 
Ireland didn’t follow suit with skills testing. Instead the Irish government opted to 
implement a number of strategies which included the upskilling of practising teachers of 
mathematics. However, while this addressed one side of the issue a key aspect of the 
challenge still remained “challenging pre-service teachers to do more than talk the talk’ 
(Prendergast et al., 2013). Hence, this paper aims to present the Mathematics Education 
team’s (at University of Limerick) response – “Mathematical Thinking” 
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Prendergast, M., P. Johnson, O. Fitzmaurice, M. Liston, L. O’Keeffe, and O’Meara, N. (2014). Mathematical 
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673



Research Presentation Abstracts 

 

An Analysis of Modelling Process based on McLuhan’s Media 
Theory: Focus on Constructions by Media in Cases of Using 

Geoboard 

Hiro Ozasa 
Saitama University 

< s13ac202@mail.saitama-u.ac.jp> 

The aim of this paper is to examine transitions between phases of a modelling process in 
cases of introduction of square root using paper and electric geoboard. The method is to 
analyse construction by media based on McLuhan’s media theory (McLuhan, 1987; 
Tokitsu, 2012). As conclusions, the followings about the both cases are found; (1) 
transitions between phases of the modelling process are same but constructions by media 
are different, and (2) a new mathematical problem can be posed because of the 
constructions by media.  

References 
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Tokyo, Japan: Misuzu Shobo. (in Japanese) 
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The Knowledge Dimension of Revised Bloom’s Taxonomy for 
Integration 

Farzad Radmehr 
Victoria University of Wellington 
<Farzad.radmehr@vuw.ac.nz> 

Robin Averill 
Victoria University of Wellington 

< Robin.averill@vuw.ac.nz> 

Michael Drake 
Victoria University of Wellington 

< Michael.drake@vuw.ac.nz> 

In this paper, the knowledge dimension of Revised Bloom’s taxonomy (RBT) in the 
context of integration in stage 1 university calculus is presented. For this purpose, eleven 
subcategories of the knowledge dimension of RBT are introduced and through document 
analysis of chapter 4 of the handbook of RBT, subcategories are defined. Then, using 
materials frequently employed for teaching integration, the knowledge dimension of RBT 
in the context of integration is explored. The study findings may enable enhanced 
opportunities for dialogue between teachers, lecturers, and researchers about metacognitive 
knowledge in relation to teaching integration and to the development of tools for designing 
educational objectives, teaching activities, and assessments based on RBT. 
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Developing an analysing tool for dynamic mathematics-related 
student interaction regarding affect, cognition and participation 

Laura Tuohilampi 
University of Helsinki 

<laura.tuohilampi@helsinki.fi> 

In this study, a video excerpt of two boys working on a mathematical open-ended problem 
is discussed. In the video, affective and social factors overrule development of logical 
thinking. Analysing such an episode is challenging, as appropriate tools are few. This study 
elaborates the video excerpt to find out what affective, cognitive and social phenomena 
exist in the episode, aiming to develop an analysing tool for such purpose. In addition, a 
framework called Patterns of Participation will be adapted to test its purposefulness to the 
analysis. As a result, it was found out that most of the essential features of the episode 
were revealed. However, it is suggested including theories of emotions, student 
engagement and positioning would make the tool more profound. 

 

Thinking Strategies Used by 7th-Grade Students in Solving Number 
Sense Problems 

Palanisamy Veloo 
SEGi University, Malaysia 
<pkveloo@segi.edu.my> 

Parmjit Singh  
University of Technology MARA, Malaysia 

<parmj378@salam.uitm.edu.my> 

Forty-five Grade 7 students from a larger sample of 118 were interviewed on the thinking 
strategies they used in solving number sense problems. Students were categorised into 
high, middle and low ability groups. Students were asked a series of questions designed to 
assess the thinking strategies they used in solving number sense questions. The study also 
investigated the extent to which misconceptions and learned rules were sufficiently fixed 
that they continue to influence students’ responses despite having been given lessons on 
number sense. Results show that many students continued to apply rule-based methods in 
attempting to solve number sense questions.  
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Working Across Disciplinary Boundaries  
in Pre-service Teacher Education 

Merrilyn Goos 
The University of Queensland 

<m.goos@uq.edu.au> 

Judy Anderson 
The University of Sydney 

<judy.anderson@sydney.edu.au> 

Jo Balatti 
James Cook University  

<josephine.balatti@jcu.edu.au> 

Kim Beswick 
University of Tasmania 

<kim.beswick@utas.edu.au> 

Tricia Forrester 
University of Wollongong 

<tricia@uow.edu.au> 

Jenni Way 
The University of Sydney 

<jennifer.way@sydney.edu.au> 

 
In Australia, a suite of national projects has been funded by the Australian government 

to promote strategic change in mathematics and science pre-service teacher education. This 
round table session will share some of the interdisciplinary strategies being trialled in one 
project, Inspiring Mathematics and Science in Teacher Education (IMSITE), and invite 
feedback from participants on the transferability of strategies to other institutional contexts 
and the sustainability of these strategies over time. 

The specific objectives of the IMSITE project are: 

• to develop and validate a repertoire of strategies for combining knowledge of 
content and pedagogy in mathematics and science; and 

• to connect academics from different communities of practice – mathematics, 
science, education – in order to collaboratively design and implement these new 
teacher education approaches. 

Six universities and 23 investigators – mathematicians, scientists, and mathematics and 
science teacher educators – are the core participants in the project, with more universities 
to be added in 2015.  

The first half of the round table session will showcase interdisciplinary strategies such 
as: 

• Collaborative development and delivery of new content and pedagogy courses by 
mathematicians and mathematics educators; 

• Reciprocal tutoring by mathematicians and mathematics educators into each other’s 
courses; 

• Peer observation by mathematicians and mathematics educators of each other’s 
teaching; 

• Development of a mathematics specialisation in primary pre-service programs. 
The remainder of the session will invite discussion of challenges to interdisciplinary 
collaboration (“siloing” of disciplines, inflexible workload and course funding models, 
cultural differences between the disciplines) and ways to overcome these. 
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Promoting Positive Emotional Engagement in Mathematics of 
Prospective Primary Teachers 

Joanna Higgins 
Victoria University Wellington 
<Joanna.Higgins@vuw.ac.nz> 

Janette Bobis 
University of Sydney 

<janette bobis@sydney.edu.au> 
 
 
Good teaching is described as that which is “charged with positive emotion” 

(Hargreaves, 1998, p.835). Yet, primary pre-service teacher education programs 
predominantly focus on the development of knowledge and pedagogy while affective 
aspects, including emotions, are only implicitly treated (Gootenboer, 2008). To date, 
research exploring the role emotions play in the process of learning to teach mathematics 
has received little attention (Hogden & Askew, 2007). 

The round table will begin by outlining the rationale and theoretical underpinnings of a 
trans-Tasman research project that aims to deepen primary pre-service teachers’ [PST] 
emotional and intellectual engagement in learning to teach mathematics. The Mathematics 
Emotional Engagement [MEE] project aims to develop and assess the effectiveness of an 
innovative teaching approach designed to promote positive emotional engagement in 
learning and teaching mathematics. The study explores the impact of a three-step 
interventional framework, referred to as ‘AIR’, that utilises a series of research-based 
instructional activities involving preservice primary teachers in: (1) Attending to their 
existing emotional responses towards the learning and teaching of mathematics;  (2) 
Interpreting the causes and potential impact of existing emotional responses; and (3) 
Responding to their emotions with strategies to ameliorate negative affects on their 
learning and teaching of mathematics. Data from the first stage of the project—developing 
and refining AIR instructional strategies—will provide the stimulus for discussion amongst 
participants. 
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Senior Secondary Students’ Pre-calculus and Calculus 
Understanding 

Michael Jennings 
The University of Queensland 

<msj@maths.uq.edu.au> 

Peter Adams 
The University of Queensland 

<pa@maths.uq.edu.au> 
 
 

There are substantial and ongoing concerns in the Australian and international 
secondary and tertiary education sectors about students’ transition from secondary to 
tertiary mathematics. Declining enrolments in advanced mathematics in secondary schools 
and less stringent university entry requirements are seen as a major concern for the future 
of STEM education in Australia.   

In this round table, I will present data collected from secondary school students on pre-
calculus and calculus topics. These data were collected from two groups of students:  those 
studying intermediate mathematics in the last two years of secondary school; and those 
studying both intermediate and advanced mathematics. 

The results suggest that there are distinct differences in students’ procedural and 
conceptual understanding depending on which mathematics they studied in the last two 
years of secondary school. Students who studied both intermediate and advanced 
mathematics performed considerably better in all questions, not only on the calculus 
questions but also on junior mathematics pre-calculus topics such as gradient of a straight 
line. The data also showed that both groups of students had difficulty identifying lines 
parallel to axes, as well as explaining the meaning of the definition of the derivative. 

This presentation is part of a two-year state-wide longitudinal project that is 
investigating the transition from secondary to tertiary mathematics.  
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Investigating Mathematical Inquiry 

Katie Makar 
The University of Queensland 

<k.makar@uq.edu.au> 

Jill Fielding-Wells 
University of Tasmania 

<jill.wells@utas.edu.au> 
Kym Fry 

The University of Queensland 
<k.fry1@uq.edu.au> 

Sue Allmond 
Jindalee State School 
<sallm6@eq.edu.au> 

Jude Hillman 
Jindalee State School 
<jhill98@eq.edu.au> 

 
The aim of this Round Table is to bring together a community of researchers who focus 

on the teaching, learning, assessment, and research of a mathematical inquiry approach. 
We invite those interested in the study of mathematical inquiry to discuss their work or 
aspects of inquiry that are in need of research. A few questions are listed below to provoke 
conversation. Bring your own! 

1. What shared and unshared perspectives do we have of mathematical inquiry? 
2. What are purposes of mathematical inquiry? 
3. How can mathematical inquiry be used to assess learning? 
4. What signature practices characterise inquiry pedagogy in mathematics education? 
5. How is mathematical inquiry similar to or different from inquiry in other content 

areas, such as science? 
6. How does the teaching of mathematical inquiry fit into the broader repertoire of 

pedagogies used by teachers in the course of a year? 
7. What challenges do teachers and students face in adopting mathematical inquiry? 
8. Does an inquiry approach benefit children with different backgrounds differently? 
9. What are key benefits and drawbacks of learning mathematics through inquiry? 
10. Do particular strands of mathematics fit better with inquiry? 
11. Does mathematical inquiry improve learning in mathematics?  
12. Is mathematical inquiry scalable? 
13. How can different paradigms contribute to a diversity of insights into mathematical 

inquiry? 
14. What key research areas are strongly tied to mathematical inquiry (e.g., 

argumentation, socio-mathematical norms, collaboration)? 
15. What are possible programs of research for mathematical inquiry?  
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A Problem Solving Lesson: Pre-service Teachers Initiation to 
Lesson Study 

Jaguthsing Dindyal 
National Institute of Education 

<jaguthsing.dindyal@nie.edu.sg> 

Three pre-service teachers (PST) who had no prior experience with lesson study had to use 
a lesson study approach to plan and teach a problem solving lesson. This paper documents 
how the three PSTs were initiated into the Japanese style of lesson study and then how as a 
team they went about planning their research lesson on problem solving for a primary three 
class and then teaching it. The focus is on some of the issues that surfaced when preparing 
this problem solving lesson on magic squares and how they addressed them. 

 

 

Teachers’ Beliefs about Knowledge of Content and Students and its 
Effect on their Practice 

Vesife Hatısaru  
Middle East Technical University   

<vhatisaru@hotmail.com> 

This study investigated mathematics teachers’ beliefs about teachers’ knowledge of content 
and students (Ball, Thames, & Phelps, 2008) about particular mathematical content and its 
effect on teaching practice. Two teachers participated in the study. Data were collected 
through classroom observations and an interview. The interview was based on An, Kulm, 
Wu, Ma, and Wang (2002) and focused mainly on teachers’ beliefs about knowledge of 
students’ thinking, approach to planning the mathematics instruction, students’ homework, 
and importance and approach to grading homework. The study indicated both teachers 
believed the importance of teachers’ understanding the way students think about a certain 
mathematics subject or the difficulties they experience with it. Nevertheless, it is seemed 
the teachers’ beliefs had no effect on their teaching practice. Moreover, they had limited 
awareness of how to identify students’ difficulties. 

References 
An, S., Kulm, G., Wu, Z., Ma, F., & Wang, L.  (2006). A comparative study on mathematics teachers’ beliefs 

and their impact on the teaching practice between the U.S. and China. In F. K.S. Leung, K. D. Graf, & F. 
J. Lopez-Real (Ed.), Mathematics education in different cultural traditions: A comparative study of East 
Asia and the West, The 13th ICMI Study, (pp. 449-464). New York, NY: Springer.  

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? 
Journal of Teacher Education, 59(5), 389-407. 
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Exploring Students’ Views on using iPads in Mathematics. 

Janelle Hill 
Monash University 

<Janelle.hill@monash.edu.au> 

The use of iPads in education is increasing, with increasing numbers of studies 
focussing on teacher use of this tool in mathematics teaching and learning. As a 
stakeholder group, the views of students must also be investigated. As part of a larger case 
study, the views of Year 5 to Year 12 students from one Victorian school were sought 
about the use of iPads in mathematics. A number of concerns related to the perceived 
negative impact of iPad use in mathematics learning arose and will be further explored in 
the presentation.  

 

 

Mapping school students’ aspirations for STEM careers 

Kathryn Holmes 
University of Newcastle 

<Kathryn.holmes@newcastle.edu.au> 

Adam Lloyd 
University of Newcastle 

<adam.lloyd@newcastle.edu.au> 
 

Jenny Gore 
University of Newcastle 

<jenny.gore@newcastle.edu.au> 

 
Max Smith 

University of Newcastle 
<maxwell.smith@newcastle.edu.au> 

Declining enrolments in STEM disciplines and a lack of interest in STEM careers is 
concerning at a time when society is becoming more reliant on complex technologies. We 
examine student aspirations for STEM careers by drawing on survey data from 8235 
school students in Years 3 to 11 who were asked to indicate their occupational choices and 
give reasons for those choices. These data are also examined in relation to student SES, 
gender, prior achievement and educational aspirations. The analysis provides a strong 
empirical basis for understanding current student interest in STEM and exploring 
implications for educational policy and practice.  
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Breaking down Barriers 

Peter Howley 
The University of Newcastle 

<peter.howley@newcastle.edu.au> 

Engaging cohorts including less quantitatively-adept students and educating them about the 
value of Statistics has its challenges. This talk will outline two successes: the first resulted 
in a first-year Statistics for Business course increasing student satisfaction scores from 
under 3.5 out of 5 to 4.72 whilst maintaining ‘challenge’ scores and reducing Failure rates 
previously exceeding 25% to 7-12%; the second is a national project-based learning 
activity (piloted in the Hunter Region in 2014) which facilitates boundary encounters 
(between secondary, tertiary, and industry sectors and students having varied backgrounds 
and areas of interest) and develops key communication, research and quantitative skills. 

 

 

Building upon the Language Model of Mathematics 

Harry Kanasa 
Griffith University 

<h.kanasa@griffith.edu.au> 

Kevin Larkin 
Griffith University 

<h.kanasa@griffith.edu.au> 

The language model of mathematics is a useful framework to conceptualise the teaching 
and learning of mathematics from a constructivist perspective. The model currently 
proposes that students move along two dimensions (visual and verbal) towards increasing 
levels of mathematical abstraction. We present the case for theorising the existence of a 
third dimension, the gestural, by drawing upon established theories of learning within 
mathematics and also from brain based learning. Examples will be provided on how the 
addition of the gestural dimension can enhance mathematics education at all levels. 
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The Australian Mathematics Competition: What’s the Score? 

Andrew Kepert 
The University of Newcastle 

<Andrew.Kepert@newcastle.edu.au> 

Mike Clapper 
Australian Mathematics Trust 
<Mike.Clapper @amt.edu.au> 

 
The Australian Mathematics Competition (AMC) is a problem-solving competition for 
Primary and Secondary students.  Each paper has 30 problems graded from routine to 
baffling, challenging and rewarding students of all abilities.  The competition’s quality 
depends on the collective effort of dozens of Mathematics Educators (Primary to 
University) who write and scrutinise the papers in several stages.  Our current work is to 
ensure the AMC provides a reliable challenge for students.  Tools for calibrating the 
performance of questions and papers across a range of question types are improving the 
competition, measured by the relative performance of each question, and by each paper’s 
aggregate score. 

 

 

A Focus Question Approach to the Teaching of Mathematics 

John Ley 
University of Western Sydney 

<j.ley@uws.edu.au> 

This is a presentation on a focus question approach to teaching mathematics (FFQA) which 
is the title of my thesis. It is proposed to investigate the impact of the FFQA at the 
commencement of each mathematics lesson on the learning and motivation of students. 
The style of five questions that I propose to investigate has the first four questions as 
instrumental style questions that focus on procedural knowledge, with the final question 
using a relational understanding approach with some of the questions being open ended 
investigational style questions focusing on conceptual knowledge. The research is ongoing. 
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Promoting the Development of Foundation Content Knowledge in 
all Primary Pre-service Teachers 

Chris Linsell 
University of Otago College of Education 

<chris.linsell@otago.ac.nz> 

Naomi Ingram 
University of Otago College of Education 

<naomi.ingram@otago.ac.nz> 
 

Megan Anakin 
University of Otago College of Education 

<megan.anakin@otago.ac.nz> 

A feature of Linsell and Anakin’s (2013) concept of foundation content knowledge is that 
all pre-service teachers should have a growth oriented disposition and extend their 
knowledge, whether or not it is initially strong. This study reports on the use in 
mathematics pedagogy classes of introductory problems designed to encourage all first 
year primary pre-service teachers to become aware of the features of foundation content 
knowledge and to extend their own knowledge. Eighty-one percent of those pre-service 
teachers whose foundation content knowledge was not initially strong considered the 
introductory problems helpful, compared to 61% of those whose knowledge was strong. 

References 
Linsell, C., & Anakin, M. (2013). Foundation content knowledge: What do pre-service teachers need to 

know? In V. Steinle, L. Ball, & C. Bardini (Eds.), Yesterday, Today and Tomorrow (Proceedings of the 
36th Mathematics annual conference of the Mathematics Education Research Group of Australasia, 
Melbourne, pp. 442-449). Adelaide: MERGA. 

 

Paternal influence on school students’ aspirations for STEM careers 

Adam Lloyd 
University of Newcastle 

<adam.lloyd@newcastle.edu.au> 
 

Jenny Gore 
University of Newcastle 

<jenny.gore@newcastle.edu.au> 

Max Smith 
University of Newcastle 

<maxwell.smith@newcastle.edu.au> 

There is a growing awareness of the important and differential influence fathers have on 
child lifestyle behaviours compared to mothers. This ‘paternal’ influence could potentially 
carry across to children’s early career aspirations. A sample of n = 8235 school students in 
Years 3 to 11 were asked to indicate their occupational choices, give reasons for those 
choices and also provide information about their parents education and occupation. Using 
regression analysis, associations between paternal and maternal education levels and 
occupations with children’s STEM career aspirations were modelled. The findings provide 
further evidence of the potential differential influence parents have on their child’s 
aspirations. 
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Understanding Mathematics: Teacher Knowledge, Task Design and 
Evaluating Students’ Mathematical Reasoning 

Christine Mae 
Catholic Education Office Sydney 

<christine.mae@syd.catholic.edu.au> 

Janette Bobis 
University of Sydney 

<janette.bobis@sydney.edu.au> 
 

Jenni Way 
University of Sydney 

<jennifer.way@sydney.edu.au> 

This presentation describes a research project designed to understand the relationship 
between teachers’ conceptual understandings of mathematics, the tasks they design for 
their students and their evaluation of students’ responses to tasks. Using Timperley’s 
(2008) Teacher Knowledge Building and Inquiry Cycle, Year 5 and 6 primary teachers and 
leaders at a range of career stages engaged in tasks to highlight the connection between 
what students need to know, what teachers need to know and what teachers need to learn. 
The implications for developing teachers’ understandings of mathematics will be discussed 
in terms of system-level professional learning.  

References 
Timperley, H. (2008). Teacher professional learning and development, Educational Practices Series-18, 

International Bureau of Education, UNESCO. 
 

 

The Pattern and Structure of the  
Australian Curriculum—Mathematics 

Catherine McCluskey 
Macquarie University 

<catherine.mccluskey@students.mq.edu.au > 

Joanne Mulligan 
Macquarie University 

<joanne.mulligan@mq.edu.au > 
 

Michael Mitchelmore 
Macquarie University 

<mike.mitchelmore@mq.edu.au > 

The mathematical proficiencies in the Australian Curriculum—Mathematics describe the 
processes students are engaged in while developing mathematical concepts (ACARA, 
2014). This presentation focuses on how the proficiencies: understanding, problem solving, 
reasoning and fluency, may work together to build patterns of thinking which can lead to 
generalised understandings of mathematical concepts. The authors connect the combined 
role of these proficiencies with a proposed Generalised Model of Patterning (McCluskey, 
Mitchelmore, & Mulligan, 2013), highlighting the role of patterning in the development of 
conceptual understandings within and beyond mathematics. 
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Mathematical Thinking in a Context of ‘General Thinking’: 
Implications for Mathematics Education 

Corinne Miller 
Southern Cross University 

<Corinne.miller@scu.edu.au> 

Geoff Woolcott 
Southern Cross University 

<Geoff.woolcott@scu.edu.au> 
 

Christos Markopoulos 
Southern Cross University 

< christos.markopoulos@scu.edu.au > 

This new project explores the similarities and differences of mathematical thinking and 
‘general thinking’, as well as related motivational and emotional aspects, focusing on how 
these differ in educational contexts. It will examine assumptions of the underlying feature 
of mathematics curriculum design and pedagogy, for example, that linear structure is the 
most efficient means of building mathematical knowledge or that number-based 
knowledge is a reliable indicator of mathematical skill. Insights gained will be used to 
improve the current paradigms in course structure and pedagogy for classroom 
mathematics in order to develop a structure better aligned to student capabilities and 
potentials. 

 

 

Conceptual Connectivity in Mathematics 

Joanne Mulligan 
Macquarie University 

<joanne.mulligan@mq.edu.au> 

Geoff Woolcott 
Southern Cross University 

<Geoff.woolcott@scu.edu.au> 

Human environmental interactions involve general conceptual connectivity processes such 
as categorisation, abstraction and generalisation. These are linked to the development of 
mathematics concepts, but research in this area is relatively new in mathematics education. 
A conceptual connectivity lens, however, has been used in cases where there are 
difficulties in mathematics learning, such as developmental dyscalculia, as well as in 
studies of mathematical pattern and structure with young gifted children. This presentation 
suggests that such studies support the determination that individual differences in 
processing of environmental information are an important way forward in understanding 
what underpins mathematics conceptual development. 

References 
Australian Curriculum Assessment and Reporting Authority [ACARA ] (2014). Australian curriculum. 

Retrieved 11 October, 2014, http://www.australiancurriculum.edu.au/  
McCluskey, C., Mitchelmore, M.  C., & Mulligan, J. T. (2103). Does an ability to pattern indicate that our 

thinking is mathematical? In V. Steinle, L. Ball, & C. Bandini (Eds.), Mathematics education: Yesterday, 
today & tomorrow (Proceedings of the 36th annual conference of the Mathematics Education Research 
Group of Australasia, Melbourne, pp. 482-489). Adelaide: MERGA. 
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Primary-Middle Pre-Service Teachers reported use of the 
Mathematics Textbook 

Lisa O’Keeffe 
University of South Australia 
<lisa.okeeffe@unisa.edu.au> 

The 1999 TIMSS video study highlighted a heavy reliance on the mathematics textbook in 
Australian classrooms (Hiebert et al., 2003). This promoted further investigation by 
Vincent & Stacey (2008) who have documented the differences between mathematical 
textbooks and concerns with regard to problem solving. However, there is much anecdotal 
evidence to suggest that the role of the textbook may be changing and that the emergence 
of digital technologies may in fact replace the mathematics textbook (Hu, 2011). Hence, 
this exploratory study intends to a brief insight into the current status of the mathematics 
textbook and its use within Australian classrooms. 

 

 
Examining a Students’ Resource for Reconstructing the Limit 

Concept at Need: A Structural Abstraction Perspective 

Thorsten Scheiner 
University of Hamburg, Germany 

<Thorsten.Scheiner@uni-hamburg.de> 

Márcia M. F. Pinto  
Federal University of Rio de Janeiro, Brazil 

<marciafusaro@gmail.com> 

This presentation examines a student’s learning of the limit concept of a sequence 
compatible with his strategy of making sense, through which the structural abstraction 
framework evolves and is further refined. The attention is focused on a student’s generic 
representation of the limit concept that allows him to generate meaningful components 
specific to particular contexts. Further, a sketch of the basic ideas of structural abstraction 
is given, and the use of the generic representation as a resource to reconstruct the meaning 
of the concept at need is discussed. Additionally, the importance of structural abstraction 
for learning mathematics is elaborated. 
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Pre-service Teachers’ Views on Mathematics Homework Practices 

Sven Trenholm 
University of South Australia 

<sven.trenholm@unisa.edu.au> 

Mohan Chinnappan 
University of South Australia 

<mohan.chinnappan@unisa.edu.au> 

Literature suggests that homework plays an important role in mathematics learning yet, in 
the Australian context, there is limited related research on this issue. This exploratory 
study sets out to better understand pre-service teachers’ intentions and practices concerning 
mathematics homework. Using a survey design, we analysed data collected from a 
questionnaire administered to 98 (71% response rate) pre-service teachers (PSTs), all in the 
third year of their BEd program and completing a third course in mathematical methods as 
well as professional experience. Contrary to our expectation, the difference in perceptions 
among PSTs teaching upper and lower primary grades were not statistically significant. 

 

 

Teaching out-of-field: Meanings, representations and silences 

Colleen Vale 
Deakin University 

<colleen.vale@deakin.edu.au> 

Linda Hobbs 
Deakin University 

< linda.hobbs@deakin.edu.au > 
 

Christopher Speldewinde 
Deakin University 

<christopher.speldewinde@deakin.edu.au> 

 
Zahra Parvanehnezhadshirazian 

Deakin University 
 <zahra.p@deakin.edu.au>  

Teaching out-of-field is a concern internationally, and in Australia, and is linked to social, 
economic and educational costs for students and teachers along with an ethical and social 
justice issue for the community. At the national level, out-of-field teaching is most often 
represented as a problem of teacher quality involving less qualified teachers. Using a 
critical lens, meanings and representations of government policy and stakeholder 
perspectives and practices are analysed. The findings show how teaching out-of-field 
occurs and is legitimated and reveal the opportunities for contesting these positions to 
improve the outcomes for students and out-of-field teachers.    
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Promoting Financial Literacy in Pre-service Teacher Education 
through On-line Modules 

Leigh Wood 
Macquarie University 

<leigh.wood@mq.edu.au> 
 

Joanne Mulligan 
Macquarie University 

<joanne.mulligan@mq.edu.au> 

Carmel Coady 
University of Western Sydney 

<c.coady@uws.edu.au> 
 

Michael Cavanagh 
Macquarie University 

<michael.cavanagh@mq.edu.au> 
 

Damian Bridge 
Macquarie University 

<damian.bridge@mq.edu.au> 

Opening Real Science (ORS) is 3-year Australian Government project led by Macquarie 
University supported by the Office for Learning and Teaching under the Enhancing the 
Training of Mathematics and Science Teachers Scheme (ETMST). ORS is developing a 
series of modules for implementation in teacher education programs, some of which focus 
on financial literacy: budgeting, investing and protecting, and modelling. The modules will 
be designed for active learning incorporating digital literacy themes to showcase 
implementation of technology integration into curriculum. Currently there are several trials 
in progress at three partner Australian universities. Evaluation data will inform the design-
based approach to program re-development aimed at building the mathematical 
competence, and confidence of teachers. 
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